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ABSTRACT: We introduce the package HighestWeights for Macaulay2. This
package provides tools to study the representation-theoretic structure of free
resolutions and graded modules over a polynomial ring with the action of a
semisimple Lie group. The methods of this package allow users to consider
the free modules in a resolution, or the graded components of a module, as
representations of a semisimple Lie group by means of their weights, and to
obtain their decomposition into highest-weight representations.

1. INTRODUCTION. Let R be a polynomial ring over the complex numbers with
a Zm-grading, and let M be a finitely generated graded R-module. Under mild
assumptions on R, for every degree d ∈ Zm each graded component Md is a finite-
dimensional complex vector space. Next assume that G is a complex Lie group
and that there is a degree-preserving C-linear action of G on R compatible with
multiplication, i.e., such that for every g ∈ G, r1, r2 ∈ R we have g · (r1r2) =

(g · r1)(g · r2). We are interested in those R-modules M with a degree-preserving
C-linear action of G compatible with the module structure, i.e., such that for every
g ∈ G, r ∈ R and m ∈ M we have g · (rm)= (g · r)(g ·m). Notice that each graded
component of such a module M is stable under the action of G.

Examples of such modules can arise naturally. For instance, let X be a finite-
dimensional representation of a complex Lie group G. The symmetric algebra
Sym(X), with the standard grading determined by Sym1(X) ∼= X , is an example
of a polynomial ring with a degree-preserving C-linear action of G. The action of
G also extends to the projective space P(X). If V is a projective variety in P(X)
which is fixed by the action of G, then the affine cone V̂ is an affine variety in X
which is fixed by G. Moreover, V̂ is the zero locus of some radical homogeneous
ideal I in Sym(X), and the quotient ring Sym(X)/I , i.e., the affine coordinate ring
of V̂ , is an example of a Sym(X)-module with a compatible G-action.
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Let M be a finitely generated graded R-module with the kind of G-action de-
scribed earlier. Denote by m the maximal ideal generated by the variables in R, and
set V0 = M/mM . The vector space V0 is a finite-dimensional graded representation
of G. Assuming G is linearly reductive, the natural projection M→ V0 admits a
section V0→ M which is compatible with the grading and G-action. This section
extends to an R-linear map d0 : F0 → M , where F0 is defined to be V0 ⊗C R.
By construction, F0 is a graded free R-module with a natural action of G that
commutes with d0; moreover, d0 maps a basis of F0 to a minimal generating set
of M . Notice also that F0/mF0 ∼= V0 as a graded representation of G. Next, let
V1 = ker(d0)/m ker(d0). Using the same ideas as before, let F1 be V1⊗C R (so that
F1/mF1 ∼= V1) and define the map d1 : F1→ F0. Again, d1 will be a map of graded
free R-modules that commutes with the action of G and maps a basis of F1 to a
minimal generating set of ker(d0); in addition, d1 ◦ d0 = 0. Iterating this procedure
constructs a minimal free resolution of M with a built-in action of G; in particular,
the procedure is guaranteed to terminate. Since any two minimal free resolutions
of M are isomorphic as complexes, the action of G transfers to every other minimal
free resolution via the isomorphism with the one just constructed.

Summarizing what we said so far, for every finitely generated graded R-module
M with a degree-preserving G-action compatible with the module structure, the
following occurs:

(1) For every degree d ∈ Zm , the graded component Md is a finite-dimensional
representation of G.

(2) If the complex

0←− M←− F0←− F1←− · · · ←− Fn←− 0

is a minimal free resolution of M as an R-module, then the action of G on M
extends to each Fi and there is an isomorphism Fi ∼= (Fi/mFi )⊗C R of graded
R-modules with a G-action. Each Fi/mFi is a finite-dimensional graded
vector space so, for each degree d ∈ Zm , (Fi/mFi )d is a finite-dimensional
representation of G.

