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Decomposition of Monomial Algebras:
Applications and Algorithms

JANKO BÖHM, DAVID EISENBUD, AND MAX J. NITSCHE

ABSTRACT. Considering finite extensions K[A]⊆ K[B] of positive affine semigroup rings over a field
K we have developed in [BEN] an algorithm to decompose K[B] as a direct sum of monomial ideals in
K[A]. By computing the regularity of homogeneous semigroup rings from the decomposition, we have
confirmed the Eisenbud-Goto conjecture in a range of new cases not tractable by standard methods. Here
we first illustrate this technique and its implementation in our Macaulay2 package MonomialAlgebras
by computing the decomposition and the regularity step by step for an explicit example. We then focus
on ring-theoretic properties of simplicial semigroup rings. From the characterizations given in [BEN],
we develop and prove explicit algorithms testing various properties, including being Buchsbaum, Cohen-
Macaulay, Gorenstein, normal, and seminormal. All algorithms are implemented in our Macaulay2
package.

INTRODUCTION. Let B be a positive affine semigroup, that is, B is a finitely generated subsemigroup
of Nm for some m. Let K be a field and K[B] the affine semigroup ring associated to B, which
can be identified with the subring of K[t1, . . . , tm] generated by monomials tu := tu1

1 · · · tum
m , where

u = (u1, . . . ,um)∈ B. Denote by C(B) and by G(B) the cone and the group generated by B. From now
on let A⊆ B be positive affine semigroups with C(A) =C(B). We will now discuss the decomposition
of K[B] into a direct sum of monomial ideals in K[A]. Observe that

K[B] =
⊕

g∈G
K ·
{

tb | b ∈ B∩g
}
,

where G :=G(B)/G(A). We have C(A)=C(B) if and only if K[B] is a finitely generated K[A]-module.
From this it follows that G is finite, and we can compute the above decomposition since all summands
are finitely generated. Moreover, there are shifts hg ∈G(B) such that Ig := K ·

{
tb−hg | b ∈ B∩g

}
is a

monomial ideal in K[A]. Thus, K[B]∼=
⊕

g∈G Ig(−hg) as Zm-graded K[A]-modules (with deg tb = b).
A detailed formulation of the algorithm computing the ideals Ig and shifts hg and a more general
version of the decomposition in the setup of cancellative abelian semigroup rings over an integral
domain can be found in [BEN, Algorithm 1, Theorem 2.1].

Our original motivation for developing this decomposition was to provide a fast algorithm to
compute the Castelnuovo-Mumford regularity regK[B] of a homogeneous semigroup ring in order to
test the Eisenbud-Goto conjecture [EG, Conjecture p. 93]. Recall that the Castelnuovo-Mumford
regularity regM of a finitely generated graded module M over a standard graded polynomial ring
R = K[x1, . . . ,xn] is defined as the smallest integer m such that every j-th syzygy module of M is
generated by elements of degree at most m+ j. Moreover, B is called a homogeneous semigroup
if there exists a group homomorphism deg: G(B) → Z with degbi = 1 for i = 1, . . . ,n, where
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Hilb(B) = {b1, . . . ,bn} is the minimal generating set of B; by regK[B] we mean its regularity with
respect to the R-module structure which is given by the K-algebra homomorphism R � K[B], xi 7→ tbi .

The toric Eisenbud-Goto conjecture can be formulated as follows: let K be a field and B a
homogeneous semigroup, then regK[B]≤ degK[B]−codimK[B], where degK[B] denotes the degree
and codimK[B] := dimK K[B]1−dimK[B] the codimension. Even this special case of the Eisenbud-
Goto conjecture is largely open; for references on known results see [BEN, §4]. The regularity of
K[B] is usually computed from a minimal graded free resolution. If n is large this computation is
very expensive, and hence it is impossible to test the conjecture systematically in high codimension
using this method. However, choosing A to be generated by minimal generators e1, . . . ,ed of C(B)
of degree 1 the regularity can be computed as regK[B] = max{reg Ig +deghg | g ∈ G}, where reg Ig
denotes the regularity of Ig with respect to the canonical T = K[x1, . . . ,xd]-module structure given
by T � K[A], xi 7→ tei . Since the free resolution of every ideal Ig appearing has length at most d−1,
this computation is typically much faster than the traditional approaches. This enabled us to test the
conjecture for a large class of homogeneous semigroup rings by using our regularity algorithm. See
[BEN, §4] for details.

In first section, we illustrate a step by step decomposition and regularity computation for an explicit
example using our Macaulay2 [M2] package MonomialAlgebras. We say that K[B] is a simplicial
semigroup ring if the cone C(B) is simplicial. In second section, we focus on simplicial semigroup
rings K[B]. Based on the characterizations of ring-theoretic properties given in [BEN, Proposition 3.1]
we develop explicit algorithms for testing whether K[B] is Buchsbaum, Cohen-Macaulay, Gorenstein,
seminormal, or normal. We also discuss that, by known results, all these ring-theoretic properties
imply the Eisenbud-Goto conjecture. The algorithms mentioned are implemented in our Macaulay2
package.

