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DISLOCATIONS, IMPERFECT INTERFACES
AND INTERFACE CRACKS IN ANISOTROPIC ELASTICITY
FOR QUASICRYSTALS

XU WANG AND PETER SCHIAVONE

We derive the detailed structures of the 6 x 6 matrices N; and Nl.(_l) (i=1,2,3)
in the Stroh formalism of anisotropic elasticity for quasicrystals. All six matrices
are expressed explicitly in terms of the sixty-six reduced elastic compliances.
The Green’s functions for bi-quasicrystals are also obtained. Next, we derive
compliant and stiff interface models in anisotropic quasicrystalline bimaterials.
It is observed that the phonon normal traction is always continuous across the
stiff interface. Finally we present the asymptotic fields associated with a traction-
free, semi-infinite interface crack in anisotropic quasicrystalline bimaterials and
solve the collinear interface crack problem. The interface crack-tip field consists
of three two-dimensional oscillatory singularities which are evaluated via the
introduction of three complex stress intensity factors.

1. Introduction

The theory of anisotropic elasticity for crystals has been actively investigated for
more than half a century; see, for example, [Lekhnitskii 1950; Eshelby et al. 1953;
Stroh 1958;; Willis 1964; Willis 1970; Willis 19715 |Clements 1971} |Barnett and
Lothe 1973 |Suo 1990; Suo et al. 1992; (Gao et al. 1992} [Ting 1986 [Ting 1988;
Ting 1996} Ru 2001} |Cheng and Reddy 2002; [Ting and Schiavone 2010; |Wang
and Pan 2010]. As pointed out in [Ting 1996, the Stroh formalism [[1958]], which
is based on Stroh eigenvalues and eigenvectors, allows for an elegant and powerful
analysis of two-dimensional deformations of anisotropic crystalline solids where
as many as fifteen elastic constants are involved. The beauty of the Stroh formalism
has indeed been observed by various researchers; see, for example, [Suo 1990; |Ru
2001; |Cheng and Reddy 2002; |Lazar and Kirchner 2005; [Wang and Pan 2010].
Quasicrystalline structures were first reported in [Shechtman et al. 1984f]. The
generalized anisotropic elasticity for quasicrystals developed in [Hu et al. 2000]
requires that anisotropic quasicrystals have as many as one hundred and twenty elas-
tic constants. Even for the study of two-dimensional deformations of quasicrystals,
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sixty-six pertinent elastic constants remain. Ding et al. [1995] extended the original
six-dimensional Stroh formalism for crystals by developing a twelve-dimensional
version in order to study dislocation problems in quasicrystals.

Outline of paper. In|Section 2| we present the Stroh formalism for two-dimensional
deformations in anisotropic quasicrystals. In[Section 3| we derive the detailed struc-
tures of N; and Nl.(_l) (i =1, 2, 3) appearing in the Stroh formalism for quasicrys-
tals through the introduction of sixty-six reduced elastic compliances S;; = §;;

(G,j=1...15and i, j #3,9, 10, 14). In[Section 4] the Green’s functions for a
line force and dislocation located

(1) in a homogeneous quasicrystal,
(2) along the interface of bi-quasicrystals, and

(3) in one of two bonded quasicrystalline half-planes

are investigated. Based on the structures obtained for N; (i = 1, 2, 3), we then
develop in two imperfect interface models in anisotropic quasicrystalline
bimaterials. Finally, in we derive the near-tip field of an interface crack
in anisotropic bi-quasicrystals consisting of three two-dimensional coupled oscil-
latory singularities. Three complex intensity factors K|, K, and K3 are introduced
to quantify the near-tip field. Also studied in is the collinear interface
crack problems in anisotropic bi-quasicrystals following the decoupling method
proposed in [Suo 1990] and [Suo et al. 1992].