When the group G is semisimple, it is a typical problem to decompose a finite-
dimensional representation into irreducible representations. Moreover each irre-
ducible representation is indexed by a so-called highest weight. The main pur-
pose of HighestWeights is to provide users of Macaulay2 [Grayson and Stillman]
with tools to obtain the highest-weight decomposition of the representations Md

and (Fi/mFi )d introduced above. This purpose is achieved by implementing an
algorithm for propagating weights of tori along equivariant maps introduced in
[Galetto 2015].
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This article is organized as follows: the next section details the mathematical
assumptions for using this package, Section 3 presents two examples in detail, and
Section 4 contains some final remarks. We have also included a brief review of the
representation theory of semisimple Lie groups in the Appendix.

2. PACKAGE ASSUMPTIONS. Before presenting some examples, we discuss some
assumptions of this package. Using the notation of the introduction, the poly-
nomial ring R must be positive Zm-graded for some positive integer m, in the
sense of [Kreuzer and Robbiano 2005, Definition 4.2.4]. More explicitly, if R =
C[x1, . . . , xn], then R is graded by elements of Zm in such a way that:

(1) each nonzero constant in R has degree 0 ∈ Zm ;

(2) the degree of each variable xi ∈ R is a nonzero vector in Zm , and its first
nonzero entry is positive;

(3) the matrix with rows given by the degrees of the variables x1, . . . , xn has
rank m.

This ensures that, for every finitely generated graded R-module M and for every
degree d ∈ Zm , each graded component Md is a finite-dimensional complex vector
space. The variables in the polynomial ring R must be weight vectors for the action
of the chosen maximal torus in G; this can always be achieved up to a linear change
of variables in R. The user is expected to provide the weight of each variable. Any
monomial ordering on the monomials of R is allowed. All free R-modules must
be endowed with a term over position up/down or position up/down over term
ordering; in Macaulay2 this is established with the declaration of the ring. The
default ordering, term over position up, is fine for most computations, unless the
user needs a different one.

To obtain the decomposition of a graded component Md , the user is expected to
provide a presentation ϕ : F1→ F0 of M in the form of a matrix written with respect
to a homogeneous basis {e1, . . . , er } of F0 such that the residue classes ē1, . . . , ēr

modulo mF0 form a basis of weight vectors of F0/mF0; the user will also need to
provide a list with the weights of ē1, . . . , ēr . For modules with a compatible group
action, presentations of this kind are, in our experience, the most natural. As for
resolutions, the user must provide a list of weights for a basis e1, . . . , er as before,
for any one of the modules Fi . When M = R/I , for a G-stable ideal I in R, the
module F0 is simply R with a trivial G-action; in this case, the user does not need
to input any weight (other than those of the variables of R).

The package WeylGroups, which is loaded automatically by this package, is
used to declare the type of a semisimple group and to handle many weight-related
operations behind the scenes. However, for the purpose of this package, weights



20 Galetto :::: Free resolutions and modules with a semisimple Lie group action

are to be provided simply as lists of integers, not as objects of type Weight as in
WeylGroups.

3. EXAMPLES. For an explanation of the notations and conventions relating to
weights that appear in the following examples, we refer the reader to Section A2.

3.1. The coordinate ring of the Grassmannian. Let E = C6, the standard repre-
sentation of SL6(C), with coordinate basis {e0, . . . , e5}. The Grassmannian V =
Gr(2, E∗) is the projective variety which parametrizes two-dimensional subspaces
of E∗; it is embedded in P(

∧2 E∗) using the Plücker equations [Shafarevich 1994,
Chapter I, §4.1]. Consider

∧2 E∗ as a complex affine space. Let C be the affine cone
over V , i.e., the subvariety of

∧2 E∗ which is the union of all the one-dimensional
subspaces of

∧2 E∗ belonging to V . The space
∧2 E∗ has a natural action of SL6(C)

which fixes C .
Our polynomial ring R is the ring of polynomial functions over

∧2 E∗, i.e., the
symmetric algebra Sym(

∧2 E). The elements pi, j = ei ∧ e j for 0 6 i < j 6 5
form a basis of weight vectors of