DECOMPOSITION AND REGULARITY. Our Macaulay2 package can be loaded by
Macaulay2, version 1.6
with packages: ConwayPolynomials, Elimination, IntegralClosure, LLLBases,

PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : needsPackage "MonomialAlgebras";
--loading configuration for package "MonomialAlgebras" from file .../init-MonomialAlgebras.m2
--loading configuration for package "FourTiTwo" from file .../init-FourTiTwo.m2

We discuss the decomposition and computation of the regularity at the example of the homogeneous
semigroup B⊂ N3 specified by a list of generators

i2 : B = {{4,0,0},{2,2,0},{2,0,2},{0,2,2},{0,3,1},{3,1,0},{1,1,2}};

As an input for our algorithms we encode this data in a multigraded polynomial ring
i3 : K = ZZ/101;

i4 : S = K[x_1..x_7, Degrees => B];

The usual approach to computing regK[B] is to obtain it from a minimal graded free resolution of the
toric ideal IB with respect to the standard grading:

i5 : IB = binomialIdeal S;

o5 : Ideal of S

i6 : R = newRing(ring IB, Degrees => {7:1});

i7 : betti res sub(IB,R)
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0 1 2 3 4 5
o7 = total: 1 8 15 13 6 1

0: 1 . . . . .
1: . 6 8 3 . .
2: . 2 3 . . .
3: . . 4 10 6 1

o7 : BettiTally

Hence, we observe that regK[B] = 3. On the other hand, using the decomposition of K[B], we can
proceed as follows: The command

i8 : dc = decomposeMonomialAlgebra S

o8 = HashTable{| -1 | => {ideal (x , x ), | -1 |}}
| 1 | 1 3 | 1 |
| 0 | | 0 |
0 => {ideal 1, 0}

o8 : HashTable

decomposes K[B] over K[A] where A⊆ B is generated by minimal generators of C(B) with minimal
coordinate sum; so in the example A = 〈(4,0,0),(2,2,0),(2,0,2),(0,2,2),(0,3,1)〉. The keys of the
hash table represent the elements of G and the values are the tuples (Ig,hg), hence

(†) K[B]∼= 〈x1,x3〉(−(−1,1,0))⊕K[A]

as Z3-graded K[A]-modules; here we write K[A] ∼= T/J with T = K[x1,x2,x3,x4,x5] and xi for the
class of xi. The on-screen output of Macaulay2 does not distinguish between the class and the
representative. With respect to the standard grading degu = (u1 +u2 +u3)/4, Equation (†) yields
regK[B] = max{reg〈x1,x3〉+(−1+1+0)/4, regK[A]+0}. We compute regK[A]:

i9 : KA = ring first first values dc;

i10 : T = newRing(ring ideal KA, Degrees => {5:1});

i11 : J = sub(ideal KA,T);

o11 : Ideal of T

i12 : betti res J

0 1 2
o12 = total: 1 3 2

0: 1 . .
1: . 1 .
2: . 2 2

o12 : BettiTally

Hence regK[A] = 2. We can compute reg〈x1,x3〉 as follows:
i13 : I1 = first (values dc)#0

o13 = ideal (x , x )
1 3

o13 : Ideal of KA

i14 : g = matrix entries sub(gens I1, T);

1 2
o14 : Matrix T <--- T

i15 : betti res image map(coker gens J, source g, g)
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0 1 2 3
o15 = total: 2 5 4 1

1: 2 2 . .
2: . . . .
3: . 3 4 1

o15 : BettiTally

Thus, reg〈x1,x3〉= 3, and therefore we see again that regK[B] = 3. Observe that the resolution of
K[B] has length 5, whereas the ideals Ig have resolutions of length at most 3. The command

i16 : regularityMA S

o16 = {3, {{ideal (x , x ), | -1 |}}}
1 3 | 1 |

| 0 |

o16 : List

provides an implementation of this approach, also returning the tuples (Ig,hg) where the maximum is
achieved. By [BEN, Proposition 4.1] we have degK[B] = #G ·degK[A] = 10 since

i17 : degree J

o17 = 5

Moreover, codimK[B] = 4 since dimK[B] = dimC(B)= 3. Hence the ring K[B] satisfies the Eisenbud-
Goto bound.