2. The Stroh formalism

In a fixed rectangular coordinate system x; (i =1, 2, 3), let u; and w; be the phonon
and phason displacements, o;;(0;; = 0};) and H;;(H;; # H;;) be the phonon and
phason stresses in an anisotropic quasicrystalline material. The stress-strain law
and the equations of equilibrium are [Hu et al. 2000]:

0ij = Cijuur + Rijuwk,  0ij,j =0,

(D
Hij = Ryijui; + Kijuwey,  Hijj =0,
where the comma denotes differentiation, C;ji; are the elastic constants in the
phonon field, Ky, are the elastic constants in the phason field and R;j;; are the
phonon-phason coupling constants. In addition C;ji;, R;jx and K;jx possess the
following symmetry:

Cijki = Cjirt = Cuij = Cijik,  Rijii = Rjii,  Kiju = Kuij- ()
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For two-dimensional deformations in which u; and w; depend only on x; and
X7, the general solutions can be expressed as

u=1[u; uy u3 wy wa w3l’ = Af@)+Af(2),

_ 3)
O=[D O, D3 ¥, W, ¥3]" =Bf(2)+ Bf(2),
where
A=la) a; a3 a4 as agl, B =[by by b3 by bs bgl,
F@=1fi) fz2) f3(z3) faza) f5(z5) folze)]”, 4)
zi=x1+pix2, Im{p;}>0 (G=1,...,6),
with
N] Nz a; a; .
=p; =1,...
Ni=-T 'R, N,=T"', N3y=RT'R" - Q, (6)
[C11 Ci6 Ci5 Ri1 Ri9 Ris7 [[Cis Ci12 Cisa Ris Ri2 Ri77]
Ci6 Ce6 Cs6 Re1 Reo Res Ce6 C26 Cs6 Ro6 Re2 Re7
0= Cis Cs¢ Css Rsi Rsg Rss R— Cs6 Cas C45s Rse Rsy Rsy
Ri1 Re1 Rs1 K11 Kig9 Kis5 |’ Re1 Ra1 Ryt Kis Kio Ki7 |’
Ri9 Rg9 Rs9 K19 Kgg Ksg Re9 Ro9 Rig Ke9 Kr9 K79
| Ri5 Res Rss Kis Ksg Kss_ LRes Ros Ras Ksg Kos Ks7_
@)

[Co6 C26 Ca6 Res Re2 Re7]
Ca Cx Co4 Rog Ry Ry
Cs6 C2a Cas Rye Raz Rz
Re6 Rys Ras Koo Koo Ko7
Re2 Ry Ry Ko K2 Koy
Re¢7 Ry R47 Ko7 K27 K77

The matrices Q and T are symmetric and positive definite.
In[(7)] we have adopted the contracted notation

111, 222,333, 234,315, 126, 32«7, 138, 21 < 9.

In addition the stress function vector @® is defined, in terms of the phonon and
phason stresses, by

oi1=—P;2, 0nn=®;1, Hi=—-V¥,n, Hp=V¥,1 (=123. (8

The 6 x 6 matrices A and B satisfy the normalized orthogonal relationship
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BT AT9TA A
[ET zf}[B E} =1 ®

Therefore three real Barnett—Lothe tensors S, H and L can be introduced:
S=i2ABT —I), H =2AA", L=-2iBB’. (10)

Here H and L are positive definite matrices. It can also be easily checked that
N NSV 1 [a
= — i=1,...,6 11
|:N3(1) Nl(fl)r bi| pilbi (=10 (n

NV=—0'R, N "=-0"' NV=T-RTQ7'R. (12

where

In addition, both the 6 x 6 matrix M and its inverse M1, defined by
M=—iBA-'=H '+iH'S, M '=iAB'=L"'—iSL™!, (13)

are positive definite Hermitian matrices. In this work we make use of a positive
definite Hermitian matrix N involving bimaterial elastic constants and defined as

N=M{'"+M, =L +L;' +i(SL;" = SiL7"). (14)

It is clear from that for two-dimensional deformations of quasicrystalline
materials, there are in total sixty-six elastic constants: fifteen in the phonon field,
twenty-one in the phason field and thirty phonon-phason coupling constants. In
the next section we present the detailed structures of NV; and Nl.(_l) (i=1,2,3).

