
Journal of Software for

Algebra and Geometry

Computing characteristic classes
and the topological Euler characteristic

of complex projective schemes

CHRISTINE JOST

vol 7 2015



JSAG 7 (2015), 31–39 The Journal of Software for
dx.doi.org/10.2140/jsag.2015.7.31 Algebra and Geometry

Computing characteristic classes
and the topological Euler characteristic

of complex projective schemes

CHRISTINE JOST

ABSTRACT: The Macaulay2 package CharacteristicClasses provides commands
for the computation of the topological Euler characteristic, the degrees of the
Chern classes and the degrees of the Segre classes of a closed subscheme of
complex projective space. The computations can be done both symbolically
and numerically, the latter using an interface to Bertini. We provide some back-
ground for the implementation, show how to use the package with the help of
examples and compare its performance to other implementations.

INTRODUCTION. The Macaulay2 [Grayson and Stillman] package Characteris-
ticClasses computes degrees of Chern and Segre classes of complex projective
schemes. It also provides a command for computing the topological Euler char-
acteristic. Recall that the Chern classes of a smooth scheme are defined to be the
Chern classes of the tangent bundle. Moreover, the Segre classes of a scheme X
embedded in Pn are defined to be the Segre classes of the normal cone CX Pn of the
embedding. Note that the degree of a d-dimensional cycle class, i.e., the weighted
sum of classes of d-dimensional subvarieties, is defined to be the weighted sum of
the degrees of the subvarieties.

The computations done by the package CharacteristicClasses are based on a
number of related algorithms which reduce the problem to the computation of the
degrees of residuals. Briefly stated, residuals appear in the intersection of hyper-
surfaces containing a certain scheme. The intersection consists of this scheme and
possibly other components, the residual. The algorithm computing Chern classes
is described in [Di Rocco et al. 2011], the one computing Segre classes for possibly
singular schemes in [Eklund et al. 2013], and the computation of the topological
Euler characteristic is described in [Jost 2013]. The residuals can be computed
either symbolically or numerically, which yields symbolic and numeric versions of
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the algorithms. Both versions are implemented in the package, the numeric version
via an interface to Bertini [Bates et al. 2013]. The algorithm is probabilistic, so
with a small but nonzero probability the wrong result is obtained; see the next
section or the documentation for more details.

There are other ways to compute the topological Euler characteristic and degrees
of characteristic classes. The Macaulay2 command euler computes the topolog-
ical Euler characteristic of smooth projective varieties by computing the Hodge
numbers. Aluffi [2003] described algorithms for the computation of degrees of
characteristic classes and the topological Euler characteristic. These algorithms
are implemented in Aluffi’s package CSM, which is not part of Macaulay2 but
can be obtained at www.math.fsu.edu/∼aluffi/CSM/CSM.html. The three afore-
mentioned implementations complement each other, as is shown in [Eklund et al.
2013; Jost 2013] and shortly in the last section of this article. A new promis-
ing algorithm is described by Helmer [2015]. Helmer’s algorithm is included
in version 1.1 of CharacteristicClasses. This article describes version 1.0 of the
package.

COMPUTING DEGREES OF CHERN AND SEGRE CLASSES. We describe how to
make Chern and Segre classes of projective schemes computationally tractable by
computing their degrees. The standard reference for the notions used in this section
(Chern classes, Segre classes and Chow groups) is [Fulton 1984].

In this section, all schemes are defined over the field of complex numbers. Let
X be a k-dimensional closed subscheme of Pn , embedded by i : X ↪→ Pn , and
denote its Chow group by A∗(X) =

⊕k
d=0 Ad(X). Characteristic classes of X

are elements of the graded group A∗(X), whose generators are generally hard to
compute. Hence algorithms for the computation of characteristic classes focus on
computing a coarser invariant, the degrees of the classes. Let α =

∑
i αi [Vi ] be

a cycle class in Ad(X), given as the weighted sum of classes of d-dimensional
subvarieties Vi . Then the degree deg(α) of α is defined to be the weighted sum∑

i αi deg(Vi ) of the degrees of the varieties Vi , seen as subvarieties of Pn . One
can also consider the pushforward of the cycle α to the Chow group of Pn , which is
known to be A∗(Pn)=Z[H ]/(H n+1), where H is the class of a general hyperplane.
The two viewpoints are equivalent because i∗(α)= deg(α)H n−d .

