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Numerical Algebraic Geometry

ANTON LEYKIN

ABSTRACT. Numerical algebraic geometry uses numerical data to describe algebraic varieties. It is
based on numerical polynomial homotopy continuation, which is an alternative to the classical symbolic
approaches of computational algebraic geometry. We present a package, whose primary purpose is
to interlink the existing symbolic methods of Macaulay2 and the powerful engine of numerical
approximate computations. The core procedures of the package exhibit performance competitive with
the other homotopy continuation software.

INTRODUCTION. Numerical algebraic geometry [SVW, SW] is a relatively young subarea of compu-
tational algebraic geometry that originated as a blend of the well-understood apparatus of classical
algebraic geometry over the field of complex numbers and numerical polynomial homotopy continua-
tion methods. Recently steps have been made to extend the reach of numerical algorithms making it
possible not only for complex algebraic varieties, but also for schemes, to be represented numerically.
What we present here is a description of “stage one” of a comprehensive project that will make the
machinery of numerical algebraic geometry available to the wide community of users of Macaulay2
[M2], a dominantly symbolic computer algebra system. Our open-source package [L1, M2] was first
released in Macaulay2 distribution version 1.3.1.

Stage one has been limited to implementation of algorithms that solve the most basic problem:

Given polynomials f1, . . . , fn ∈ C[x1, . . . ,xn] that generate a 0-dimensional ideal
I = ( f1, . . . , fn), find numerical approximations of all points of the underlying
variety V (I) = {x ∈ Cn | f(x) = 0}.

This task is accomplished by using homotopy continuation. To solve a target polynomial system
f =( f1, . . . , fn)= 0, one constructs a start polynomial system g=(g1, . . . ,gn) with a similar structure,
but readily available solutions. One option for a start system is g = (xdeg( f1)

1 − 1, . . . ,xdeg( fn)
n − 1).

Given such an auxiliary system, we consider the homotopy

(♠) h= (1− t)g+ γ tf ∈ C[x, t], γ ∈ C∗ .

By specializing the values of t to the real interval [0,1], we obtain a collection of paths leading from
the known solutions of the start system g = h|t=0 to the unknown solutions of the target system
f = h|t=1. The following statement provides the key to making effective numerical computations.

Theorem. For all but finitely many values of γ in the homotopy (♠), the homotopy continuation paths
have no singularities with a possible exception of the endpoints corresponding to t = 1. Moreover,
every solution of the target system, provided there are finitely many, is an endpoint (at t = 1) of some
continuation path.
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FIGURE 1. Tracking procedure: predictor steps (using the tangent predictor) are
followed by corrector steps.

Proof. Let P be the linear space of systems of n complex polynomials in n variables, so that P∼= Cm

for some m ∈ N. Systems with at least one singular solution form a Zariski closed set A⊆ P. The
homotopy (♠) satisfies the conditions of Lemma 7.1.3 of [SW]. Hence, it follows that for all but
finitely many choices of γ the homotopy (♠) for t ∈ [0,1) misses the set A. �

Differentiating the equation h= 0 gives the following system of ordinary differential equations

dx
dt

= h−1
x ht ,(♣)

where hx is the Jacobian of the homotopy (with respect to x) and ht is the derivative with respect to
the parameter t. The solutions of (♣) for t ∈ [0,1] with initial conditions given by the solutions of the
start system are the continuation paths we need. Finding continuation paths approximately, therefore,
reduces to numerical solving systems of ordinary differential equations. There is an additional
advantage: at any point t = t0 we can refine an approximate solution to the polynomial system
h|t=t0 = 0 with Newton’s method. Provided the numerical tracking procedure has not deviated from
the given path, this brings the approximation as close to the path as desired.

The basic tracker operates by alternating predictor (a numerical integration step) and corrector
(several applications of Newton’s operator) as shown in Figure 1. The ultimate goal of the tracker is
to approximate the end of a continuation path given an approximation of its beginning. Here is an
example illustrating the tracking a homotopy.