∧2 E and will be the variables in R. The defining
ideal of C is generated by the Plücker equations; this ideal, which we call I , can
be conveniently obtained in Macaulay2 using the command Grassmannian. We
resolve the quotient R modulo I as an R-module and call RI the minimal free
resolution:
i1 : printWidth=72; truncateOutput 200;

i3 : I=Grassmannian(1,5,CoefficientRing=>QQ); R=ring I;

o3 : Ideal of QQ[p , p , p , p , p , p , p , p , p , ... ]
0,1 0,2 1,2 0,3 1,3 2,3 0,4 1,4 2,4

i5 : RI=res I; betti RI

0 1 2 3 4 5 6
o6 = total: 1 15 35 42 35 15 1

0: 1 . . . . . .
1: . 15 35 21 . . .
2: . . . 21 35 15 .
3: . . . . . . 1

o6 : BettiTally

Now we load the package and assign weights to the variables of R. First we
input the weights of e0, . . . , e5 in a list L.
i7 : loadPackage "HighestWeights";

i8 : L={{1,0,0,0,0},{-1,1,0,0,0},{0,-1,1,0,0},{0,0,-1,1,0},{0,0,0,-1,1},
{0,0,0,0,-1}};

The weight of pi, j = ei ∧ e j is equal to the sum of the weights of ei and
e j (see Appendix A2). The subscripts of the variables pi, j are the elements of
subsets({0,1,2,3,4,5},2), the 2-subsets of the set {0, 1, 2, 3, 4, 5}. Hence
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taking sums of pairs of weights in L over this indexing set will give us a complete
list of weights for the variables pi, j , as listed by Macaulay2:
i9 : W=apply(subsets({0,1,2,3,4,5},2),s->L_(s_0)+L_(s_1))

o9 = {{0, 1, 0, 0, 0}, {1, -1, 1, 0, 0}, {-1, 0, 1, 0, 0}, {1, 0, -1, 1, 0},
-----------------------------------------------------------------------
{-1, 1, -1, 1, 0}, {0, -1, 0, 1, 0}, {1, 0, 0, -1, 1}, {-1, 1, 0, -1, 1},
-----------------------------------------------------------------------
{0, -1, 1, -1, 1}, {0, 0, -1, 0, 1}, {1, 0, 0, 0, ...

o9 : List

We declare D to be the Dynkin type A5, which is the type of the group SL6(C).
We then attach the weights in W to the variables in R with the command setWeights;
the arguments are the ring, the type and the weights of the variables, respectively.
The output will be the highest-weight decomposition of the C-linear subspace
of R generated by its variables; it is given in the form of a Tally, with keys
describing the highest weights of the irreducible representation appearing in the
decomposition and values equal to the multiplicities of those representations. In
this case, we get simply {0, 1, 0, 0, 0} => 1, which means that the decompo-
sition contains only one copy of the irreducible representation with highest weight
{0, 1, 0, 0, 0}, i.e.,

∧2 E , as expected:
i10 : D=dynkinType{{"A",5}}; setWeights(R,D,W)

o11 = Tally{{0, 1, 0, 0, 0} => 1}

o11 : Tally

All monomials in R are weight vectors. To recover the weight of a monomial,
use the command getWeights with the monomial as the argument:
i12 : getWeights(p_(0,1)*p_(1,2))

o12 = {-1, 1, 1, 0, 0}

o12 : List

We can now issue the command highestWeightsDecomposition to obtain
the decomposition of the representations corresponding to the free modules in the
resolution; the only argument is the resolution RI. Suppose the free modules in
RI are F0, . . . , F6. The outermost HashTable in the output has keys equal to the
subscripts of the free modules in RI. The value corresponding to a key i is itself
a HashTable with keys equal to the degrees of the generators of Fi . Finally the
value corresponding to a certain degree d is a Tally containing the highest-weight
decomposition of the representation (Fi/mFi )d , as described earlier:
i13 : highestWeightsDecomposition(RI)

