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Graphical Models

LUIS DAVID GARCÍA-PUENTE, SONJA PETROVIĆ, AND SETH SULLIVANT

ABSTRACT. The Macaulay2 package GraphicalModels contains algorithms for the algebraic study
of graphical models associated to undirected, directed and mixed graphs, and associated collections
of conditional independence statements. Among the algorithms implemented are procedures for
computing the vanishing ideal of graphical models, for generating conditional independence ideals of
families of independence statements associated to graphs, and for checking for identifiable parameters
in Gaussian mixed graph models. These procedures can be used to study fundamental problems about
graphical models.

GRAPHICAL MODELS. A graphical model is a statistical model associated to a graph, where the
nodes of the graph represent random variables and the edges of the graph encode relationships
between the random variables. Graphical models are an important class of statistical models used
in many applications (see the standard textbooks [L, W]) because of their ability to model complex
interactions between several random variables, by specifying interactions using only local information
about connectivity between the vertices in a graph.

There are two natural ways to specify a graphical model, through either conditional independence
statements specified by the graph or via a parametric representation (often called a “factorization”).
Every distribution that factors according to the graph satisfies the conditional independence state-
ments implied by the graph. This leads to the question: Which distributions satisfy the conditional
independence statements implied by the graph, but do not factor?

Once we specify the types of random variables under consideration (e.g. discrete random variables
or Gaussian random variables) it is possible to address the questions in the preceding paragraph using
(computational) algebraic geometry. Indeed, in these cases, the set of all probability distributions
satisfying a family of conditional independence constraints is a semialgebraic set. For discrete
random variables, that semialgebraic set is a subset of the probability simplex, and can be represented
by a certain homogeneous ideal generated by quadrics. For Gaussian random variables, this set of
distributions corresponds to a semialgebraic subset of the cone of positive definite matrices. Similarly,
the parametrized family of probability distributions also is a semialgebraic set (of the probability
simplex for discrete random variables, and of the cone of positive definite matrices for Gaussian
random variables). This algebraic perspective has been studied by different authors [GSS, GMS, S],
and the book [DSS] provides details.

The Macaulay2 package GraphicalModels allows the user to compute the ideals of conditional
independence statements for any collection of statements for discrete or Gaussian random variables.
It can also compute the vanishing ideal of a graphical model in these cases. A number of auxiliary
functions are useful for doing further analyses of graphical models.
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For example, consider the directed acyclic graph G with five vertices {a,b,c,d,e} and edge set
{a→ d,b→ d,c→ d,c→ e,d→ e}. The following commands compute the associated conditional
independence ideal for the set of global Markov statements, CIglobal(G), and the vanishing ideal IG of
the Gaussian graphical model on G.

Macaulay2, version 1.6
with packages: ConwayPolynomials, Elimination, IntegralClosure, LLLBases,

PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : needsPackage "GraphicalModels";

i2 : G = digraph{{a,d},{b,d},{c,{d,e}},{d,e}};

i3 : R = gaussianRing G;

i4 : gens R

o4 = {s , s , s , s , s , s , s , s , s , s , s , s ,
a,a a,b a,c a,d a,e b,b b,c b,d b,e c,c c,d c,e

---------------------------------------------------------------------------
s , s , s }
d,d d,e e,e

o4 : List

i5 : I = conditionalIndependenceIdeal(R,globalMarkov(G));

o5 : Ideal of R

i6 : J = gaussianVanishingIdeal(R);

o6 : Ideal of R

i7 : flatten degrees J

o7 = {1, 1, 1, 2, 3, 3}

GraphicalModels uses the package Graphs and a number of fundamental constructs and rela-
tionships associated with graphs. First we create a polynomial ring that contains the entries of the
covariance matrix Σ of a jointly normal random vector as its indeterminates. Information about the
underlying graph is stored in the polynomial ring. Hence some methods take just a ring as input, but
require that it be created with gaussianRing or markovRing in the discrete case.

For directed acyclic graphs, it is known that

V (CIglobal(G))∩PDm =V (IG)∩PDm

where PDm⊂R(
m+1

2 ) is the cone of m×m positive definite symmetric matrices. In particular, the set of
such matrices satisfying the conditional independence constraints equals the set of covariance matrices
in the image of the parametrization. Unfortunately, this does not imply that CIglobal(G) = IG. In the
case of Gaussian random variables, a larger ideal, the trek ideal TG, generated by all subdeterminants
of the covariance matrix that vanish on the model, and satisfying CIglobal(G) ⊆ TG ⊆ IG is sometimes
equal to IG (see [STD]), as the following example shows.

i8 : isSubset(I,J), I == J, J == trekIdeal(R,G)

o8 = (true, false, true)

o8 : Sequence

Similar computations can also be performed for graphical models with discrete random variables,
and with other graph families. The mathematical explanation of these graphical models and their
associated ideals appear in the remaining sections.
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COMPUTING CONDITIONAL INDEPENDENCE IDEALS. Conditional independence constraints on
discrete or Gaussian random variables translate to rank conditions on certain matrices associated
to the probability densities. We briefly explain these constructions here and how to generate these
constraints in Macaulay2 using GraphicalModels; see [DSS, Ch. 3] for more detail.

