
JSAG 3 (2011), 1 – 4 The Journal of Software for
Algebra and Geometry

Nauty in Macaulay2

DAVID COOK II

ABSTRACT. We introduce a new Macaulay2 package, Nauty, which gives access to powerful methods
on graphs provided by the software nauty by Brendan McKay. The primary motivation for accessing
nauty is to determine if two graphs are isomorphic. We also implement methods to generate families
of graphs restricted in various ways using tools provided with the software nauty.

INTRODUCTION. Let G and H be two finite, simple, undirected graphs on the common vertex set V
with edge sets E(G) and E(H), respectively. We say that G and H are isomorphic if there is a bijection
ϕ from V to itself which preserves edges, that is, {u,v} ∈ E(G) if and only if {ϕ(u),ϕ(v)} ∈ E(H).
Determining whether two given graphs are isomorphic is known as the Graph Isomorphism problem.

When Garey and Johnson wrote their classic book [GJ] on the complexity of algorithms, they
specified twelve problems of ambiguous complexity, one of which was the Graph Isomorphism
problem. Unfortunately, it is still unknown if the Graph Isomorphism problem is P or NP-complete.
Moreover, the problem is of such notoriety that some have even begun referring to a new complexity
class, GI, of problems which reduce in polynomial time to the Graph Isomorphism problem [J].
Despite this, there exists computer software which is capable of determining whether two graphs are
isomorphic in reasonable time. One such piece of software is nauty [N] by McKay.

The nauty software is written in highly portable C and is designed to, above all else, compute
whether two graphs are isomorphic. It also includes an extensive family of tools, collectively called
gtools, to generate systematic modifications of graphs, to generate specific families of graphs, to
generate random graphs, to filter a set of graphs for given properties, and to canonically relabel
graphs. Most of these features would be beneficial to any computer software that handles graphs.

The package EdgeIdeals [FHT] by Francisco, Hoefel, and Van Tuyl implements structures and
methods for manipulating graphs (and hypergraphs) within Macaulay2 [M2], a software system by
Grayson and Stillman designed to aid in research of commutative algebra and algebraic geometry. We
introduce a new package, Nauty, for Macaulay2, which provides an interface with nauty.1 Most of
the aforementioned tools in gtools are accessible through Nauty. In particular, the methods of perhaps
the greatest interest are areIsomorphic, filterGraphs, generateGraphs, and generateRandomGraphs.

The remainder of this note is broken in to two sections: the first describes briefly the theoretical
underpinnings of nauty and the second gives an example session of using Nauty along with a few
useful caveats.

CANONICAL LABELLINGS. In [M], McKay describes the improved algorithms which he developed
to canonically label a graph; these algorithms are the heart of nauty and are summarised in [N]. We
recall briefly the theoretical ideas which make such algorithms useful.

2010 Mathematics Subject Classification. 05C25.
Nauty version 1.4.1; nauty version 2.4r2.
1Throughout this note we use nauty to refer to the software and Nauty to refer to the interface.

1

Cook :::: SimplicialDecomposability 2

Let G be a finite, simple, undirected graph on the vertex set V . We call an ordered partition
π = (V1, . . . ,Vm) of V a colouring of G and call (G,π) a coloured graph. Given a permutation σ

of V , we define σ(Vi) to be the set {σ(v) | v ∈ Vi}, σ(π) to be the colouring
(
σ(V1), . . . ,σ(Vm)

)
,

and σ(G) to be the graph on V with edge set E
(
σ(G)

)
given by {σ(u),σ(v)} ∈ E

(
σ(G)

)
for all

{u,v} ∈ E(G). If σ(π) = π , then σ is called colour-preserving.
If V = [n] = {1, . . . ,n} and π = (V1, . . . ,Vm) is a colouring of V , then c(π) is the colouring

({1, . . . , |V1|},{|V1|+ 1, . . . , |V1|+ |V2|}, . . . ,{n− |Vm|+ 1, . . . ,n}). A canonical labelling map is a
function ` from the set of coloured graphs with vertex set V to the set of graphs with vertex set V
such that, for any coloured graph (G,π), `(G,π) = τ(G) for some permutation τ with τ(π) = c(π)
and `

(
σ(G),σ(π)

)
= `(G,π) for every permutation σ of V .