o13 = HashTable{0 => HashTable{{0} => Tally{{0, 0, 0, 0, 0} => 1}}}
1 => HashTable{{2} => Tally{{0, 0, 0, 1, 0} => 1}}
2 => HashTable{{3} => Tally{{1, 0, 0, 0, 1} => 1}}
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3 => HashTable{{4} => Tally{{2, 0, 0, 0, 0} => 1}}
{5} => Tally{{0, 0, 0, 0, 2} => 1}

4 => HashTable{{6} => Tally{{1, 0, 0, 0, 1} => 1}}
5 => HashTable{{7} => Tally{{0, 1, 0, 0, 0} => 1}}
6 => HashTable{{9} => Tally{{0, 0, 0, 0, 0} => 1}}

o13 : HashTable

By analyzing this output, we obtain the following description for RI:

R←
∧4 E ⊗ R(−2)← S2,1,1,1,1 E ⊗ R(−3)

← S2 E ⊗ R(−4)⊕S2,2,2,2,2 E ⊗ R(−5)← S2,1,1,1,1 E ⊗ R(−6)

←
∧2 E ⊗ R(−7)← R(−9)← 0.

Next we turn to the coordinate ring of C , i.e., the quotient ring Q = R/I . We
decompose its graded components in the range of degrees from 0 to 4, again with
the command highestWeightsDecomposition. This time the arguments are the
ring followed by the lowest and highest degrees in the range to be decomposed:
i14 : Q=R/I; highestWeightsDecomposition(Q,0,4)

o15 = HashTable{0 => Tally{{0, 0, 0, 0, 0} => 1}}
1 => Tally{{0, 1, 0, 0, 0} => 1}
2 => Tally{{0, 2, 0, 0, 0} => 1}
3 => Tally{{0, 3, 0, 0, 0} => 1}
4 => Tally{{0, 4, 0, 0, 0} => 1}

o15 : HashTable

We deduce that (R/I )d = Sd,d E for d ∈ {0, . . . , 4}. We can also decompose the
graded components of the ring R in a range of degrees or in a single degree:
i16 : highestWeightsDecomposition(R,2)

o16 = Tally{{0, 0, 0, 1, 0} => 1}
{0, 2, 0, 0, 0} => 1

o16 : Tally

For example, R2 =
∧4 E ⊕ S2,2 E . Since the representation

∧4 E appears in R2

but not in (R/I )2, we deduce that it must be in I2, the graded component of I of
degree 2. This can be verified directly by decomposing I2 as follows:
i17 : highestWeightsDecomposition(I,2)

o17 = Tally{{0, 0, 0, 1, 0} => 1}

o17 : Tally

3.2. The Buchsbaum–Rim complex. Let E=C6 with coordinate basis {e1, . . . ,e6}

and F = C3 with coordinate basis { f1, f2, f3}. Denote by R the symmetric algebra
Sym(E ⊗ F); R is a polynomial ring with variables xi, j = ei ⊗ f j . We take M
to be the cokernel of a generic 3× 6 matrix of variables in R. The minimal free
resolution of M is an example of a Buchsbaum–Rim complex [Eisenbud 1995,
Appendix A2.6]. We call this complex BR.
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i1 : printWidth = 72; truncateOutput 200;

i3 : R=QQ[x_(1,1)..x_(6,3)];

i4 : G=genericMatrix(R,3,6)

o4 = | x_(1,1) x_(2,1) x_(3,1) x_(4,1) x_(5,1) x_(6,1) |
| x_(1,2) x_(2,2) x_(3,2) x_(4,2) x_(5,2) x_(6,2) |
| x_(1,3) x_(2,3) x_(3,3) x_(4,3) x_(5,3) x_(6,3) |