ALGORITHMS FOR RING THEORETIC PROPERTIES. In this section, we focus on simplicial semi-
group rings K[B]. Based on the characterizations given in [BEN, Proposition 3.1], we develop and
prove explicit algorithms for testing whether K[B] is Buchsbaum, Cohen-Macaulay, Gorenstein,
seminormal, or normal. In the simplicial case, all these properties are independent of K and they
imply the Eisenbud-Goto conjecture by results of [SV, Corollary p. 307], [T, Corollary 2.3 and
Proposition 2.2], and [N, Theorem 3.16]. As an example, consider the following homogeneous
simplicial semigroup B⊂ N3 specified by the generators

i18 : B = {{4,0,0},{0,4,0},{0,0,4},{1,0,3},{0,2,2},{3,0,1},{1,2,1}};

We compute the decomposition of K[B] over K[A], where A = 〈(4,0,0),(0,4,0),(0,0,4)〉 ⊂ B is
generated again by minimal generators of C(B) with minimal coordinate sum.

i19 : S = K[x_1..x_7, Degrees => B];

i20 : decomposeMonomialAlgebra S

o20 = HashTable{| -1 | => {ideal 1, | 3 |} }
| 0 | | 0 |
| 1 | | 1 |

| -1 | => {ideal 1, | 3 |}
| 2 | | 2 |
| -1 | | 3 |

| 0 | => {ideal 1, | 0 |}
| 2 | | 2 |
| 2 | | 2 |

| 1 | => {ideal 1, | 1 |}
| 0 | | 0 |
| -1 | | 3 |
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| 1 | => {ideal 1, | 1 |}
| 2 | | 2 |
| 1 | | 1 |

| 2 | => {ideal (x , x , x ), | 2 |}
| 0 | 3 1 2 | 0 |
| 2 | | 2 |

| 2 | => {ideal 1, | 2 |}
| 2 | | 2 |
| 0 | | 4 |

0 => {ideal 1, 0}

o20 : HashTable

Hence, K[B]∼=K[A]⊕K[A](−1)4⊕K[A](−2)2⊕〈x1,x2,x3〉(−1) with respect to the standard grading
induced by degu=(u1+u2+u3)/4. It follows that depthK[B] = 1; thus, K[B] is not Cohen-Macaulay.
Hence, K[B] is also not normal by [H, Theorem 1]. We can test seminormality via Algorithm 1.

Algorithm 1 (Seminormality test).
Input: A simplicial semigroup B⊆ Nm.
Output: true if K[B] is seminormal, false otherwise.

1: Let e1, . . . ,ed ∈ B be minimal generators of C(B) with minimal coordinate sum, and
set A := 〈e1, . . . ,ed〉.

2: Compute BA := {x ∈ B | x /∈ B+(A\{0})} as described in [BEN, Algorithm 1, Step 1].
3: for all x ∈ BA do
4: Solve the linear system of equations ∑

d
i=1 λiei = x for λ = (λ1, . . . ,λd) ∈Qd .

5: if ‖λ‖
∞
> 1 then return false.

6: end for
7: return true.

Here, ‖−‖
∞

denotes the maximum norm. Note that all λi are non-negative since C(B) is a simplicial
cone. Verifying in Step 5 the condition ‖λ‖

∞
≥ 1 instead, results in an algorithm which tests normality.

Using our package we observe that, in the example above, K[B] is not seminormal:
i21 : isSeminormalMA B

o21 = false

The Buchsbaum property can be tested by Algorithm 2. We denote by K[A]+ the homogeneous
maximal ideal of K[A].

Algorithm 2 (Buchsbaum test).
Input: A simplicial semigroup B = 〈b1, . . . ,bn〉 ⊆ Nm.
Output: true if K[B] is Buchsbaum, false otherwise.

1: Let e1, . . . ,ed ∈ B be minimal generators of C(B) with minimal coordinate sum, and
set A := 〈e1, . . . ,ed〉.

2: Using the (minimal) generators e1, . . . ,ed of A decompose K[B]∼=
⊕

g∈G Ig(−hg),
where Ig ⊆ K[A], hg ∈ G(B) and G = G(B)/G(A) by [BEN, Algorithm 1].

3: if there exists g ∈ G with Ig 6= K[A] and Ig 6= K[A]+ then return false.
4: H :=

{
hg | g ∈ G with Ig = K[A]+

}
.

5: C := {b1, . . . ,bn}\{0,e1, . . . ,ed}.
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6: H +C :=
{

hg +bi | hg ∈ H, bi ∈C
}

.
7: return true if (H +C)∩H =∅ and false otherwise.