The Chern classes c1(X), . . . , ck(X) of a smooth scheme X are by definition
the Chern classes c1(TX ), . . . , ck(TX ) of the tangent bundle of X . The total Chern
class is defined to be the sum 1+ c1(X)+ · · · + ck(X). Furthermore, the Segre
classes s1(X,Pn), . . . , sk(X,Pn) of a possibly singular X are the Segre classes
s1(CX Pn), . . . , sk(CX Pn) of the normal cone CX Pn of X in Pn . If the embedding
is regular, the normal cone is a vector bundle, called the normal bundle. The total
Segre class is the sum 1+ s1(X,Pn)+ · · ·+ sk(X,Pn).

http://www.math.fsu.edu/~aluffi/CSM/CSM.html
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CharacteristicClasses provides the commands chernClass and segreClass,
which compute the pushforwards to the Chow group of Pn of the total Chern and
Segre classes of a given closed subscheme X of Pn . This is equivalent to computing
the degrees of the Chern and Segre classes. (To be precise, if the given scheme is
singular, the command chernClass computes the degrees of the so-called Chern–
Fulton class of the scheme, one of many generalizations of Chern classes to singular
schemes. See [Fulton 1984, Example 4.2.6] or [Eklund et al. 2013, Remark 4.2]
for more details on Chern–Fulton classes.) The closed subscheme X is given by
the generators of a homogeneous ideal in a polynomial ring. The main idea of the
algorithm is to relate the degrees of the Chern and Segre classes to the degrees of so-
called residuals. One randomly chooses a number of hypersurfaces containing the
scheme X , where the number of hypersurfaces is at least the codimension of X . Ac-
cording to a Bertini-type theorem, with probability 1 they intersect either in only X
or in X and some components of expected codimension, the residual. Its degree can
be computed either symbolically or numerically. Symbolically one computes the
saturation using Gröbner basis techniques. The numeric computations can be done
using software for the numeric solution of polynomial equation systems. Character-
isticClasses implements both the symbolic and numeric versions of the algorithms,
using an interface to Bertini [Bates et al. 2013] for the latter. More details on the
algorithms can be found in [Di Rocco et al. 2011] and [Eklund et al. 2013].

In practice, the probability that the intersection of hypersurfaces yields the cor-
rect residual is large but not 1. Hence the implementation may give the wrong
result with a certain nonzero probability. An example of this phenomenon is
given in the documentation of the package, accessed for instance by viewHelp
"probabilistic algorithm".

COMPUTING THE TOPOLOGICAL EULER CHARACTERISTIC. The topological
Euler characteristic of a complex projective variety is the Euler characteristic of the
underlying topological space with the usual Euclidean topology, i.e., the alternating
sum of the Betti numbers. For the computations with CharacteristicClasses, we
use that the topological Euler characteristic is equal to the degree of the top Chern–
Schwartz–MacPherson class. More generally, the package can also compute the
degrees of all the Chern–Schwartz–MacPherson classes. It uses the algorithm de-
scribed in [Jost 2013], which reduces the computation of the degrees of Chern–
Schwartz–MacPherson classes to the computation of Segre classes of singular sub-
varieties. For a more detailed introduction to Chern–Schwartz–MacPherson classes
we refer to [Aluffi 2003] and [Jost 2013].

USING CHARACTERISTICCLASSES. We present four examples demonstrating
how to use CharacteristicClasses. More detailed information on the commands
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provided by this package can be found in its documentation, which is shown by
for example using the command viewHelp CharacteristicClasses.