3 6
o4 : Matrix R <--- R

i5 : M=coker G; BR=res M; betti BR

0 1 2 3 4
o7 = total: 3 6 15 18 6

0: 3 6 . . .
1: . . . . .
2: . . 15 18 6

o7 : BettiTally

The ring R carries a degree compatible action of SL6(C)× SL3(C). Define the
map of graded free R-modules

ϕ : E ⊗ R(−1)→ F∗⊗ R, ei ⊗ 1 7→
3∑

j=1
f ∗j ⊗ xi, j ,

where { f ∗1 , f ∗2 , f ∗3 } is the dual basis in F∗. The matrix of ϕ with respect to the
bases {e1⊗1, . . . , e6⊗1} and { f ∗1 ⊗1, f ∗2 ⊗1, f ∗3 ⊗1} is precisely the generic matrix
G introduced above. Moreover, ϕ is SL6(C)× SL3(C)-equivariant, meaning that
for all g ∈ SL6(C)×SL3(C), e ∈ E and r ∈ R we have ϕ(g · (e⊗r))= g ·ϕ(e⊗r).
This makes its cokernel M a module with a compatible SL6(C)×SL3(C)-action.

The weight of xi, j = ei ⊗ f j is obtained by concatenating the weight of ei with
that of f j . First we record the weights of e1, . . . , e6 in a list e and those of f1, f2, f3

in a list f. Then we concatenate them as illustrated below and attach the resulting
list to the variables xi, j . Care must be taken that the order of the weights matches
the order of the variables:

i8 : loadPackage "HighestWeights";

i9 : e={{1,0,0,0,0},{-1,1,0,0,0},{0,-1,1,0,0}, {0,0,-1,1,0},{0,0,0,-1,1},
{0,0,0,0,-1}};

i10 : f={{1,0},{-1,1},{0,-1}};

i11 : W=flatten table(e,f,(u,v)->u|v)

o11 = {{1, 0, 0, 0, 0, 1, 0}, {1, 0, 0, 0, 0, -1, 1}, {1, 0, 0, 0, 0, 0, -1},
------------------------------------------------------------------------
{-1, 1, 0, 0, 0, 1, 0}, {-1, 1, 0, 0, 0, -1, 1}, {-1, 1, 0, 0, 0, 0, -1},
------------------------------------------------------------------------
{0, -1, 1, 0, 0, 1, 0}, {0, -1, 1, 0, 0, -1, 1}, { ...

o11 : List
i12 : D=dynkinType{{"A",5},{"A",2}}; setWeights(R,D,W)
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o13 = Tally{{1, 0, 0, 0, 0, 1, 0} => 1}

o13 : Tally

In order to decompose the representations in a resolution, we need to ensure that
the coordinate basis for at least one of the free modules in the resolution is a basis
of weight vectors, and then we need to input the weights of the elements of that
basis. For our resolution BR, we could choose the first or the second free module.
In fact, the first differential of BR is the map ϕ : E ⊗ R(−1)→ F∗ ⊗ R whose
matrix was written with respect to the bases of weight vectors {e1⊗ 1, . . . , e6⊗ 1}
and { f ∗1 ⊗ 1, f ∗2 ⊗ 1, f ∗3 ⊗ 1}. We choose to work with the first module, i.e., the
codomain of ϕ. Notice that the element 1 ∈ R appearing in the tensor product has
weight zero; hence it does not contribute to the weight of the basis elements. Also
the SL6(C) factor of our group acts trivially on F∗, and hence to obtain the weight
of f ∗1 ⊗ 1 we concatenate {0,0,0,0,0}, the weight of the trivial representation of
SL6(C), with {-1,0}, the weight of f ∗1 . We proceed similarly for the other basis
vectors and record the weights in the list U0:
i14 : U0={{0,0,0,0,0,-1,0},{0,0,0,0,0,1,-1},{0,0,0,0,0,0,1}};