Macaulay2, version 1.4
with packages: ConwayPolynomials, Elimination, IntegralClosure, LLLBases,

PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : needsPackage "NumericalAlgebraicGeometry"

i2 : R = CC[x,y];

i3 : S = {x^2-1,y^2-1}; T = {x^2+(y-5)^2-16, x*y};

i5 : solsS = {(1,-1),(1,1),(-1,1),(-1,-1)};

i6 : track(S,T,solsS)

o6 = {[M,t=.0476212], {2.95499e-17, 1}, {9.9121e-14, 9}, [M,t=.0476212]}

i7 : track(S,T,solsS,gamma=>0.6+0.8*ii)
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o7 = {{1.37478e-13-4.76293e-14*ii, 9}, {3*ii, -5.90007e-17+1.11575e-16*ii},
----------------------------------------------------------------------
{-2.74447e-17+4.14299e-17*ii, 1}, {-3*ii, 3.05714e-18-1.24616e-17*ii}}

The output line o6 indicates that the tracking of two paths fails as h|t≈0.04762 = 0 has singular
solutions. When both start and target systems have real coefficients, the parameter value γ = 1 often
results in a homotopy that goes through a singular point. Picking a random complex value for γ (in
practice, a number is chosen on the unit circle with the uniform probability distribution) results in a
regular homotopy with probability 1. The black-box solver solveSystem does exactly that when it
calls track.

SOFTWARE IMPLEMENTATION STRATEGY. Despite the seeming simplicity of this approach, there
are many technical challenges which must be overcome in any effective implementation, such
as choosing a predictor mechanism and handling dynamic step adjustment. The development of
NumericalAlgebraicGeometry started with the basic function called track that given a target system,
a start system, and a list of start solutions numerically tracks the corresponding homotopy paths as
the continuation parameter t is varied from 0 to 1. This was carried out in the top level language of
Macaulay2 and included more than a dozen optional parameters allowing users to experiment with
the numerical thresholds that control the precision of the computation.

The language of Macaulay2 is, however, an interpreted language, so the performance of the code
was far from optimal. As a result, it was crucial to implement the computationally intensive parts of
the code in C++ as part of the Macaulay2 engine. At present, parts of the source code are written in
three languages:

• The Macaulay2 language processes the input, sets-up the evaluation, predictor, and corrector
routines, launching the routines in the engine, and managing the output;
• The C++ language is used for fast execution of the predictor-corrector steps using standard

double floating point arithmetic;
• The D language provides an interface forconverting objects of Macaulay2 top level classes

into objects of types and classes used by the C++ engine.

The C++ part relies on LAPACK [ABB+] for numerical linear algebra. This is the only external library
that has been used so far.

PERFORMANCE. In addition to native implementation, the user is given an option to outsource the
computation to one of the three polynomial homotopy continuation softwares: Bertini [BHSW1],
Hom4PS2 [LLT], or PHCpack [V]. Naturally, this depends on the availability of the relavant software
on the user’s platform.

One goal of stage one was to achieve performance competitive with the existing software. The
following timings (obtained on a single core of a 64-bit Linux system) demonstrate the results for
several test problems with a moderate number of solutions (less than 10,000):

Randomd
n: a system of dense polynomials of degree d in n variables with random coefficients;

Katsuran: a classical benchmark with one linear and n−1 quadratic equations in n variables;
GEVPn: the system corresponding to a generalized eigenvalue problem, Av = λBv for n×n

(randomly generated) matrices A and B.
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All these problems have regular solutions and do not encounter near-singularities (i.e. the continuation
paths are sufficiently far from each other), so that double-precision arithmetic is enough to carry
out the computations. All runs for all software are made in standard double precision with default
settings.1

Random4
5 Random5

5 Katsura11 Katsura12 GEVP35
# solutions 1024 3125 1024 2048 35

NumericalAlgebraicGeometry 4 s 30 s 4 s 11 s 3 s
Hom4PS2 11 s 78 s 7 s 19 s ? 2

Bertini 51 s 402 s 15 s 37 s 40 s
PHCpack 63 s 550 s 37 s 102 s 323 s

For all systems except the last one, the number of solutions equals the total degree; for GEVPn,
we supply an optimal homotopy with a start system having exactly n solutions. One may rerun the
examples used to obtain the timings using the files showcase.m2 and benchmarks.m2 in the Macaulay2
repository3. The (current) default options of the function track were used to complete the tests.
In particular, Predictor => RungeKutta4 specified a predictor of the fourth order, which performed
slightly better than lower order numerical integration algorithms on all mentioned examples.