3. The structures of NV; and Ni(_l)

Consider first the structure of N; (i = 1, 2, 3). Since the second column of @ is
identical to the first column of R, and the second row of R is identical to the first
row of T, we have

Ny

EE S S T

) (15)

S O O o O

EE I S S R
S S SR T
EE S S TR
ESE G S T
* X ¥ X O ¥
S O O o oo
* ¥ ¥ X O ¥
* X ¥ %X O ¥
* K K X O *
* X ¥ X O *

where * denotes a possibly nonzero element.
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Next, we introduce the reduced elastic compliances S;; = S;; (i, j =1...15
and 7, j # 3,9, 10, 14) such that

[Ci11 Ci2 Cisa Ci5 Ci6 Rit Ri2 Ris Ris Ri7 Ryg
Cio Cxp Coq Cys Co6 Ro1 Ry Rys Rag Ry7 Ry
Cia Coy Cyq Cys5 Cy6 Ryt Rayp Rys Rus Ra7 Ryo
Cis Cas C45 Css Csg Rsy Rsy Rss Rsg Rs7 Rsy
Ci6 Ca6 Ca6 Cs6 Co6 Re1 Re2 Res Res Re1 Reoy
Ri1 Ry1 R41 Rsy Rer K11 Ki2 Kis Kie K17 Kig
Ri2 R» Ry Rsy Rex Kiz Ky Kizs Ko Ko7 Koo
Ris Rys R4s Rss Re3 Kis Kos Kss Ksg Ks7 Kso
Ri6 Rxs Ra6 Rss Res Kic Kos Ks¢ Koo Ko7 Koo
Ri17 Ry R47 Rs7 Re7 K17 Ko7 Ks7 Ke7 K77 K79
| Ri9 Ry9 R49 Rso Re9 Ki9 K9 Ks9 Keo K79 Koo |

[ Si1 Si2 Sia Sis Sie Si7 Sis St Sz Sz Sis |
Si2 S S2a S5 S S27 S8 Sont S22 S213 Sais
S1a S24 Saa Sas Sac Sa7 Sas Sant Sarz Sa1z Sais
S15 S5 Sas Sss Sse Ss7 Sss Ssi1 Ssiz Ss13 Ssis
Si6 S26 Sac Ss6 Sec Se7 Ses Se11 Sz Se13 Se1s
X | S17 S27 Suz Ss1 Ser S77 S18 S71 S72 Stz S7is | =1. (16)
Sig Sog Sag Ssg Ses S7s Sss Sgi1 Ssiz Ss13 Ssis
Sti1 S211 Sarr Ssi1 Serr S711 Ssir St Stz Sz Siis
S112 S212 Sa12 Ss12 Se12 S712 Ss12 Si112 S22 S1213 Si21s
S113 8213 S413 Ss13 Se13 S713 8813 S1113 S1213 S1313 S1315
| S115 S215 Sa15 Ss15 Se1s5 S715 Ss15 Si11s S1215 S1315 S1515_

Remark. We adopt the convention that if three digits appear as subscripts of §;;,
the first digit is i and the remaining two form j. If four digits appear in the sub-
scripts of S;;, the first two digits are i and the remaining two will form j.