Proof of Algorithm 2. By [BEN, Proposition 3.1], the ring K[B] is Buchsbaum iff each ideal Ig is
either equal to K[A], or to K[A]+ and hg + b ∈ B for all b ∈ Hilb(B). So, Step 3 is correct and we
may now assume that Ig = K[A] or Ig = K[A]+ for all g ∈ G. Recall that Ig = {tv−hg | v ∈ Γg}K[A]
where Γg = {x ∈ BA | x ∈ g}. Moreover, {tv−hg | v ∈ Γg} is always a minimal generating set of Ig and
hg = ∑

d
k=1 min

{
λ v

k | v ∈ Γg
}

ek where v = ∑
d
k=1 λ v

k ek with λ v
k ∈Q. Since h+ ek ∈ BA for all h ∈ H

and all k = 1, . . . ,d, we have H∩B =∅. In case that (H +C)∩H 6=∅, we obtain h+b /∈ B for some
h ∈ H and some b ∈ B\{0}, that is h+Hilb(B) 6⊆ B. Hence, K[B] is not Buchsbaum.

In case that K[B] is not Buchsbaum, there is an h ∈H and some b ∈Hilb(B) such that h+b /∈ B. It
is now sufficient to show that b∈C and h+b∈H. By the above argument, b∈C. Let mk = h+b+ek
for k = 1, . . . ,d. Suppose that mi /∈ BA for some i ∈ {1, . . . ,d}. Since mk− ek /∈ B for all k = 1, . . . ,d,
necessarily mi− e j ∈ B for some j 6= i. Consider y = m j−∑

d
k=1 nkek ∈ B with nk ∈ N such that

∑
d
k=1 nk is maximal. By construction y ∈ BA, moreover, n j = 0 since m j− e j /∈ B. In the same way if

x = mi− e j−∑
d
k=1 nkek ∈ B with ∑

d
k=1 nk maximal, then x ∈ BA. Since mi,m j ∈ g for some g ∈ G,

we also have x,y ∈ g. Since e1, . . . ,ed are linearly independent, we have λ
y
j −λ x

j ≥ 2. Moreover,
since ty−hg, tx−hg ∈ K[A] we get that ty−hg is not a linear form. Hence Ig 6= K[A] and Ig 6= K[A]+, thus,
mk ∈ BA for all k = 1, . . . ,d. We have #Γg ∈ {1,d} by minimality, hence Γg = {m1, . . . ,md}. By
construction, hg = h+b and Ig = K[A]+, therefore h+b ∈ H. �

In Step 2 of Algorithm 2, the shifts hg and hence the ideals Ig are uniquely determined since e1, . . . ,ed
are linearly independent. This is not true for arbitrary generating sets. Continuing the example, by
[SV, Corollary p. 307] and

i22 : isBuchsbaumMA B

o22 = true

it follows that K[B] satisfies the Eisenbud-Goto conjecture. We can also read off from the decom-
position the regularity and the Eisenbud-Goto bound: we have regK[A] = 0 and reg〈x1,x2,x3〉= 1,
therefore regK[B] = max{0,1,2,1+1}= 2. Moreover, degK[B] is the number of ideals which occur
in the decomposition, hence degK[B]− codimK[B] = 8−4 = 4.

When B is Buchsbaum, the regularity of K[B] is independent of the field K since all ideals in the
decomposition are equal to the homogeneous maximal ideal or to K[A].

We finish this section by providing Algorithm 3 for testing the Gorenstein property.

Algorithm 3 (Gorenstein test).
Input: A simplicial semigroup B⊆ Nm.
Output: true if K[B] is Gorenstein, false otherwise.

1: Let e1, . . . ,ed ∈ B be minimal generators of C(B) with minimal coordinate sum, and
set A := 〈e1, . . . ,ed〉.

2: Using the (minimal) generators e1, . . . ,ed of A decompose K[B]∼=
⊕

g∈G Ig(−hg) where Ig⊆K[A],
hg ∈ G(B) and G = G(B)/G(A) by [BEN, Algorithm 1].

3: if there exists g ∈ G with Ig 6= K[A] then return false.
4: H :=

{
hg | g ∈ G

}
.

5: if h ∈ H with maximal coordinate sum is not unique then return false.
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6: Let h ∈ H with maximal coordinate sum.
7: while H 6=∅ do
8: Let hg ∈ H.
9: if h−hg /∈ H then return false.

10: H := H\
{

hg, h−hg
}

.
11: end while
12: return true.

Proof of Algorithm 3. By [BEN, Proposition 3.1] the ring K[B] is Gorenstein if and only if Ig = K[A]
for all g ∈G and H has a unique maximal element with respect to ≤ given by x≤ y if there is a z ∈ B
such that x+ z = y. Note that H = BA since Ig = K[A] for all g ∈ G. If there is a maximal element
h ∈ H, then this element has maximal coordinate sum. If H has more than one element with maximal
coordinate sum, then H does not have a unique maximal element. To complete the proof we need
to show that an element hg ∈ H satisfies hg ≤ h iff h−hg ∈ H. But this follows from the fact that if
x /∈ BA then x+ y /∈ BA for all x,y ∈ B. �

Performing Steps 1–3 of Algorithm 3 (and returning true afterwards) also gives a test for the
Cohen-Macaulay property.
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