TECHNICAL DETAILS. There are many factors that may affect performance of the homotopy tracking
procedure including the choice of predictor, parameters that control dynamical step adjustment, and
efficiency of linear algebra subroutines. Nevertheless, one common bottleneck in the computation is
the evaluation of polynomials. All test examples mentioned above, except Katsuran, are evaluation-
intense. The evaluation of polynomials presented in the dense form, which is the form Macaulay2
uses, is quite expensive. To speed up the computation we employ an extended Horner scheme (see
[CG]), a generalization of the Horner scheme for evaluating univariate polynomials. While not
necessarily an optimal scheme (in the sense the univariate Horner scheme is), it makes an attractive
design choice for two reasons. First, we can encode the evaluation procedure in a straight-line
program (SLP), a program evaluating which can be achieved without branching or looping. An SLP
corresponding to an extended Horner form is often much shorter than that for the dense form. Second,
the automatic differentiation of polynomials represented in Horner form is convenient as the size of
an SLP representing the evaluation of a polynomial function and its derivatives simultaneously is
not much larger than the size of an SLP for the polynomial function itself (see the corresponding
theoretical complexity result in [BS]).

We experimented with speeding up the evaluation of SLPs even further by compiling SLPs at
runtime. This results, on some evaluation-intense examples, in up to 10 times faster execution.4 At
the moment, the option of compiled SLPs needs to be studied further — the current compilation time
may exceed the gain in computation time in some cases.

1The timing ranks may depend on our selection of benchmarks. In fact, there are many problems which can not be
solved with one program, but are solved by another quickly. In addition, timings depend on a variety of factors including
the hardware, the operating system, and the parameters of continuation.

2Hom4PS2 has no option to handle a user-defined homotopy.
3svn://macaulay2.math.uiuc.edu/Macaulay2/trunk/M2/Macaulay2/packages/NumericalAlgebraicGeometry
4This trick seems to be used in Hom4PS2 as well. However, the timings reported for the test examples above are

obtained by running all programs without runtime compilation.
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CERTIFICATION. One important feature that distinguishes NumericalAlgebraicGeometry from other
software is the certified homotopy tracking procedure developed in joint work with Beltrán [BL1]. In
general, the heuristic algorithms discussed above need careful tuning before path-jumping (landing
on a wrong path) is eliminated. The most commonly used step control procedures are described in
[BHSW2] along with Bertini’s adaptive multiprecision approach for overcoming poor conditioning
in numerical linear algebra while tracking the near-singular continuation paths.

In contrast, a certified homotopy tracking algorithm makes a safe choice for a size of step in the
continuation, guaranteeing that an approximate zero created in the next step is associated to the same
homotopy path. If all computations are carried out in exact arithmetic the certified algorithm gives a
rigorous proof of the results obtained. Our implementation of the certified tracking [BL1] is invoked
by passing the option Predictor=>Certified to the function track. At the moment the linear algebra
computations are carried out in the standard double precision, thus stopping one step short of rigorous
certification. The work accomplishing this last step using exact linear algebra and the robust α-theory
is underway [BL2].

FUTURE. The package in its current state provides the base for the higher-level numerical al-
gebraic geometry routines, including robust computing of approximations to singular solutions
using endgames [SW, §10.3] and deflation [LVZ1, LVZ2], irreducible decomposition of positive-
dimensional varieties [SW, §15], and numerical primary decomposition [L2].

Homotopy tracking with arbitrary precision, which both Bertini and PHCpack implement to
various extents, should be available in Macaulay2 in the future. Although arbitrary precision floating
point arithmetic is already in place in Macaulay2 (via the MPFR library [FHL+]), a fast linear
algebra implementation on the level of the engine is necessary for solution refinement and tracking
near-singular paths.

Due to independence of tracking procedures for any collection of homotopy paths most of the
algorithms in numerical algebraic geometry scale well if parallelized. Since the amount of data that
needs to be communicated between CPUs is small in relation to the computational costs, the tasks
can be distributed over heterogeneous clusters with slow interconnect. For the large problems these
properties give homotopy continuation an edge over Gröbner bases techniques, which are currently
the main engine of Macaulay2.

We will also explore ways to convert numerical results into symbolic results and vice versa. For
instance, the algorithms in the package will be able to sample points on a component of a variety with
an arbitrarily high precision, which could be used to construct the defining ideal of the component
bypassing the need for (symbolic) primary decomposition.
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