It can be easily deduced from [(16)] that
Q0 Rl[qx o] _[I-L I}
[RT T|[rf ¢t 0 1] a7

Sit 0 Si5 Si7 Sus S
0O 0 O 0 0 0
0= S15 0 Ss5 Ss7 Ss15 Ssi1

Si7.0 Ss7 817 Sus Sy |
S115 0 Ss15 S715 Si1515 Si11s
| St 0 Ssi1 S711 Siis St |

where
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Si6 Sz Si4
0 0 0
ry = Ss6 S25 S5
Se7  S27 Saz
Se15 S215 Sa1s
| Se11 S211 San
Se6 S26  Sae
S6 S S
. Sae S24 Saa
Se12 S212 Sa12
Ses S8 Sag
| S613 $213 S413
[(010000]
000000O
I, = 000000O0
000000O0
000000O0
(000000

Stz Sis Si3 |

0 0 0
Ss12 Ss8 Ss13
S712 S718 S713
S715 Ss15 S1315

S711 Ss11 S1113 |

Se12 Ses  Se13
S22 S8 Sz
Sa12 Sag Sa1z
S1212 Sg12 S1213
Sg12 Ssg Ss13
S1213 8813 S1313

, L =diagl0 1 0 0 0 O].

After some algebraic manipulations, we finally arrive at

Ni=rlqgy' —In=

T —1
Nry=t—ryq, ro=

Wiy 0
0 0
Wi 0
Wiz 0
Wi 0
L Wis 0
r 0
rq 0
rio 0O
rg O
Lri3 0

=)

0 O

o

s> I Uy U
Sq4 14 Ugq V4
S12 2 U2 V12
sy I3 ug v

S13 113 U13 V13
Keo Ka6 Ka6 K612 K6
K26 K22 K24 K212 K28
Ka6 K24 Kaa K412 K48
K612 K212 K412 K1212 K3
Keg Kog Kag K812 K83

LK613 K213 K413 K1213 K8

2 Wiz Wiy Wis'|

0

W2 Vj‘fm @24 ijzs
Was Wiz Wiy Wis
Was Wag Way Wis
Was Wis Wys Wss
Fre —1 s¢ tg ug vg |

12

13

’

K613 |
K213
K413
K1213
K813

K13134

where g, !is the pseudo-inverse of g,, A is the determinant of

’

(18)

(19)

(20)
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St 815 817 Sus Sin
S1s Sss Ss7 Ssis Ssi
W= 817 S7 S17 Suis S | (21)
S115 Ss15 8715 Si515 Si115
Sti1 Ss11 S711 Sinis St

ij

W= [W;:] is the cofactor matrix of W, and

Ste S5 S70 S15¢ Siia Sit S5 S17 Sus Sin
! Si5 Ss5 Ss7 Ss15 Ssi1 ! Ste S5a¢ S70 S15¢ Siia
o =+ S17 857 S717 St S| Sa =1 S17 857 877 Snis S|
S115 Ss15 S715 S1515 Si11s S115 Ss15 S715 S1515 Si11s
St Ss1r S7ir S1is Suin Stir Ssir S7i1 Siis Sun
Sit S5 S17 Sus Sin Sit S5 S17 Sus Sin
] Si5 Sss Ss7 Ssi5 Ssin ! Si5 Sss Ss7 Ssis Ssnn
fo =% Ste S5a¢ S70 S15¢ Stia | o =4 S17 Ss7 S77 S5 S711 |
S115 Ss15 S715 S1515 Si11s Ste S5a¢ S70 S15¢ Siia
Stir Ss1r S711 S11s Sin S1ir Ssir S711 Siis Stn
Sit Sis Sz Sus S
) S15 Ss5 Ss7 Ss15 S
Va = & S17 857 S717 S5 St (¢=6,2,4,12,8,13),
S11s Ss15 715 S1515 Si11s
Sloz SSa S7oz SlSoz Slla
St Sie S15 817 Sus Sin
Sig Sap Ssp S78 Si155 Suip
1 |S15 Ssa Sss Ss7 Ss15 Ssn
ap = A S17 S Ss7 877 S5 S711 (@ f=6.2.4.12.8.13).
S115 S15e Ss15 S715 S1515 Si11s
St Stie Ss11 S711 Si1s S

In view of [(6)] N, is positive definite, while [(I8)] and the fact that W defined by
[21)]is positive definite result in —N3 being positive semidefinite.
We next derive the structure of Nl.(_l) (i =1,2,3). Itis not hard to check that