Theorem ([M, Theorem 2.2], [N, Theorem 1]). Let (G,π) and (H,ρ) be coloured graphs on the
common finite vertex set V such that π and ρ have the same number of vertices in the i-th colour
class, for each i. Further, let ` be a canonical labelling map for graphs with vertex set V . Then
`(G,π) = `(H,ρ) if and only if σ(G) = H for some colour-preserving permutation σ .

Initially, nauty colours a graph with a single colour and then refines this colouring using a specified
vertex invariant. Then, using the above theorem, nauty can determine if two graphs are isomorphic
by checking if their canonical labellings, after refinement, are the same. The power of nauty is that
it implements fifteen different vertex invariants (see [N, §9]), each of which is more or less useful
depending on the class of graphs being tested.

EXAMPLES. We first load Nauty, which automatically loads EdgeIdeals for access to the Graph class.
The nauty software stores graphs in two different string formats, Graph6 and Sparse6 (see [N, §19]
for a complete description); both formats are handled by Nauty in the method stringToGraph. The
method graphToString always returns the Graph6 string-representation of the graph; e.g., the five-
cycle can be represented as “Dhc” and the complete graph on five vertices is represented as “D˜{” in
the Graph6 string-representation.

Macaulay2, version 1.4
with packages: ConwayPolynomials, Elimination, IntegralClosure, LLLBases,

PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : needsPackage "Nauty";
--loading configuration for package "Nauty" from file .../Macaulay2/init-Nauty.m2

i2 : R = QQ[a..e];

i3 : graphToString cycle R

o3 = Dhc

i4 : graphToString completeGraph R

o4 = D~{

i5 : edges stringToGraph("Dhc", R)

o5 = {{a, b}, {b, c}, {c, d}, {a, e}, {d, e}}

o5 : List

Caveat. Due to the way graphs are constructed in EdgeIdeals, the conversion process from string
format to graph format is costly. Thus, when many consecutive manipulations will be done through
Nauty, we recommended that the graphs be left in string format until it is necessary to convert back to
graph format.

Cook :::: SimplicialDecomposability 3

The most powerful feature of Nauty is determining if two graphs are isomorphic. We can demon-
strate it for two given graphs with areIsomorphic; further we can reduce a list of graphs to be pairwise
non-isomorphic with removeIsomorphs. We demonstrate the latter on a list of 5! = 120 different
labellings of the five-cycle, which is represented as “Dhc” in the Graph6 string-representation.

i6 : G = graph {{a, c}, {c, e}, {e, b}, {b, d}, {d, a}};

i7 : areIsomorphic(cycle R, G)

o7 = true

i8 : removeIsomorphs apply(permutations gens R,
P -> graphToString graph apply(5, i-> {P_i, P_((i+1)%5)}))

o8 = {Dhc}

o8 : List

Nauty also includes methods for generating all graphs on a given number of vertices, possibly
with restrictions to simple properties such as the number of edges, with the method generateGraphs.
We generate all graphs with between one and nine vertices and verify the counts with the Online
Encyclopedia of Integer Sequences [S, A000088].

Caveat. As nauty does not handle graphs with zero vertices, Nauty will throw an error when graphs
with zero vertices are requested or encountered.

i9 : A000088 = apply(1..9, n -> #generateGraphs n)

o9 = (1, 2, 4, 11, 34, 156, 1044, 12346, 274668)

o9 : Sequence

We can also select all graphs in a list with a given property. To do this, we first build a filter with
the method buildGraphFilter and then use the method filterGraphs to select all graphs in the list
which pass the filter; see the documentation for buildGraphFilter to see all the possible properties
which can be filtered for. First we generate all bipartite graphs with between one and twelve vertices.
We then filter this list for forests, i.e., graphs without cycles. We verify the counts with [S, A005195].

i10 : B = apply(1..12, n -> generateGraphs(n, OnlyBipartite => true));

i11 : forestsOnly = buildGraphFilter {"NumCycles" => 0};

i12 : A005195 = apply(B, graphs -> #filterGraphs(graphs, forestsOnly))

o12 = (1, 2, 3, 6, 10, 20, 37, 76, 153, 329, 710, 1601)

o12 : Sequence

Caveat. Nauty uses the following definition of k-connectedness: a 0-connected graph is a discon-
nected graph and, for k > 0, a k-connected graph is a graph that can be disconnected by removing k
vertices but not by removing k−1 vertices.

