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Versal Deformations and Local Hilbert Schemes

NATHAN OWEN ILTEN

ABSTRACT. We provide an overview of the VersalDeformations package for Macaulay2 which com-
putes versal deformations of isolated singularities and local multigraded Hilbert schemes.

INTRODUCTION. Deformation theory provides tools to describe parameter spaces for various alge-
braic geometric objects including isolated singularities or invertible sheaves on a projective variety;
see [Ha]. However, computing such spaces can be quite difficult. The Macaulay2 [M2] package
VersalDeformations aims to facilitate such calculations for two concrete deformation problems: versal
deformations of isolated singularities, and local (possibly multigraded) Hilbert schemes.

The package VersalDeformations provides several functions that may be used to calculate tangent
and obstruction spaces for the deformation problems mentioned above. The function normalMatrix

calculates a basis for any degree of the normal module of some (multi)homogeneous ideal in a
polynomial ring. The scripted functor CT may be used to calculate bases of the first and second
cotangent cohomology modules T 1

A and T 2
A of some algebra A over a field k, assuming that these

modules are finite dimensional vector spaces. In the homogeneous case, CT may also be used to
calculate bases of homogeneous pieces of these modules.

The main contribution of the package is the method versalDeformation, which uses the Massey
product algorithm to iteratively lift solutions of a deformation equation to higher and higher order;
we describe this in more detail in the following section. This can be used to find power series
descriptions of versal deformations and local Hilbert schemes. Since such a description may not be
polynomial, the package provides an interface allowing the user to control at what point the lifting
should terminate. The package also implements a more time-consuming lifting algorithm (via the
option SmartLift) that seeks to minimize the number of higher order terms appearing in the equations
for the parameter space.

There are a number of other software packages that provide related functionality. J. Stevens has
written scripts for the classic Macaulay system to calculate T 1 and T 2 for isolated singularities [S1].
There is a library [Ma] for Singular [Sing] by B. Martin that calculates the versal deformation of an
isolated singularity or module. B. Hovinen has written a package [Ho] for Macaulay2 that computes
versal deformations of maximal Cohen-Macaulay modules on hypersurfaces . Finally, J. Böhm is
developing a package [B] for computations involving deformations of Stanley-Reisner rings.

SOLVING THE DEFORMATION EQUATION. In the following, we briefly describe the Massey product
algorithm as we have implemented it. For more details and mathematical background, see [L1], [L2],
[S1], or [S2]. For simplicity, we restrict to the case of the versal deformation of an isolated singularity,
although our approach for Hilbert schemes is similar.
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First we fix some notation. Let S be a polynomial ring over some field k, and let I be an ideal of S
defining a scheme X = Spec(S/I) with isolated singularity at the origin. Consider a free resolution of

S/I, that is an exact sequence 0←− S/I←− S F0
←−− Sm R0

←−− S`←− ·· · . Let ϕi ∈Hom
(
Sm/ Im(R0),S

)
for 1≤ i≤ n represent a basis of T 1

S/I
∼= Hom

(
Sm/ Im(R0),S

)
/Jac(F0). We introduce deformation

parameters t = (t1, . . . , tn) and consider the map F1 : S[t]m→ S[t] defined as F1 = F0 +∑
n
i=1 tiϕi.

Let m be the ideal generated by t1, . . . , tn. It follows that there exists a map R1 : S[t]`→ S[t]m with
R1 ≡ R0 mod m satisfying the first order deformation equation F1R1 ≡ 0 mod m2.

Our goal is to lift the above equation to higher order, that is, for each i > 0, to find a homomorphism
F i : S[t]m→ S[t] with F i ≡ F i−1 mod mi and Ri : S[t]`→ S[t]m with Ri ≡ Ri−1 mod mi satisfying
F iRi ≡ 0 mod mi+1. In general, there are obstructions to doing this, governed by the d-dimensional
k vector space T 2

S/I . Thus, we instead aim to solve

(∗) (F iRi)t +Ci−2Gi−2 ≡ 0 mod mi+1,

where (F iRi)t is the transpose of (F iRi), and the maps Gi−2 : k[t]→ k[t]d and Ci−2 : S[t]d→ S[t]` are
congruent modulo mi to Gi−3 and Ci−3 respectively. Furthermore, we require that Gi and Ci vanish
for i < 0, and C0 is of the form V ·D, where V ∈ Hom(Sd,S`) gives representatives of a basis for T 2

S/I

and D ∈ Hom(Sd,Sd) is a diagonal matrix. The matrices Gi now give equations for the miniversal
base space of X .

Our implementation solves (∗) step by step. Given a solution (F i,Ri,Gi−2,Ci−2) modulo mi+1, the
package uses Macaulay2’s built in matrix quotients to first solve for F i+1 and Gi−1 (by working over
the ring S[t]/(I+ Im(Gi−2)t+mi+2) and then solve for Ri+1 and Ci−1. For the actual computation, we
avoid working over quotient rings involving high powers of m by representing the (F i,Ri,Gi−2,Ci−2)
as lists of matrices that keep track of the orders of the parameters t j involved.

EXAMPLES. We provide two examples: a versal deformation and a multigraded Hilbert scheme. We
begin with the classical example of the miniversal deformation of the cone over the rational normal
curve of degree 4; see [Pi].