0

—

N = . NV = : (22)

S O O O O O
* X ¥ ¥ % O
* ¥ ¥ ¥ *x O
* X ¥ %X *x O
* ¥ ¥ X *x O
* X ¥ %X *x O

EE S SR SR
* Kk K K ¥ ¥
EE S S TR
S S S S
ESE G S T

cocoo !l
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Q Ri|lq rn| |1 0 23)
RT T||rl &y [In I-1L)
where
Sit Sie S1s Sz Sus Sin 0 Si2 Sisa Sz Sis Sz
Si6 Se6 Ss6 Se1 Se1s5  Seii 0 S Si6 Se12 Ses Se13
= S15 Ss6 Ss5 Ss7 Ss15 Ssi = 0 S5 Sas Ssi2 Ssg Ssi3
S17 Se1 Ss7 S717 Sus Sy | 0 S27 S47 S712 S8 S713 |
S115 Se15 Ss15 S715 S1515 S111s 0 $215 Sa1s S715 Ss15 S1315
| Stir Set1 Ssur S711 Sinis St | | 0 S211 Sarr S711 Ssur Siii3 |
0 0 0 0 0 0
0 S22 S S22 S8 oz
0 S24 Saa Sa12 Sag Sm .
H = et I, =diag[1 0 0 0 0 0O].
0 S212 Sa12 S1212 Sg12 S1213
0 Sog Ssg Sgio Sgg Ssi3
| 0 8213 Sa13 S1213 S813 S1313 |
We can now arrive at
0 0 0 0 0 0
TR A A A i T4
0 Wy Wi, Wiz Wiy Wis
( 1) | 1 0 / A / / /
- -1 _ 12 W Woz Woy Wog
NV =t = ~lo #7270 o w | (24)
Wiz Woz Wiz Wiy Wis
0 / A / / /
Wia Woq Wiy Way Wys
0 / A / / /
i 15 Was Wis Wys Wss |
B / / / ’ 7 7]
0 ry sy 1 up v
/ / / / /
-1 Te Se log Ug Vg
/ / / / /
- _ . 1 _| 0 r5 55 15 us vs
N] —rltl _112— 0 }"/ S/ [/ u/ U/ ) (25)
7 87 I Uz vy
/ / / / /
0 ris 815 115 Uys Vys
/ / / / /
B TR TR TR ATT
[~ / ’ / ’ s ]
K1 K16 Kis K17 Kis K
! / / / / /
Kie Koo Ks6 Ko7 Ke15 Kol
/ / / / / /
1) 1T Kle Kl Kle Kkl K K
e Il LT CY
17 Ke1 K57 K77 K715 Kop
/ / / / / !
Kiis Ke1s Ks15 K715 Kis15 Kii1s
/ / / ! /
Kiir K611 %511 K711 1115 K
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where A’ is the determinant of