Example 1. We compute the degrees of the Chern classes of a toy example, the
twisted cubic. We start by loading the package and defining the ideal of the
twisted cubic, which is generated by the 2-by-2 minors of a 2-by-3 matrix. Then
we use the command chernClass to obtain the pushforward of the total Chern
class to the Chow ring of Pn . The twisted cubic Ctw has dimension 1; hence it
only has one Chern class c1(Ctw). The total Chern class of the twisted cubic is
1+ c1(Ctw), and thus its pushforward to the Chow ring of the ambient space P3 is
deg(Ctw)H 2

+ deg(c1(Ctw))H 3, where H is the hyperplane class.
Macaulay2, version 1.6
with packages: ConwayPolynomials, Elimination, IntegralClosure,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : loadPackage "CharacteristicClasses";
--loading configuration for package "CharacteristicClasses" from

file .../.Macaulay2/init-CharacteristicClasses.m2

i2 : R = QQ[x,y,z,w];

i3 : twistedCubic = minors(2,matrix{{x,y,z},{y,z,w}})

2 2
o3 = ideal (- y + x*z, - y*z + x*w, - z + y*w)

o3 : Ideal of R

i4 : chernClass twistedCubic

3 2
o4 = 2H + 3H

ZZ[H]
o4 : -----

4
H

So the above computations yield that deg(c1(Ctw)) = 2 and confirms that the
degree of the twisted cubic is deg(Ctw) = 3. As the twisted cubic is smooth, the
degree of the top Chern class equals its Euler characteristic χ(Ctw), which is related
to the genus g(Ctw) by χ = 2− 2g. As deg(c1(Ctw))= χ(Ctw)= 2, this confirms
that the genus is 0 and the twisted cubic is a rational curve.

All computations can also be done numerically using an interface to Bertini.
Version 1.3 or higher of Bertini needs to be installed and the package must be
configured correctly. For more information on the configuration, use viewHelp
"configuring Bertini". Then by using the value Bertini for the option
ResidualStrategy, the computations are done numerically using Bertini, instead
of via Gröbner basis computations.
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i5 : chernClass(twistedCubic, ResidualStrategy=>Bertini)

3 2
o5 = 2H + 3H

ZZ[H]
o5 : -----

4
H

Example 2. We proceed with an example of the computation of Segre classes.
The Whitney umbrella is a singular surface in P3. Over the reals, it looks like an
umbrella, and the singular locus like the handle of the umbrella. We compute the
degree of the first Segre class s1(S,Pn) of the singular locus S. Observe that in
the following the singular locus is represented in Macaulay2 not as an ideal, but
as a projective variety. All commands in this package work for both ideals and
projective varieties.

i6 : whitney = ideal(x^2*w - y^2*z);

o6 : Ideal of R

i7 : handle = Proj singularLocus whitney;

i8 : segreClass handle

2
o8 = H

ZZ[H]
o8 : -----

4
H

We see that the pushforward of the Segre class of the handle is 1 · H 2
+ 0 · H 3;

hence deg(s1(S,Pn)), the degree of its first Segre class, is 0. By [Aluffi 1994] the
degree of the first Segre class is deg(s1(S,Pn)) = ν − 2, where ν is the number
of pinch points of the surface. It follows that the Whitney umbrella has two pinch
points. Only one of them is visible in the real patch {w 6= 0} in which the Whitney
umbrella is usually drawn; it is the tip of the umbrella.

Example 3. We use the Whitney umbrella from the above example to demon-
strate the difference between different generalizations of Chern classes of smooth
schemes to singular ones. CharacteristicClasses computes the degrees of two
different generalizations, Chern–Schwartz–MacPherson classes and Chern–Fulton
classes. The commands CSMClass and chernClass compute degrees of Chern–
Schwartz–MacPherson and Chern–Fulton classes, respectively.
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i9 : CSMClass whitney

3 2
o9 = 4H + 4H + 3H

ZZ[H]
o9 : -----

4
H

i10 : chernClass whitney

3 2
o10 = 9H + 3H + 3H

ZZ[H]
o10 : -----

4
H

For smooth schemes, the Chern–Schwartz–MacPherson classes and Chern–Fulton
classes agree with the Chern classes. In the singular case, however, the two differ-
ent generalizations disagree, as can be seen for instance from this example.