Macaulay2, version 1.4
with packages: ConwayPolynomials, Elimination, IntegralClosure, LLLBases,

PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : needsPackage "VersalDeformations";
--loading configuration for package "VersalDeformations" from file ...

i2 : S = QQ[x_0..x_4];

i3 : I = minors(2, matrix{{x_0,x_1,x_2,x_3},{x_1,x_2,x_3,x_4}});

o3 : Ideal of S

i4 : F0 = gens I;

1 6
o4 : Matrix S <--- S

i5 : transpose F0

o5 = {-2} | -x_1^2+x_0x_2 |
{-2} | -x_1x_2+x_0x_3 |
{-2} | -x_2^2+x_1x_3 |
{-2} | -x_1x_3+x_0x_4 |



Ilten :::: Versal Deformations 14

{-2} | -x_2x_3+x_1x_4 |
{-2} | -x_3^2+x_2x_4 |

6 1
o5 : Matrix S <--- S

We see that the tangent space T 1
S/I of the miniversal deformation is four-dimensional, and the

obstruction space T 2
S/I is three-dimensional.

i6 : CT^1(F0)

o6 = {-2} | x_1 x_0 0 0 |
{-2} | 0 0 0 x_0 |
{-2} | -x_3 -x_2 0 x_1 |
{-2} | 0 0 x_2 0 |
{-2} | -x_4 -x_3 x_3 0 |
{-2} | 0 0 x_4 -x_3 |

6 4
o6 : Matrix S <--- S

i7 : CT^2(F0)

o7 = {-3} | 0 0 0 |
{-3} | 0 0 0 |
{-3} | x_3 x_4 0 |
{-3} | x_2 x_3 0 |
{-3} | x_1 x_2 0 |
{-3} | -x_4 0 x_3 |
{-3} | 0 x_4 x_2 |
{-3} | 0 x_3 x_1 |

8 3
o7 : Matrix S <--- S

In this example, our algorithm gives a polynomial solution to the deformation equation.
i8 : (F,R,G,C) = versalDeformation(F0, Verbose=>2);
Calculating first order deformations and obstruction space
Calculating first order relations
Starting lifting
Order 2
Order 3
Solution is polynomial

i9 : T = ring first G;

i10 : sum G

o10 = | t_2t_3-t_3^2 |
| t_1t_3 |
| t_3t_4 |

3 1
o10 : Matrix T <--- T

i11 : transpose sum F

o11 = {0, -2} | t_1x_1+t_2x_0-x_1^2+x_0x_2 |
{0, -2} | t_4x_0-x_1x_2+x_0x_3 |
{0, -2} | -t_1t_4-t_1x_3-t_2x_2+t_4x_1-x_2^2+x_1x_3 |
{0, -2} | t_2t_3-t_3^2+t_3x_2-x_1x_3+x_0x_4 |
{0, -2} | t_3t_4-t_1x_4-t_2x_3+t_3x_3-x_2x_3+x_1x_4 |
{0, -2} | t_3x_4-t_4x_3-x_3^2+x_2x_4 |
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6 1
o11 : Matrix T <--- T

We now consider our second example: the local description of the Hilbert scheme of the diagonal
in P2×P2×P2 at the point corresponding to the unique Borel fixed ideal, see [CS] for more details.

i12 : S = QQ[x_1..x_3,y_1..y_3,z_1..z_3,Degrees=>{{1,0,0},{1,0,0},
{1,0,0},{0,1,0},{0,1,0},{0,1,0},{0,0,1},{0,0,1},{0,0,1}}];

i13 : I=ideal {y_1*z_2, x_1*z_2, y_2*z_1, y_1*z_1, x_2*z_1,
x_1*z_1, x_1*y_2, x_2*y_1, x_1*y_1, x_2*y_2*z_2};

o13 : Ideal of S

i14 : (F,R,G,C) = versalDeformation(gens I, normalMatrix({0,0,0},gens I),
CT^2({0,0,0},gens I), Verbose=>2);

Calculating first order relations
Starting lifting
Order 2
Order 3
Order 4
Order 5
Order 6
Solution is polynomial

Since we were interested in the multigraded Hilbert scheme, the tangent space is just the degree
(0,0,0) component of the normal module of I, and an obstruction space is given by the degree (0,0,0)
component of T 2

S/I . In any case, this multigraded Hilbert scheme is locally cut out by 8 cubics.

i15 : T = ring first G;

i16 : sum G

o16 = | t_2t_3t_4-t_2t_4t_7-t_1t_3t_8+t_1t_7t_8+t_1t_3t_13-t_2t_3t_13-t_1t_7t_13
| t_1t_3t_4-t_2t_3t_4-t_1t_7t_8+t_2t_7t_8-t_1t_3t_13+t_2t_3t_13+t_1t_7t_13
| t_1t_3t_16-t_2t_7t_16-t_1t_14t_16+t_2t_14t_16-t_3t_15t_16+t_7t_15t_16
| t_1t_3t_18-t_2t_7t_18-t_1t_14t_18+t_2t_14t_18-t_3t_15t_18+t_7t_15t_18
| t_2t_4t_17-t_1t_8t_17+t_1t_13t_17-t_2t_13t_17-t_4t_15t_17+t_8t_15t_17
| t_2t_4t_18-t_1t_8t_18+t_1t_13t_18-t_2t_13t_18-t_4t_15t_18+t_8t_15t_18
| t_3t_4t_17-t_7t_8t_17-t_3t_13t_17+t_7t_13t_17-t_4t_14t_17+t_8t_14t_17
| t_3t_4t_16-t_7t_8t_16-t_3t_13t_16+t_7t_13t_16-t_4t_14t_16+t_8t_14t_16
--------------------------------------------------------------------------
+t_2t_7t_13-t_3t_4t_15+t_4t_7t_15+t_3t_8t_15-t_7t_8t_15 |
-t_2t_7t_13-t_1t_4t_14+t_2t_4t_14+t_1t_8t_14-t_2t_8t_14 |

|
|
|
|
|
|

8 1
o16 : Matrix T <--- T

There are in fact 7 irreducible components of the Hilbert scheme that pass through this point.
i17 : # primaryDecomposition ideal sum G

o17 = 7
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