S S So12 S2g S213
S24 Saa Sarz Sag Sanz

W = S0 Sai2 Si2i2 Sgiz Sz | (27)
S Sag Ssiz Sss Ssi3

S$213 Sa13 S1213 Sg13 S1313

W = [Wi/j] is the cofactor of W’, and

S2oz
S24
Ty = - |S212
S8
$213
S22
So4
t,=— | S
S8
$213

S
So4
v, = - [S212
S8
S2oz

Sap
S2a
1 1 S4oz
S12a
S8oz

Sl3oc

S4oz
Saa
Sa12
Sag
Sa13

So4
Saa
S4oz
S48
S413

So4
S44
Sa12
Sag
S4oz

S22
So4
S212
S8

S$213

S12¢ S8«
Sa12 Sag
S1212 Ss812
Ss12 S8
S1213 8813

S22 Sas
Sa12 Sag
S120 S8
Ss12 Sss
S1213 S813

S22 So8
Sa12 Sag
S1212 Ss12
Sg12 Sss
S12¢ S8«

Sap Si2p
S0 S212
Saa San2
Sa12 S1212
Sag  Ss12
Sa13 S1213

S13a
S413

S1213],  §,

S813
S1313

S$213
S413

Si3a |, U

S813
S1313

$213
Sa13
S1213
S813
S13¢

Sgs Si13p
S8 S213
Sag  S413
Sg12 81213
Sgs 5813

Sg13 S1313

S Soa S22 S8 Sz
S20 Saa S120 Sse Si3a

1
=X S212 Sa12 S1212 Ss12 1213,
Sos Sag Sgiz Sss Sgi3
$213 Sa13 S1213 S813 S1313
S Soa S22 S Sa3
! Soa Saa Sa12 Sag Saiz

=X S$212 Sa12 S1212 8812 S1213]
Soe Saa S120 S8a S13a
S$213 Sa13 S1213 Ss13 S1313

(¢=1,6,5,7,15,11),

(¢, =1,6,5,7,15,11).

In view of |(12) the matrix —Nz(_l) is positive definite, while, by [(24)(and the
fact that W’ defined by is positive definite, we also have that NS(_I) is positive

semidefinite.

4. Line force and line dislocation

4.1. Line force and dislocation in a homogeneous quasicrystal. Let a line of
uniformly distributed force p = [p; p2» p3 q1 ¢» ¢3]7 per unit length be ap-
plied on the x3-axis which also includes a line dislocation with Burgers vector
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b =[by by by di dy d3]". The analytic vector function f(z) due to the line
force and dislocation is given by

ATp+BTb

, 28
2mi (28)

f (@) =(Inzq)
where (x) is a 6 x 6 diagonal matrix in which each component varies with the index
o (from 1 to 6). The elastic energy for the annular region 0 < ry <r < Ry per unit
length of the line force and dislocation is

R
U=-1n (Z2) @ Hp+57Lb) > 0, (29)
4 ro
which also provides an indirect proof that H and L must be positive definite if the
elastic energy is to remain positive.

4.2. Interfacial Green’s function. We consider a bimaterial made of two bonded
dissimilar anisotropic quasicrystalline half-planes, denoted by #1 (x, > 0) and #2
(x2 < 0). The bimaterial is subjected to a line force p and line dislocation with
Burgers vector b at the origin. In fact the solution can be found from [Ting 1996|.
The elastic energy for the annular region 0 < rp <r < Ry of the quasicrystalline
bimaterial is

1

U:Z

R ~ ~

In (—0>(pTHp +b57Lb) >0, (30)
ro

where H and L are two 6 x 6 positive definite real symmetric matrices given by

H =Re{(M, +M>)™"}, i:Re{(Ml—lJrM;‘)—l}. (31)

4.3. Green’s function for quasicrystalline bimaterials. We consider a bimaterial
made of two perfectly bonded dissimilar anisotropic quasicrystalline half-planes
again denoted by #1 (x, > 0) and #2 (x, < 0). A line force p and line dislocation
with Burgers vector b are applied at (x1, x2) = (0, §) (6 > 0) in material #1. The
structure of the solution is similar to that in [Suo 1990] and [Ting 1996|]. The
image force tending to move a pure dislocation (p = 0) away from the interface is
described by

I BN Y
F=—=b"@L—Lb, (32)

where L is given by|(31)| For a sliding interface on which o1, = 3, = 0, the image
force acting on the line dislocation is now characterized by

1 A
F = m(zbg Lby—b"Lb), (33)
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where

N2z Ny Nas Noag
R . - Nas Nas Nas Nag

bo=I[by di d d3)", L=Re(N7'}, N=| 7T :
0o=1[02 di dr d3] N} Nss Nus Nss Nsg

Nae N Nsg Nes

(34)

N;; being the components of the 6 x 6 Hermitian matrix N defined by |(14)l Both
N and L are positive definite.

