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Simplicial Decomposability

DAVID COOK II

ABSTRACT. We introduce a new Macaulay2 package, SimplicialDecomposability, which works in
conjunction with the extant package SimplicialComplexes in order to compute a shelling order, if one
exists, of a specified simplicial complex. Further, methods for determining vertex-decomposability are
implemented, along with methods for determining k-decomposability.

INTRODUCTION. Given a finite vertex set V , a simplicial complex ∆ is a set of subsets of V such
that τ ∈ ∆ whenever τ ⊂ σ for some σ ∈ ∆ and such that {v} ∈ ∆ for all v ∈V . The elements σ ∈ ∆

are called faces or simplices and the maximal faces, i.e., those not contained in any other face, are
called facets. The dimension of the face σ is #σ − 1 and the dimension of ∆ is maxdimσ . Let
d = dim∆+ 1. The f -vector of ∆ is the (d + 1)-tuple ( f−1, . . . , fd−1), where fi is the number of
faces of dimension i in ∆. Using this, the h-vector of ∆ is the (d + 1)-tuple (h0, . . . ,hd) given by
h j = ∑

j
i=0(−1) j−i(d−i

j−i

)
fi−1 for 0≤ j ≤ d.

Given a field K, let K[V ] be the polynomial ring with variables indexed by the vertices V . The
Stanley-Reisner ideal of ∆is the ideal I(∆) in K[V ] generated by the minimal non-faces of ∆ and
the Stanley-Reisner ring of ∆ is the ring K[∆] = K[V ]/I(∆). Thus the Stanley-Reisner ideals of
complexes on a given vertex set V are exactly the squarefree monomial ideals in K[V ]. Given the
relations between the complex and the ideal, one can use tools from both algebra and combinatorics
to study properties of both. For example, the h-vector of a complex ∆ is the coefficient-vector of the
numerator of the Hilbert series of K[∆].

The package SimplicialComplexes by Sorin Popescu, Gregory G. Smith, and Mike Stillman already
implements many methods for simplicial complexes in Macaulay2 [M2], a software system designed
to aid in research of commutative algebra and algebraic geometry. We introduce a new package,
SimplicialDecomposability, for Macaulay2 which provides several new methods for testing various
forms of decomposability for simplicial complexes. Particularly, the package implements methods
for testing shellability and vertex-decomposability.

SHELLABILITY. Given a finite set σ , let 2σ be the set of all subsets of σ . Let ∆ be a simplicial
complex that has equidimensional facets, i.e., is pure. Then by Definition III.2.1 in [S], ∆ is shellable
if its facets can be ordered σ1, . . . ,σn so that

⋃i
j=1 2σ j \

⋃i−1
j=1 2σ j has a unique minimal element for

2≤ i≤ n, such an ordering is called a shelling order. See Definition 2.1 in [BW1] for the definition
of non-pure shellability, which is implemented in the package for non-pure complexes.

Shellability is of interest because it implies a number of nice properties. In particular, if a
pure simplicial complex is shellable, then its Stanley-Reisner ring is Cohen-Macaulay over every
field [S, Theorem III.2.5]. Moreover, its h-vector is non-negative and can be read off from any shelling
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order [S, Theorem III.2.3]. Further still, the h-vectors of shellable pure complexes are numerically
characterized [S, Theorems II.2.2 and II.3.3].

We recall that the Alexander dual of a simplicial complex ∆ on vertex set V is the simplicial complex
∆∨ := {V \F | F 6∈ ∆}. Further, we say an ideal I has linear quotients if the minimal generators of I
can be ordered f1, . . . , fn such that for 2≤ i≤ n, the quotient ideal ( f1, . . . , fi−1) : ( fi) is generated
by linear forms, in this case the sequence {( f1) : ( f2),( f1, f2) : ( f3), . . . ,( f1, . . . , fn−1) : fn} is called
a linear quotient order of I with respect to f1, . . . , fn.

In the following example we demonstrate Theorem 1.4(c) of [HHZ], which shows that a pure
simplicial complex is shellable if and only if the Stanley-Reisner ideal of the Alexander dual has linear
quotients. We begin by constructing the polynomial ring R = Q[a,b,c,d,e, f ,g] and a simplicial
complex D, which we verify is pure. Loading the package SimplicialDecomposability automatically
loads the package SimplicialComplexes.

i1 : loadPackage "SimplicialDecomposability";

i2 : R = QQ[a..g];

i3 : D = simplicialComplex {c*e*g, b*e*g, a*e*g, b*d*g, a*d*g, c*e*f, b*e*f, a*e*f};

i4 : isPure D

o4 = true

We can recover a sequence of linear quotients directly from a shelling order. We recall that a pure
simplicial complex ∆ is shellable if there is an order of the facets F1, . . . ,Fn such that for 0 < j < i
there exists an x ∈ Fi \Fj and a 0 < k < i such that Fi \Fk = {x}. The set of vertices associated to
each i in the preceding statement generate the linear quotient order of I(∆∨) with respect to the given
shelling order (see the proof of Theorem 1.4(c) in [HHZ]).