At this point we are ready to decompose BR. To do so, we issue the command
highestWeightsDecomposition with three arguments: the first is BR, the second
is an integer i informing Macaulay2 that we wish to provide the weights in the i-th
free module of the complex, and the third is the list of weights in the coordinate
basis of the i-th module (remember the indexing of the modules starts from zero
in Macaulay2):
i15 : H0=highestWeightsDecomposition(BR,0,U0)

o15 = HashTable{0 => HashTable{{0} => Tally{{0, 0, 0, 0, 0, 0, 1} => 1}}}
1 => HashTable{{1} => Tally{{1, 0, 0, 0, 0, 0, 0} => 1}}
2 => HashTable{{4} => Tally{{0, 0, 0, 1, 0, 0, 0} => 1}}
3 => HashTable{{5} => Tally{{0, 0, 0, 0, 1, 1, 0} => 1}}
4 => HashTable{{6} => Tally{{0, 0, 0, 0, 0, 2, 0} => 1}}

o15 : HashTable

We deduce that BR decomposes as

F∗⊗R←−E⊗R(−1)←−
∧4 E⊗R(−4)←−

∧5 E⊗F⊗R(−5)←−S2 F⊗R(−6)←−0.

If we choose to start from the second module, we need to provide the list of
weights of the elements e1⊗ 1, . . . , e6⊗ 1. The commands are:
i16 : U1={{1,0,0,0,0,0,0},{-1,1,0,0,0,0,0},{0,-1,1,0,0,0,0},{0,0,-1,1,0,0,0},

{0,0,0,-1,1,0,0},{0,0,0,0,-1,0,0}};

i17 : H1=highestWeightsDecomposition(BR,1,U1); H0===H1

o18 = true

Indeed, the decomposition is the same.
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As with rings and ideals, we can decompose the graded components of a module.
The difference is that we need to provide a list of weights for the generators of the
presentation used to define the module. For our module M , this is exactly the list
U0 introduced earlier. As usual, we may decompose a single degree or a range.

i19 : highestWeightsDecomposition(M,-1,2,U0)

o19 = HashTable{-1 => Tally{} }
0 => Tally{{0, 0, 0, 0, 0, 0, 1} => 1}
1 => Tally{{1, 0, 0, 0, 0, 1, 1} => 1}
2 => Tally{{0, 1, 0, 0, 0, 0, 2} => 1}

{2, 0, 0, 0, 0, 2, 1} => 1

o19 : HashTable

Since M is generated in degree zero, we see that the output contains an empty
decomposition in degree −1. Whereas we see, for example, that

M2 =
∧2 E ⊗S2,2 F ⊕S2 E ⊗S3,1 F.

4. CLOSING REMARKS. Here we comment on a few points of (potential) interest.

• The method highestWeightsDecomposition provides the main functionality
of this package. This method relies on the method propagateWeights and the
function decomposeWeightsList, both of which are also exported. The method
propagateWeights implements (with minor changes) an algorithm of [Galetto
2015]. The function decomposeWeightsList implements a modified version
of Freudenthal’s multiplicity formula using the algorithm discussed in [de Graaf
2000, Chapter 8.9] and [Moody and Patera 1982]. We do not anticipate the user
employing these commands directly, but they are available for those who wish to
experiment with them. More details are available in the package documentation.

• Multigradings are supported as well as single gradings, whenever they are com-
patible with the group action. An example is included in the documentation that
involves multigradings.

• Decomposing graded components of rings and modules tends to work better in
low degrees, as the dimension of graded components can grow fast.

• All the examples presented in this article and in the documentation of this pack-
age are over the field C of complex numbers for representation-theoretic reasons;
however, all computations are performed in Macaulay2 over the field Q of ratio-
nal numbers. The reader interested in an explanation of why the computational
results obtained over Q can be interpreted over C may consult [Galetto 2015].