Thus, if we wish to select only connected graphs, then we must create a filter for graphs which
are not 0-connected. Alternatively, the method generateGraphs has the option OnlyConnected which
forces only connected graphs to be returned. We demonstrate the former by filtering the list of bipartite
graphs for trees, i.e., connected graphs without cycles. We verify the counts with [S, A000055].

i13 : treesOnly = buildGraphFilter {"NumCycles" => 0,
"Connectivity" => 0, "NegateConnectivity" => true};

i14 : A000055 = apply(B, graphs -> #filterGraphs(graphs, treesOnly))

o14 = (1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551)

Cook :::: SimplicialDecomposability 4

o14 : Sequence

Last, when testing conjectures — especially when dealing with graphs on many vertices — it is
nice to be able to generate large lists of random graphs. EdgeIdeals provides the method randomGraph,
but this method only generates graphs with a specified number of edges and, moreover, generates only
one graph at a time. Nauty provides the method generateRandomGraphs, which randomly generates
multiple graphs on a fixed number of vertices with a specified edge probability.

Erdős and Rényi show in [ER, Theorem 1] that a random graph on n vertices with edge probability
(1+ε) logn

n is almost always connected while a graph on n vertices with edge probability (1−ε) logn
n is

almost never connected, at least as n tends to infinity. We demonstrate this property by generating
100 random graphs on n vertices where ε is 1 in the first case and 1

2 in the second.
i15 : connected = buildGraphFilter {"Connectivity" => 0,

"NegateConnectivity" => true};

i16 : prob = n -> log(n)/n;

i17 : apply(2..18, n-> #filterGraphs(
generateRandomGraphs(n, 100, 2*(prob n)), connected))

o17 = (65, 84, 82, 95, 94, 97, 98, 99, 95, 99, 97, 95, 96, 98, 98, 99, 98)

o17 : Sequence

i18 : apply(2..18, n-> #filterGraphs(
generateRandomGraphs(n, 100, (prob n)/2), connected))

o18 = (18, 12, 7, 7, 5, 3, 0, 6, 1, 1, 6, 1, 0, 2, 1, 2, 0)

o18 : Sequence

ACKNOWLEDGEMENTS. We thank the anonymous referee for helpful comments, especially regard-
ing the package documentation. We also thank the Editorial Board of the journal for many instructive
comments on documentation and coding in Macaulay2.

REFERENCES.
[ER] P. Erdős and A. Rényi, On random graphs. I, Publ. Math. Debrecen 6 (1959), 290 – 297.
[FHT] C.A. Francisco, A. Hoefel, and A. Van Tuyl, EdgeIdeals: a package for (hyper)graphs, JSAG 1 (2009), 1 – 4.
[GJ] M.R. Garey and D.S. Johnson, Computers and intractability: A guide to the theory of NP-completeness, W. H.

Freeman and Co., San Francisco, Calif., 1979.
[J] D.S. Johnson, The NP-completeness column, ACM Trans. Algorithms 1 (2005), no. 1, 160 – 176.
[M2] D.R. Grayson and M.E. Stillman, Macaulay2, a software system for research in algebraic geometry, available at

www.math.uiuc.edu/Macaulay2/.
[M] B.D. McKay, Practical graph isomorphism, Proceedings of the Tenth Manitoba Conference on Numerical

Mathematics and Computing, Vol. I (Winnipeg, Man., 1980), 1981, pp. 45 – 87.
[N] , nauty User’s Guide (Version 2.4), available at http://cs.anu.edu.au/~bdm/nauty/.
[S] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, available at http://oeis.org.

RECEIVED : 2010-10-29 REVISED : 2011-02-23 ACCEPTED : 2011-04-20

dcook@ms.uky.edu : Department of Mathematics, University of Kentucky, 715 Patterson Office Tower, Lexington, KY
40506-0027, USA.

http://j-sag.org/Volume1/jsag-1-2009.pdf
http://dx.doi.org/10.1145/1077464.1077476
www.math.uiuc.edu/Macaulay2/
http://cs.anu.edu.au/~bdm/nauty/
http://oeis.org
mailto:dcook@ms.uky.edu

	Introduction
	Canonical Labellings
	Examples
	Acknowledgements
	References