Example 4. We continue with an example from algebraic statistics, Example 2.2.2
of [Drton et al. 2009], which we will use to demonstrate computations of the topo-
logical Euler characteristic. The theory behind the computations is described in
more detail in [Jost 2013]. The random censoring model with two events is a
statistical model implicitly described by the ideal

(2p0 p1 p2+ p2
1 p2+ p1 p2

2 − p2
0 p12+ p1 p2 p12)

in the polynomial ring C[p0, p1, p2, p12], where p0, p1, p2 and p12 describe the
probabilities of two events to occur before or after a third event. Given experi-
mental data, one would like to compute the values for the probabilities p0, p1,
p2 and p12 which best describe the data, by maximizing the likelihood function.
However, the function may have several stationary points, and methods such as the
Newton method may only find a local maximum. Hence it makes sense to define
the maximum likelihood degree as the number of critical points of the likelihood
function, as was done in [Catanese et al. 2006]. By a theorem of Huh [2013],
for a large class of examples the maximum likelihood degree equals the signed
topological Euler characteristic of a certain open subvariety of the model. In this
case, it is the topological Euler characteristic of the open subvariety

V (2p0 p1 p2+p2
1 p2+p1 p2

2−p2
0 p12+p1 p2 p12)\V (p0 p1 p2 p12(p0+p1+p2+p12)),

where p0 p1 p2 p12 6= 0 means that no probability should be zero, and p0 + p1 +

p2 + p12 6= 0 means that the probabilities should sum up to 1. We compute the
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topological Euler characteristic using the command eulerChar together with the
inclusion-exclusion principle.

i11 : S = QQ[p0,p1,p2,p12];

i12 : randomCensoring = ideal(2*p0*p1*p2 + p1^2*p2
+ p1*p2^2 - p0^2*p12 + p1*p2*p12);

o12 : Ideal of S

i13 : boundary = ideal( p0*p1*p2*p12*(p0+p1+p2+p12) )
+ randomCensoring;

o13 : Ideal of S

i14 : eulerChar randomCensoring

o14 = 5

i15 : eulerChar boundary

o15 = 2

It follows that the topological Euler characteristic of

V (2p0 p1 p2+p2
1 p2+p1 p2

2−p2
0 p12+p1 p2 p12)\V (p0 p1 p2 p12(p0+p1+p2+p12))

is 5−2= 3. Hence the maximum likelihood degree of the random censoring model
is 3, which confirms the result in [Drton et al. 2009].

PERFORMANCE. As stated in the introduction, the topological Euler character-
istic can be computed by four different implementations, and degrees of Chern
and Segre classes can be computed by three different implementations. The run-
ning times of these implementations, except Helmer’s 2014 implementation, are
compared in more detail in [Eklund et al. 2013] and [Jost 2013]. Here, we briefly
compare the running times of CSMClass in CharacteristicClasses to CSM in Aluffi’s
implementation CSM (the December 2011 version), Helmer’s CSM in his prototype
Macaulay2 implementation, and the routine euler from Macaulay2. Observe that
the latter only works for nonsingular varieties and takes a projective variety as
input. We use a 1.40 GHz two-core processor with 4 MB RAM. The results are
summarized in Table 1.

All computations were done over the rational numbers. The ideal of the smooth
surface is generated by the 2-by-2 minors of a 2-by-3 matrix of random linear forms.

As Table 1 shows, the Macaulay2 routine euler, the symbolic implementation
by Aluffi and the one from this package complement each other. The performance
of Helmer’s implementation is promising. The numeric implementation in this
package is actually slower than the symbolic implementation for small examples
like those shown in Table 1. However, for very large examples the symbolic
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Input CSMclass
(symbolic)

CSMclass
(numeric)

Aluffi’s
CSM

Helmer’s
CSM

euler

twisted cubic < 1 47 2 < 1 < 1
smooth surface in P4

defined by minors
34 2131 14777 3 88

Segre embedding of
P1
×P2 in P5

10 285 1 1 < 1

Table 1. Comparison of run times (all times given in seconds).

methods may not terminate due to insufficient memory; the numeric implemen-
tation does not have this problem.
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