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Decompositions of binomial ideals

THOMAS KAHLE

ABSTRACT. The Macaulay2 package Binomials contains implementations of specialized algorithms
for binomial ideals, including primary decomposition into binomial ideals. The current implementation
works in characteristic zero. Primary decomposition is restricted to binomial ideals with trivial
coefficients to avoid computations over the algebraic numbers. The basic ideas of the algorithms
go back to Eisenbud and Sturmfels’ seminal paper on the subject. Two recent improvements of the
algorithms are discussed and examples are presented.

BINOMIAL IDEALS. Let S = k[x1, . . . ,xn] denote the polynomial ring over a field k. A binomial ideal
I ⊂ S is an ideal generated by binomials xu−λxv, where u,v ∈ Nn are exponent vectors and λ ∈ k is
a coefficient. Monomials are also considered binomials. Assumptions on k will be forced upon us
when computing binomial primary decompositions. The ideal 〈x3−1〉 has no primary decomposition
into binomial ideals when k does not contain a third root of unity. Interest in binomial ideals is
due to the frequency with which they arise in applications. To name one, in algebraic statistics
one is interested in primary decompositions of conditional independence ideals whose components
describe various combinatorial ways in which a set of conditional independence statements can be
realized [F, HHH+]. Because the minimal primes of binomial ideals are toric ideals [ES], binomial
conditional independence models are unions of exponential families. In particular they are unirational.
Knowledge of a primary decomposition also gives a piecewise parameterization of such models.

The Macaulay2 [M2] package Binomials offers specialized implementations of primary decom-
position, radical computations and minimal and associated primes. The starting point for this
implementation was §9 in Eisenbud and Sturmfels’ foundational paper [ES], but various improve-
ments have been discovered and implemented. Binomials is the fastest and often only way to compute
large primary decompositions of binomial ideals. The following example demonstrates a few common
operations.

Macaulay2, version 1.4
with packages: ConwayPolynomials, Elimination, IntegralClosure, LLLBases,

PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : needsPackage "Binomials";

i2 : S = QQ[x,y];

i3 : b = makeBinomial (S, [2,-3], 5)

3 2
o3 = - 5y + x

o3 : S

i4 : isBinomial ideal b

o4 = true
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i5 : I = ideal(x^2-x*y, x*y-y^2);

o5 : Ideal of S

i6 : isCellular I

o6 = false

i7 : binomialIsPrimary I

o7 = false

i8 : binomialRadical I
Input not cellular, computing minimial primes ...

o8 = ideal(x - y)

o8 : Ideal of S

i9 : binomialPrimaryDecomposition I

2
o9 = {ideal(x - y), ideal (x, y )}

o9 : List

A binomial primary decomposition starts with a cellular decomposition. Recall that a binomial ideal
I ⊂ S is cellular if in S/I every monomial is either regular (i.e. a nonzerodivisor) or nilpotent. The
implemented algorithm to compute a cellular decomposition is discussed in [K, OS]. Since cellular
decomposition is independent of k, it can serve as a first approximation of primary decomposition
over any field. In this paper, we focus on decomposing a cellular binomial ideal further. To this end,
assume that I is J-cellular for some J ⊂ [n], that is, the variables with indices in J are regular, while
the variables with indices in J := [n]\ J are nilpotent.

COMPUTING ASSOCIATED PRIMES. If k is algebraically closed, then the associated primes of
a binomial ideal are guaranteed to be binomial. Since computer algebra systems usually do not
implement algebraically closed fields, the input binomial ideals are restricted to be generated by unital
binomials xu− xv. In this case, the binomial primary decomposition together with the associated
primes exist over a cyclotomic extension of Q, see [K]. If necessary, Binomials will construct this
extension and return its result over a different ring.

i10 : L = binomialPrimaryDecomposition ideal(x^3-1)

o10 = {ideal(x - 1), ideal(x - ww ), ideal(x + ww + 1)}
3 3

o10 : List

i11 : L#0

o11 = ideal(x - 1)

QQ[ww ]
3

o11 : Ideal of -------------[][x, y]
2

ww + ww + 1
3 3

In the following discussion, we will assume k to be algebraically closed of characteristic zero.
Let I be J-cellular for J ⊂ [n] and let mJ := 〈xi : i /∈ J〉. The associated primes of I are of the form
Iρ,J +mJ where Iρ,J := 〈xu−ρ(u−v)xv : u−v ∈ L〉 is a lattice ideal in the J-variables and ρ : L→ k∗
is a group homomorphism from a sublattice L ⊂ ZJ . The pair (ρ,L) is called a partial character
in [DMM, ES]. Here we will simply speak of a character. An extension of ρ is a character τ : L′→ k
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such that L⊂ L′ and ρ and τ agree on L. A character is saturated if its domain is a saturated lattice,
that is L is not contained with finite index in any other sublattice of ZJ . An extension to a saturated
character is a saturation. Set k[J] := k[xi : i∈ J] and k[J] := k[xi : i /∈ J]. Associated primes of cellular
binomial ideals come in groups. The following theorem states that they are to be found among the
associated primes of lattice ideals in k[J].