i5 : linearQuotients = O -> for i from 1 to #O-1 list (
unique flatten for j from 0 to i-1 list (

ImJ = set support O_i - set support O_j;
for k from 0 to i - 1 list (

ImK = set support O_i - set support O_k;
if #ImK == 1 and isSubset(ImK, ImJ) then
first toList ImK else continue)));

We generate a shelling order O1 of D with the method shellingOrder. This method attempts to
build up a shelling order of D recursively using a depth-first search, adding one facet at a time. We
note that in the non-pure case, the method only searches the remaining facets of largest dimension.

i6 : O1 = shellingOrder D

o6 = {c*e*g, b*e*g, a*e*g, b*d*g, a*d*g, c*e*f, b*e*f, a*e*f}

o6 : List

i7 : linearQuotients O1

o7 = {{b}, {a}, {d}, {d, a}, {f}, {f, b}, {f, a}}

o7 : List

It is sometimes beneficial to have more than one shelling order for a given simplicial complex. We
can use the option Random with the method shellingOrder to first apply a random permutation to the
facets before preceding with the recursion.

i8 : O2 = shellingOrder(D, Random => true)

o8 = {b*d*g, a*d*g, a*e*g, b*e*f, c*e*g, a*e*f, b*e*g, c*e*f}



Cook :::: SimplicialDecomposability 22

o8 : List

i9 : linearQuotients O2

o9 = {{a}, {e}, {}, {c}, {f, a}, {e, b, g}, {c, f}}

o9 : List

Alternately, we may use the option Permutation with the method shellingOrder to force a given
permutation on the facets before preceding with the recursion.

i10 : O3 = shellingOrder(D, Permutation => {3,2,1,0,4,5,6,7})

o10 = {b*d*g, b*e*g, a*e*g, c*e*g, a*d*g, c*e*f, b*e*f, a*e*f}

o10 : List

i11 : linearQuotients O3

o11 = {{e}, {a}, {c}, {a, d}, {f}, {f, b}, {f, a}}

o11 : List

Thus we now have multiple linear quotient orders associated to the ideal I(D∨), each coming from a
shelling order of D.

VERTEX-DECOMPOSABILITY. Let ∆ be a pure simplicial complex and σ a face of ∆. Then the link
and face deletion of σ in ∆ are the simplicial complexes

link∆ σ := {τ ∈ ∆ | σ ∩ τ = /0,σ ∪ τ ∈ ∆} and del∆ σ := {τ ∈ ∆ | σ * τ}.

Definition 2.1 in [PB] defines ∆ to be vertex-decomposable if either ∆ is a simplex or there exists a
vertex x ∈ ∆, called a shedding vertex, such that link∆ x and del∆ x are vertex-decomposable.

See Definition 11.1 in [BW2] for the definition of non-pure vertex-decomposability, which is
implemented in the package for non-pure complexes. Also, see Definitions 3.1 and 3.6 in [W] for the
generalization of vertex-decomposability, called k-decomposability. It is implemented in the package
with the methods iskDecomposable and isSheddingFace.

Being vertex-decomposable is a strong property which implies many things. A pure vertex-
decomposable simplicial complex is shellable [PB, Theorem 2.8] and hence has non-negative
h-vector [S, Theorem III.2.3] and its Stanley-Reisner ring is Cohen-Macaulay [S, Theorem III.2.5].
Furthermore, the h-vectors are numerically characterised for vertex-decomposable simplicial com-
plexes [L, Theorem 3.5]. Moreover, the Stanley-Reisner ring of a pure vertex-decomposable complex
is squarefree glicci [NR, Definition 2.2 and Theorem 3.3].

In the following example we demonstrate that the simplicial complex D from the previous example
is indeed squarefree glicci. We use [NR, Remark 2.4] to find a basic double link of I(D) to I(linkD v),
both in R, for some shedding vertex v of D.

First, we verify that D is vertex-decomposable. Then we find its shedding vertices.
i12 : isVertexDecomposable D

o12 = true

i13 : select(allFaces(0, D), v -> isSheddingVertex(v, D))

o13 = {a, b, c, d, f}

o13 : List

We choose the shedding vertex f of D and generate E = linkD f . Then we find its shedding vertices.
i14 : E = link(D, f);

i15 : ideal E



Cook :::: SimplicialDecomposability 23

o15 = ideal (a*b, a*c, b*c, d, f, g)

o15 : Ideal of R

i16 : select(allFaces(0, E), v -> isSheddingVertex(v, E))

o16 = {a, b, c}

o16 : List

We now choose the shedding vertex c of E and generate F = linkE c. Notice then that the Stanley-
Reisner ideal of F is a complete intersection.

i17 : F = link(E, c);

i18 : ideal F

o18 = ideal (a, b, c, d, f, g)

o18 : Ideal of R

Hence, we now have the following sequence of basic double links in R which has squarefree terms on
the even steps (the odd steps are omitted):

Q[D] = (ab,ac,bc,cd,de,d f , f g)∼Q[E] = (ab,ac,bc,d, f ,g)∼Q[F ] = (a,b,c,d, f ,g).
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