• For further concrete examples where the package HighestWeights may be useful,
including links to Macaulay2 files, see [Galetto 2014]. The Macaulay2 package
PieriMaps [Sam 2009] provides means to construct additional examples.
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APPENDIX: SOME REPRESENTATION THEORY. We present here a brief review
of the representation theory of semisimple Lie groups with the terminology used
in this paper and by the package HighestWeights. For more details the reader can
consult [Humphreys 1975; 1978; Fulton and Harris 1991]. The manual of the
software package LiE [van Leeuwen et al. 1992] also contains a brief, and in our
opinion well-written, review of the theory.

All Lie groups are intended to be complex Lie groups.

A1. Type and representations of a semisimple Lie group. A (simply connected)
simple Lie group is one of the following: the special linear group SLn+1(C) (type
An), the spin group Spin2n+1(C) (type Bn) or Spin2n(C) (type Dn), the symplectic
group Sp2n(C) (type Cn), or one of the exceptional groups of type E6, E7, E8,
F4 and G2. Every semisimple Lie group G is the quotient of a finite product
of the simple Lie groups above, called the simple components of G, by a finite
subgroup. The type of G is then obtained by concatenating the types of the simple
components.

Let C× be the multiplicative group of nonzero complex numbers. A torus is
a Lie group which is isomorphic to (C×)n , for some positive integer n called
the rank of the torus. Every semisimple Lie group G contains a maximal torus.
All maximal tori are conjugate and hence have the same rank; the rank of G is
defined to be the rank of a maximal torus. Usually one particular maximal torus
is fixed, and it is denoted by T . The character group of T , denoted by X (T ), is
the set of all Lie group homomorphisms χ : T → C×. For any finite-dimensional
representation V of G, there is a unique decomposition V =

⊕
χ∈X (T ) Vχ , where

Vχ = {v ∈ V | ∀t ∈ T, t · v = χ(t)v}. The characters χ such that Vχ 6= 0 are called
weights of V , and dim Vχ is called the multiplicity of χ in V . Each subspace Vχ
is called a weight space, and its nonzero elements are called weight vectors with
weight χ . The weights of V along with their multiplicities uniquely determine V
as a representation of G. Moreover, if T has rank n, there is a group isomorphism
X (T )∼= Zn , and hence weights can be simply recorded as lists of integers.

Every semisimple Lie group G contains a maximal connected solvable subgroup
B, called Borel subgroup, which contains the fixed maximal torus T . Let V be a
finite-dimensional representation of G and let v ∈ V be a weight vector of weight
ω. If v spans a B-stable one-dimensional subspace of V , then v is said to be a
highest-weight vector. The representation V is irreducible if and only if v is, up
to multiplication by a scalar, the only highest-weight vector in V . In this case, V
is the unique irreducible representation of G with highest weight ω, and it is often
denoted by V (ω).

A simple Lie group S of rank n has n fundamental representations. The con-
struction of fundamental representations for each type is detailed in [Fulton and
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Harris 1991], and a summary can be found in [Tits 1967]. The concept of fun-
damental representations can be extended to any semisimple Lie group G: if G
has simple components S1, . . . , Sr , then for each component Si and for each fun-
damental representation Vi, j of Si , take Vi, j to be a fundamental representation of
G with a trivial action of all the other components. Fundamental representations
are irreducible, and their highest weights are called fundamental weights. The
fundamental weights are often denoted ω1, . . . , ωn; they form a basis of X (T ) as
a free abelian group, and the isomorphism X (T ) ∼= Zn is usually taken to send
them to the coordinate basis of Zn . From now on we will always write weights as
elements of the additive group Zn , and always in the basis of fundamental weights.

