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Local rings of embedding codepth 3:
A classification algorithm

LARS WINTHER CHRISTENSEN AND OANA VELICHE

ABSTRACT: Let I be an ideal of a regular local ring Q with residue field k.
The length of the minimal free resolution of R = Q/I is called the codepth
of R. If it is at most 3, then the resolution carries the structure of a differential
graded algebra, and the induced algebra structure on TorQ

∗
(R, k) provides for a

classification of such local rings.
We describe the Macaulay2 package CodepthThree that implements an algo-

rithm for classifying a local ring as above by computation of a few cohomologi-
cal invariants.

INTRODUCTION AND NOTATION. Let R be a commutative noetherian local ring
with residue field k. Assume that R has the form Q/I , where Q is a regular local
ring with maximal ideal n and I ⊆ n2. The embedding dimension of R (and of Q)
is denoted e. Let

F = 0−→ Fc −→ · · · −→ F1 −→ F0 −→ 0

be a minimal free resolution of R over Q. Set d = depth R; the length c of the
resolution F is

c = proj.dimQ R = depth Q− depthQ R = e− d,

by the Auslander–Buchsbaum formula, and one refers to this invariant as the codepth
of R. In the following we assume that c is at most 3. By a theorem of Buchs-
baum and Eisenbud [Bruns and Herzog 1993, 3.4.3] the resolution F carries a
differential graded algebra structure, which induces a unique graded-commutative
algebra structure on A = TorQ

∗
(R, k). The possible structures were identified by

Weyman [1989] and by Avramov, Kustin, and Miller [Avramov et al. 1988]. Ac-
cording to the multiplicative structure on A, the ring R belongs to exactly one of
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the classes designated B, C(c), G(r), H(p, q), S, and T. Here the parameters p,
q , and r are given by

p = rankk(A1 · A1), q = rankk(A1 · A2), r = rankk(δ : A2→ Homk(A1, A3)),

where δ is the canonical map. See [Avramov 2012; Avramov et al. 1988; Weyman
1989] for further background and details.

When, in the following, we talk about classification of a local ring R, we mean
the classification according to the multiplicative structure on A. To describe the
classification algorithm, we need a few more invariants of R. Set

l = rankQ F1− 1 and n = rankQ Fc;

the latter invariant is called the type of R. The Cohen–Macaulay defect of R is
h = dim R − d. The Betti numbers βi and the Bass numbers µi record ranks of
cohomology groups:

βi = β
R
i (k)= rankk ExtiR(k, k) and µi = µi (R)= rankk ExtiR(k, R).

The generating functions
∞∑

i=0
βi t i and

∞∑
i=0
µi t i are called the Poincaré series and

the Bass series of R.

THE ALGORITHM. For a local ring of codepth c ≤ 3, the class together with the
invariants e, c, l, and n completely determine the Poincaré series and Bass series
of R; see [Avramov 2012]. Conversely, one can determine the class of R based on
e, c, l, n, and a few Betti and Bass numbers; in the following we describe how.

Lemma 1. For a local ring R of codepth 3 the invariants p, q, and r are deter-
mined by e, l, n, β2, β3, β4, and µe−2 through the formulas

p = n+ le+β2−β3+

(e−1
3

)
,

q = (n− p)e+ lβ2+β3−β4+

(e−1
4

)
,

r = l + n−µe−2.

Proof. The Poincaré series of R has the form

∞∑
i=0

βi t i
=

(1+ t)e−1

1− t − lt2− (n− p)t3+ qt4+ · · ·
(1)

by [Avramov 2012, 2.1], and expansion of the rational function yields the expres-
sions for p and q.
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One has d = e− 3 and the Bass series of R has, also by [Avramov 2012, 2.1],
the form

∞∑
i=0

µi t i
= td n+ (l − r)t + · · ·

1− t + · · ·
; (2)

expansion of the rational function now yields the expression for r . �

Proposition 2. A local ring R of codepth 3 can be classified based on the invari-
ants e, h, l, n, β2, β3, β4, µe−2, and µe−1.

Proof. First recall that one has h = 0 and n = 1 if and only if R is Gorenstein;
see [Bruns and Herzog 1993, 3.2.10]. In this case R is in class C(3) if l = 2 and
otherwise in the class G(l + 1).