Let X = (X1, . . . ,Xn) be a discrete random vector where each random variable Xi has state space
[di] = {1,2, . . . ,di}. Let d =(d1, . . . ,dn). A probability distribution for X is a tensor in Rd1⊗·· ·⊗Rdn ,
all of whose coordinates are nonnegative and sum to one. The set of all such distributions is the
probability simplex ∆d . Let pi1···in = P(X1 = i1, . . . ,Xn = in) denote the probability of a primitive
event. The polynomial ring in these quantities is created using the command markovRing.

i9 : d = (2,3,2); R = markovRing d;

i11 : gens R

o11 = {p , p , p , p , p , p , p , p , p ,
1,1,1 1,1,2 1,2,1 1,2,2 1,3,1 1,3,2 2,1,1 2,1,2 2,2,1

--------------------------------------------------------------------------
p , p , p }
2,2,2 2,3,1 2,3,2

For A⊆ [n], let XA = (Xa)a∈A be the subvector indexed by A. Let A,B,C be disjoint subsets of [n].
The conditional independence statement XA ⊥⊥ XB | XC holds if and only if the conditional distribution
satisfies P(XA = iA,XB = iB | XC = iC) = P(XA = iA | XC = iC) ·P(XB = iB | XC = iC) for all iA, iB, iC.
This translates into vanishing 2-minors of certain matrices in the probabilities pi1···in . Those matrices
are computed with the function markovMatrices, and the ideal generated by the 2-minors is computed
with conditionalIndependenceIdeal. In the following example, the two conditional independence
statements are X1 ⊥⊥ X2 | X3 and X1 ⊥⊥ X3 := X1 ⊥⊥ X3 | X/0. The ideal of vanishing minors has 7
quadratic generators.

i12 : S = {{{1},{2},{3}}, {{1},{3},{}}}; compactMatrixForm=false; markovMatrices(R,S)

o14 = {| p p p |, | p p p |,
| 1,1,1 1,2,1 1,3,1 | | 1,1,2 1,2,2 1,3,2 |
| | | |
| p p p | | p p p |
| 2,1,1 2,2,1 2,3,1 | | 2,1,2 2,2,2 2,3,2 |

--------------------------------------------------------
| p + p + p p + p + p |}
| 1,1,1 1,2,1 1,3,1 1,1,2 1,2,2 1,3,2 |
| |
| p + p + p p + p + p |
| 2,1,1 2,2,1 2,3,1 2,1,2 2,2,2 2,3,2 |

o14 : List

i15 : I = conditionalIndependenceIdeal(R,S); flatten degrees I

o15 : Ideal of R

o16 = {2, 2, 2, 2, 2, 2, 2}

In the statistics literature, there are three main lists of conditional independence statements
associated to a graph G whose nodes correspond to random variables. For example, the list of
local Markov statements of an undirected graph G is the set of conditional independence statements
of the form Xi ⊥⊥ XV\{i∪N(i)} | XN(i), where N(i) is the set of neighbors of i in the graph G. The
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methods pairMarkov, localMarkov, and globalMarkov compute the pairwise, local, and global Markov
statements, respectively, for both directed and undirected graphs.

i17 : G = graph{{1,2},{2,3},{3,4},{4,5},{1,5}}; netList pack (3,localMarkov G)

+---------------------+---------------------+---------------------+
o18 = |{{1}, {3, 4}, {5, 2}}|{{2, 3}, {5}, {4, 1}}|{{1, 2}, {4}, {5, 3}}|

+---------------------+---------------------+---------------------+
|{{1, 5}, {3}, {4, 2}}|{{2}, {4, 5}, {1, 3}}| |
+---------------------+---------------------+---------------------+

The first conditional independence statement produced is X1 ⊥⊥ (X3,X4) | (X2,X5). In the context of
conditional independence, the graphical model consists of all distributions satisfying one of these
collections of independence statements associated to the graph G.

A Gaussian random vector, X = (X1, . . . ,Xn) ∼ N (µ,Σ), is an n-dimensional random vector
with state space Rn and density function f (x) = 1

(2π)n/2(detΣ)1/2 exp
(
−1

2(x−µ)T Σ−1(x−µ)
)
, where

µ ∈ Rn and Σ = (σs,t) ∈ PDn, the cone of n×n symmetric positive definite matrices. The Gaussian
random vector X satisfies the conditional independence statement XA ⊥⊥ XB | XC if and only if the
submatrix ΣA∪C,B∪C := (σs,t)s∈A∪C,t∈B∪C has rank at most #C. Hence, the set of all Gaussian random
vectors satisfying a given collection of conditional independence statements yields a subset of
PDn that can be studied via a determinantal conditional independence ideal in the polynomial ring
Q
[
σs,t : s, t ∈ [n]

]
. This ring is generated using the command gaussianRing. Computations involving

conditional independence ideals with Gaussian random variables were exemplified in the first section.