Since the fundamental weights ω1, . . . , ωn form a basis of X (T ), every weight
ω ∈ X (T ) can be written as ω =

∑n
i=1 miωi for some m1, . . . ,mn ∈ Z. Computa-

tionally the weight ω is represented by the list of integers (m1, . . . ,mn). A weight
ω =

∑n
i=1 miωi is called dominant if mi > 0 for all i ∈ {1, . . . , n}. There is a

bijection between dominant weights of X (T ) and irreducible representations of G,
which sends ω to the highest-weight representation V (ω). The identity element of
X (T ), i.e., the zero element of Zn represented by the list (0, . . . , 0), is a dominant
weight, and it corresponds to the trivial representation of G.

A2. The special linear group. The special linear group SLn+1(C) is the set of
complex matrices with determinant 1; it is a simple Lie group of type An . The
subset of diagonal matrices in SLn+1(C) forms a subgroup which is a maximal
torus of rank n. The corresponding Borel subgroup is the subset of upper-triangular
matrices in SLn+1(C).

The fundamental representations of SLn+1(C) are (in order) the exterior powers
Cn+1,

∧2
Cn+1, . . . ,

∧n
Cn+1. Their weights are the fundamental weightsω1, . . . ,ωn ,

and ωi is represented by a list of zeroes with a 1 in the i-th entry.
The irreducible representations of SLn+1(C) are given by the Schur modules

SλCn+1, where λ is a partition with at most n parts. For the construction of Schur
modules the reader may consult [Fulton 1997, Chapter 8] or [Fulton and Harris
1991, Chapter 6]. The representation SλCn+1 is the highest-weight representation
V (ω) for the weight ω = (λ1− λ2)ω1+ · · ·+ (λn−1− λn)ωn−1+ λnωn .

To fix an example, consider the group SL4(C) of type A3. The type of our
group may be input by typing DynkinType{{"A",3}}. The representation C4,
also known as standard representation, has highest weight {1,0,0}, being the
same as the Schur module S1C4. The coordinate basis {e1, e2, e3, e4} of C4 is a
basis of weight vectors, and the weights of e1, e2, e3, e4 are {1,0,0}, {-1,1,0},
{0,-1,1} and {0,0,-1} respectively. If we tensor C4 with itself, we obtain a
new representation of SL4(C) with basis ei ⊗ e j for i, j ∈ {1, 2, 3, 4}. Moreover,
the vector ei ⊗ e j is a weight vector with weight equal to the weight of ei plus
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the weight of e j . The same principle of adding weights applies to symmetric and
antisymmetric tensors, as well as to the tensor product of two different representa-
tions of the same group. For example, the weight of e1 ∧ e2 in

∧2
C4 is {0,1,0}.

Indeed,
∧2

C4 is a highest-weight representation with highest weight {0,1,0}, thus
corresponding to the Schur module S1,1C4, and e1 ∧ e2 is its highest-weight vector.
Let us also mention the dual representation (C4)∗; the elements of the dual basis
e∗1, e∗2, e∗3, e∗4 are weight vectors with weights {-1,0,0}, {1,-1,0}, {0,1,-1}
and {0,0,1}. Note that the weight of e∗i is the additive inverse of the weight of ei .
Here the only highest weight is {0,0,1}, so (C4)∗ is isomorphic to

∧3
C4.

When dealing with a (quotient of a) product of groups, say SL4(C)× SL6(C),
we declare the type, listing in order the types of the simple components like this:
DynkinType{{"A",3},{"A",5}}. The representations of SL4(C)× SL6(C) are
obtained by tensoring a representation of SL4(C) with one of SL6(C). Their lists
of weights are then concatenated to form a single list. For example, the repre-
sentation S6,3,1C4

⊗
∧2

C6 has highest weight {3,2,1,0,1,0,0,0}, because the
highest weights of S6,3,1C4 and

∧2
C6 are {3,2,1} and {0,1,0,0,0} respectively.

Similarly, the irreducible representation with highest weight {0,0,0,1,1,1,1,0}
is the tensor product of the irreducible representations C of SL4(C) and S4,3,2,1C6

of SL4(C), which is simply isomorphic to S4,3,2,1C6.
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