Assume now that R is not Gorenstein. The invariants p, q, and r can be com-
puted from the formulas in Lemma 1. It remains to determine the class, which can
be done by case analysis. Recall from [Avramov 2012, 1.3 and 3.1] that one has

Class p q r

T 3 0 0
B 1 1 2

G(r) [r ≥ 2] 0 1 r
H(p, q) p q q

In case q≥ 2, the ring R is in class H(p, q); for q≤ 1 the case analysis shifts to p.
In case p = 0, the distinction between the classes G(r) and H(0, q) is made by

comparing q and r ; they are equal if and only if R is in class H(0, q).
In case p = 1, the distinction between the classes B and H(1, q) is made by

comparing q and r ; they are equal if and only if R is in class H(1, q).
In case p = 3, the distinction between the classes T and H(3, q) is drawn

by the invariant µe−1. Recall the relation d = e − 3; expansion of the expres-
sions from [Avramov 2012, 2.1] yields µe−1 = µe−2 + ln − 2 if R is in T and
µe−1 = µe−2+ ln− 3 if R is in H(3, q).

In all other cases, i.e., p = 2 or p ≥ 4, the ring R is in class H(p, q). �

Remark 3. One can also classify a local ring R of codepth 3 based on the invariants
e, h, l, n, β2, . . . , β5, and µe−2. In the case p = 3 one then discriminates between
the classes by looking at β5, which is β4+ lβ3+ (n− 3)β2+ τ , with τ = 0 if R is
in class H(3, q) and τ = 1 if R is in class T. However, it is not possible to classify
R based on Betti numbers alone. Indeed, rings in the classes B and H(1, 1) have
identical Poincaré series and so do rings in the classes G(r) and H(0, 1).
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Remark 4. A local ring R of codepth c≤ 2 can be classified based on the invariants
c, h, and n. Indeed, if c ≤ 1 then R is a hypersurface; i.e., it belongs to class C(c).
If c= 2 then R belongs to class C(2) if and only if it is Gorenstein (h= 0 and n= 1);
otherwise it belongs to class S.

Algorithm 5. From Remark 4 and the proof of Proposition 2, one gets the follow-
ing algorithm that takes as input invariants of a local ring of codepth c ≤ 3 and
outputs its class.

Input: c, e, h, l, n, β2, β3, β4, µe−2, µe−1.

� In case c ≤ 1, set Class = C(c).
� In case c = 2,
� if ( h = 0 and n = 1 ) then set Class = C(2),
� else set Class = S.

� In case c = 3,
� if ( h = 0 and n = 1 ) then set r = l + 1,
• if r = 3: then set Class = C(3),
• else set Class =G(r);

� else compute p and q:
• if ( q ≥ 2 or p = 2 or p ≥ 4 ) then set Class =H(p, q),
• else compute r :
◦ In case p = 0,
− if q = r then set Class =H(0, q),
− else set Class =G(r).

◦ In case p = 1,
− if q = r then set Class =H(1, q),
− else set Class = B.

◦ In case p = 3,
− if µe−1 = µe−2+ ln− 2 then set Class = T,
− else set Class =H(3, q).

Output: Class

Remark 6. Given a local ring R = Q/I the invariants e and h can be computed
from R, and c, l, and n can be determined by computing a minimal free resolution
of R over Q. The Betti numbers β2, β3, β4 one can get by computing the first five
steps of a minimal free resolution F of k over R. Recall the relation d = e− c;
the Bass numbers µe−2 and µe−1 one can get by computing the cohomology in
degrees d + 1 and d + 2 of the dual complex F∗ = HomR(F, R). For large values
of d, this may not be feasible, but one can reduce R modulo a regular sequence
x= x1, . . . , xd and obtain the Bass numbers as µd+i (R)= µi (R/(x)); see [Bruns
and Herzog 1993, 3.1.16].
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THE IMPLEMENTATION. The Macaulay2 package CodepthThree implements Al-
gorithm 5. The function torAlgClass takes as input a quotient Q/I of a poly-
nomial algebra, where I is contained in the irrelevant maximal ideal N of Q. It
returns the class of the local ring R obtained by localization of Q/I at N. For
example, the local ring obtained by localizing the quotient

Q[x, y, z]/(xy2, xyz, yz2, x4
− y3z, xz3

− y4)

is in class G(2); see [Christensen and Veliche 2014]. Here is how it looks when
one calls the function torAlgClass.