Theorem ([ES, Theorem 8.1]). Let I ⊂ S be a J-cellular binomial ideal. Let Iσ ,J +mJ be an
associated prime of I, then there exists a monomial m ∈ k[J], and a character τ on ZJ whose
saturation is σ , such that (I : m)∩k[J] = Iτ .

The converse also holds. Every associated prime of any occurring lattice ideal is associated to I;
see [KM]. The Theorem shows that a sub-problem in the computation of associated primes is to
determine the set of lattice ideals of the form (I : m)∩k[J].

Let I ⊂ S be a J-cellular binomial ideal. A lattice L⊂ ZJ is associated to I if there exists a witness
monomial m ∈ k[J] such that (I : m)∩k[J] = Iρ,J for some character ρ : L→ k∗. This definition is
a special case of [KM, Definition 12.1] which covers the case of an arbitrary binomial ideal in a
monoid algebra. The lattice ideals (I : m)∩k[J] are partially ordered by inclusion, and so are their
lattices. An associated lattice is embedded, if it properly contains the lattice of I∩k[J].

A first algorithm to find associated lattices would examine all ideals (I : m) where m is a nonzero
monomial in k[J]/(I∩k[J]). By cellularity of I, there are only finitely many such monomials and this
search will terminate. The associated primes algorithm in Binomials instead uses a random search.
The set of monomials to be examined can be very large compared to relatively few associated lattices.
The design goal in the algorithm below is to compute as few colon ideals (I : m) as possible. If a
monomial m divides a monomial n, then (I : m)⊂ (I : n) and containment also holds for the associated
lattices. Due to this fact, we can exclude large posets of monomials if we find two monomials with
the same associated lattice.

Algorithm.
Input: A J-cellular binomial ideal I.
Output: The associated lattices of I

(1) Compute the lattice ideal I∩k[J].
(2) Initialize a list of known associated lattices and witnesses containing only the pair (I∩k[J],1).
(3) Initialize a todo-list with all monomials in a k-basis of k[J]/(I∩k[J]).
(4) Iterate the following until the todo-list is empty

• Choose and remove a random monomial m from the todo-list. Compute the lattice ideal
(I : m)∩k[J] and check if its lattice is already on the list of associated lattices.

– If yes, then add m as a new witness for that lattice, remove from the todo-list every
monomial between existing witnesses and m.

– If no, then add (I∩k[J],m) to the list of associated lattices.

To save space and time, the implementation in Binomials does not save all the witness monomials. If
m,n are both witnesses for the same associated lattice and m|n, then only m needs to be saved.

Given the set of associated lattices, determining the associated primes is easy. It consists of
saturating characters and will not be discussed here. The necessary cyclotomic extensions are handled
in a separate package Cyclotomic published together with Binomials.
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COMPUTING MINIMAL PRIMARY COMPONENTS. Let I ⊂ S be a J-cellular binomial ideal and
let P = Iρ,J +mJ be one of its associated primes. Eisenbud and Sturmfels show that any primary
component of I over P contains Iρ,J . In fact, I + Iρ,J has P as its unique minimal prime and a primary
component is computed by removing all embedded primary components from I + Iρ,J . This is the
content of [ES, Theorem 7.1]. Let Hull(I) denote the intersection of the minimal primary components
of a binomial ideal I. If I is cellular, then Hull(I) is binomial. Computing the hull of a binomial ideal
is a cumbersome procedure. One way, described in [ES], is to successively identify binomials b such
that (I : b) is a binomial ideal strictly containing I. This approach is slow. Here we will use a strategy
similar to the one in the Algorithm. Denote Memb(I) the monomial ideal generated by all witnesses
of embedded lattices of I. Then [DMM, Theorem 3.2] implies the following simplification.

Proposition. If I is J-cellular and has exactly one minimal prime, then Hull(I) = I +Memb(I). In
particular, Hull(I) is binomial.

To compute the minimal primary component of I over P = Iρ,J +mJ , one computes Hull(I + Iρ,J),
see [ES, OS]. The monomial ideal Memb(I + Iρ,J) is determined essentially by the algorithm above.
It is in fact simpler, since only minimal generators of Memb(I) need to be computed. In most cases,
only a small fraction of the standard monomials needs to be examined.

The ideal in the following example is cellular.
i12 : P = binomialPrimaryDecomposition ideal (x^10000 * (y-1), x^10001)

10001 10000
o12 = {ideal (y - 1, x ), ideal(x )}

o12 : List

i13 : radical P#0

o13 = ideal (- y + 1, -x)

o13 : Ideal of S

The embedded component over 〈x,y−1〉 is of high multiplicity. To find its embedded prime using
the Theorem above, a-priori 10000 nilpotent monomials would have to be examined. In contrast, a
typical run of the Algorithm above would only compute dlog2(10000)e= 14 lattice ideals. In this
simple example, the nilpotent monomials are totally ordered, but in general they form complicated
posets; see [KM, Problem 17.4]. It is not known if there are better search algorithms than the random
search.

ACKNOWLEDGMENT. The author thanks the organizers and participants of the Macaulay2 workshop
March 2011 in Göttingen during which the improved algorithms were first implemented.
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