COMPUTING THE VANISHING IDEAL OF A MODEL. The fact that graphical models can be described
in two possible ways (either by a recursive factorization of probability distributions or by conditional
independence statements) corresponds to the algebraic principle that varieties can be presented either
parametrically or implicitly. The vanishing ideal of a model is the set of homogeneous polynomial
relations in the joint probability distributions (for discrete random variables) or in the variance-
covariance parameters (for Gaussian random variables). GraphicalModels has the capability of
computing the vanishing ideals of graphical models on directed graphs (for discrete random variables)
and also of graphical models on directed, undirected, or mixed graphs (for Gaussian random variables).
The vanishing ideal of an undirected graphical model for discrete random variables is a toric ideal
and should be computed using the Macaulay2 package FourTiTwo.

The method discreteVanishingIdeal implements this capability for graphical models on discrete
random variables. For a directed acyclic graph G on discrete random variables, the graphical model
consists of all distributions satisfying the recursive factorization property

P(X = i) = ∏v P(Xv = iv | Xpa(v) = ipa(v)) ,

where the product runs over all vertices v of G and pa(v) is the set of parents of v. Our implementation
of this method does not compute the kernel of the corresponding ring map. Instead, the vanishing
ideal is computed recursively using the factorization

P(X = i) = P(X1 = i1, . . . ,Xn−1 = in−1) ·P(Xn = in | Xpa(n) = ipa(n)),

where 1, . . . ,n is a topological ordering of the vertices of the directed acyclic graph G.
The following example computes the vanishing ideal of the graphical model 1→ 2→ 3→ 4 on

four binary random variables. The vanishing ideal is minimally generated by 20 quadratic binomials.
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i19 : G = digraph {{1,{2}}, {2,{3}},{3,{4}},{4,{}}}; R = markovRing (2,2,2,2);

i21 : I = discreteVanishingIdeal (R,G); betti mingens I

o21 : Ideal of R

0 1
o22 = total: 1 20

0: 1 .
1: . 20

o22 : BettiTally

According to [GSS], the vanishing ideal of a graphical model on discrete random variables is the
distinguished component of the conditional independence ideal described by the Markov statements
of the model. For the directed path in our previous example, the conditional independence ideal
of the local Markov statements is a radical ideal with 3 associated primes. However, since G is a
directed tree, the conditional independence ideal of the global Markov statements is a prime ideal and
it equals the vanishing ideal of G.

i23 : J = conditionalIndependenceIdeal (R, localMarkov G); I == J

o23 : Ideal of R

o24 = false

i25 : K = conditionalIndependenceIdeal (R, globalMarkov G); I == K

o25 : Ideal of R

o26 = true

The method gaussianVanishingIdeal computes the vanishing ideal of a Gaussian graphical model
on a graph, digraph, or mixed graph. It is applied to a polynomial ring that has been created with
the command gaussianRing G where G is either a graph, digraph, or mixed graph. In general, mixed
graphs can have directed, undirected, and bidirected edges, though at present gaussianVanishingIdeal
only works on mixed graphs that do not have undirected edges. If G is a mixed graph with no
undirected edges, IG is the vanishing ideal of the parametrization Σ = (I−Λ)−T Ψ(I−Λ)−1, where
Σ is the variance-covariance matrix, Λ is the strictly upper triangular matrix with Λi j = λi j if i→ j is
a directed edge in G and 0 otherwise, and Ψ is a symmetric positive definite matrix of parameters ψi j
with zeros in each entry Ψi j if there is no bidirected edge in G between i and j, and i 6= j.

The following example computes the vanishing ideal of the Gaussian graphical model on the
mixed graph with directed edges {1→ 2,1→ 3,2→ 3,3→ 4} and bidirected edges {1↔ 2,2↔ 4}.
This ideal is a principal ideal generated by one quartic polynomial with 8 terms. This ideal is not
determinantal, i.e. it is not generated by the determinantal equations defining the trek ideal, which in
this case is the zero ideal.

i27 : G = mixedGraph(digraph {{1,{2,3}},{2,{3}},{3,{4}}},bigraph {{1,2},{2,4}});

i28 : R = gaussianRing G; I = gaussianVanishingIdeal R;

o29 : Ideal of R

i30 : flatten degrees I

o30 = {4}

o30 : List

i31 : J = trekIdeal (R,G)

o31 = 0
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An important problem with these models is determining which parameters are identifiable or
generically identifiable, see [GPSS]. The method identifyParameters can be used to solve the
identifiability problem for Gaussian graphical models on mixed graphs (also known as structural
equation models). The following example shows that the parameter ψ24 is generically identifiable by
the formula ψ24 = (σ13σ24−σ14σ23)/σ13.

i32 : H = identifyParameters R;

i33 : H#(p_(2,4))_0

o33 = p s + s s - s s
2,4 1,3 1,4 2,3 1,3 2,4

o33 : R

In this model there are three non-generically identified parameters. identifyParameters produces a
hash table whose entries are indexed by the parameters and contain ideals that can be used to find
explicit rational functions for every parameter that is generically identifiable.
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