Macaulay2, version 1.6
with packages: ConwayPolynomials, Elimination, IntegralClosure,
LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : needsPackage "CodepthThree";
i2 : Q = QQ[x,y,z];
i3 : I = ideal (x*y^2,x*y*z,y*z^2,x^4-y^3*z,x*z^3-y^4);
o3 : Ideal of Q
i4 : torAlgClass (Q/I)
o4 = G(2)

Underlying torAlgClass is the workhorse function torAlgData, which re-
turns a hash table with the following data:

Key Value

"c" codepth of R
"e" embedding dimension of R
"h" Cohen–Macaulay defect of R
"m" minimal number of generators of defining ideal of R
"n" type of R

"Class" (nonparametrized) class of R
(‘B’, ‘C’, ‘G’, ‘H’, ‘S’, ‘T’, ‘codepth > 3’, or ‘zero ring’)

"p" rank of A1 · A1

"q" rank of A1 · A2

"r" rank of δ : A2→ Homk(A1, A3)

"PoincareSeries" Poincaré series of R
"BassSeries" Bass series of R

In the example from above one gets:
i5 : torAlgData(Q/I)

2 3 4
2 + 2T - T - T + T

o5 = HashTable{BassSeries => ---------------------- }
2 3 4

1 - T - 4T - 2T + T
c => 3
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Class => G
e => 3
h => 1
m => 5
n => 2
p => 0

2
(1 + T)

PoincareSeries => ----------------------
2 3 4

1 - T - 4T - 2T + T
q => 1
r => 2

To facilitate extraction of data from the hash table, the package offers two func-
tions torAlgDataList and torAlgDataPrint that take as input a quotient ring
and a list of keys. In the example from above one gets:

i6 : torAlgDataList( Q/I,
{"c", "Class", "p", "q", "r", "PoincareSeries"} )

2
(1 + T)

o6 = {3, G, 0, 1, 2, ----------------------}
2 3 4

1 - T - 4T - 2T + T

o6 : List

i7 : torAlgDataPrint( Q/I, {"e", "h", "m", "n", "r"} )

o7 = e=3 h=1 m=5 n=2 r=2

As discussed in Remark 6, the computation of Bass numbers may require a
reduction modulo a regular sequence. In our implementation such a reduction is
attempted if the embedding dimension of the local ring R is more than 3. The
procedure involves random choices of ring elements, and hence it may fail. By
default, up to 625 attempts are made, and one can change the number of attempts
with the function setAttemptsAtGenericReduction. If none of the attempts
are successful, then an error message is displayed:

i8 : Q = ZZ/2[u,v,w,x,y,z];

i9 : R = Q/ideal(x*y^2,x*y*z,y*z^2,x^4-y^3*z,x*z^3-y^4);

i10 : setAttemptsAtGenericReduction(R,1)

o10 = 1 attempt(s) will be made to compute the Bass numbers via a
generic reduction
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i11 : torAlgClass R
stdio:11:1:(3): error: Failed to compute Bass numbers. You may raise

the number of attempts to compute Bass numbers via a
generic reduction with the function
setAttemptsAtGenericReduction and try again.

i12 : setAttemptsAtGenericReduction(R,25)
o12 = 625 attempt(s) will be made to compute the Bass numbers via a

generic reduction

i13 : torAlgClass R

o13 = G(2)

Notice that the maximal number of attempts is n2, where n is the value set with
the function setAttemptsAtGenericReduction.

Notes. Given Q/I , our implementation of Algorithm 5 in torAlgData proceeds
as follows.

(1) Check if a value is set for attemptsAtBassNumbers; if not use the default
value 25.

(2) Initialize the invariants of R (the localization of Q/I at the irrelevant maximal
ideal) that are to be returned; see the table on page 5.

(3) Handle the special case where the defining ideal I or Q/I is 0. In all other
cases, compute the invariants c, e, h, m (= l + 1), and n.

(4) If possible, classify R based on c, e, h, m, and n. At this point the implemen-
tation deviates slightly from Algorithm 5, as it uses that all rings with c = 3
and h = 2 are of class H(0, 0); see [Avramov 2012, 3.5].

(5) For rings not classified in steps (3) or (4), one has c = 3; see Remark 4.
Compute the Betti numbers β2, β3, and β4, and with the formula from Lemma 1,
compute p and q . If possible, classify R based on these two invariants.

(6) For rings not classified in steps (3)–(5), compute the Bass numbers µe−2 and
µe−1. If d = e − 3 is positive, then the Bass numbers are computed via a
reduction modulo a regular sequence of length d as discussed above. Now,
compute r with the formula from Lemma 1 and classify R.

(7) The class of R together with the invariants c, l = m− 1, and n determine its
Bass and Poincaré series; see [Avramov 2012, 2.1].

If I is homogeneous, then various invariants of R can be determined directly
from the graded ring Q/I . If I is not homogeneous, and R hence not graded, then
functions from the package LocalRings are used.
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