S. Imperfect interface models

In [Benveniste 20006], the author rigorously derives imperfect interface models for
a three-dimensional curved interphase between two anisotropic crystalline solids
by making use of the idea of Taylor expansion of the corresponding fields in thin
regions. In this section we will derive compliant and stiff interface models in
anisotropic quasicrystalline bimaterials using the Stroh formalism and the struc-
tures of IV; presented in Sections [2]and 3] To simplify the analysis, we consider here
a straight imperfect interface. The stress-strain law for an interphase of constant
thickness / between the upper and lower anisotropic quasicrystalline materials 1
and 2 is described by

01=Qu1+Rus 0=R'ui+Tu,, (35)

where @, R, T are defined in with the subscript ¢ being used to identify the
quantities associated with the intermediate interphase, and

o1 =[o11 o2 031 Hiy Hy H3l"',o0=[012 02 03 Hia Hyp Hzl'. (36)

(c)

(©) (1 @ . pl &) @)
(1) If we assume that Cijkl < Cijkl’ ijkl> Rijkl < Rijkl’ Rijkl and Kijkl <

K i(jl,zl, K i(jz,gl (the so-called compliant interphase) and that the interphase is also
very thin, then it follows from [35) that

Uy —uy = hNZ(C)GZ(I) = th(C)az(z) on the compliant interface. 37)

This is, in fact, the anisotropic spring-type interface.

(2) If we assume that Cf;,il > CIF]!,ZI, Ci(jzlzl and Kl.(jc,zl > Ki(jl,gl, Kl.(jz,gl (the so-called

stiff interphase) and that the interphase is also very thin, then it follows from
[35)]and the equilibrium equation 07,1 4+ 02,2 = 0 that

Uy =uy, 02(1)—02(2) :hN3(C)u1,11 :hNéc)uz,U on the stiff interface. (38)

This is an extension of the Young—Laplace model to anisotropic quasicrys-
talline materials.
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In view of the structure of N3 given by [(I8)] the phonon normal traction com-
ponent oy, is continuous across the stiff interface.

6. Interface crack problems

First we derive the asymptotic fields associated with a traction-free semi-infinite
crack which lies along the interface between the upper and lower anisotropic qua-
sicrystalline half-planes #1 (x, > 0) and #2 (x» < 0). The portion x, =0, x; > 0 of
the interface is perfectly bonded, whereas the remaining portion x; =0 and x; <0
of the interface is fully debonded. In the following analysis, in view of the fact
that z; = 2o = 73 = z4 = 25 = z¢ = z on the interface x; = 0, we will replace the
complex variables z; (k =1, ..., 6) by the common complex variable z = x| + ix».
After the analysis is completed, we can simply revert back to the corresponding
complex variables.
We introduce an analytic vector function k(z) defined by

h(z) = B, f{(z) = N"'NB, f5(z). (39)

Consequently the traction and displacement jumps can be expressed in terms of
h(z) as

o) =h* )+ N N~ (v, id' ()= N[h* () —h~(x)],  (40)
We then arrive at the following homogeneous vector Riemann—Hilbert problem:

(@) —h~(2)=0, z¢C,

— 41)
Nh™(z)+Nh () =0, zeC.
Consider the eigenvalue problem
Nw=e"*Nuw. (42)
It can be concluded that:
(1) As a result of the positive definiteness of N, the eigenvalue e*™¢ is always

positive; thus € is real.
(2) If (e, w) is an eigenpair, then (—e, w) is another eigenpair.

Three positive real numbers €1, €>, €3 and three complex vectors wy, wy, w3 form
Six eigenpairs:

(Elv wl)a (_Ela wl)’ (629 w2)’ (_62’ w2)7 (635 w3)7 (_637 w?’) (43)
The following orthogonal relationships can also be established:

w/ Nw; =w/ Nw=w/Nw, =0 (,j,k1=123andk#1), (44
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The three positive real numbers (or oscillatory indices) €1, €2, €3 are given by

1 .
Ej:Ll —+'BJ

mihiTg =123, (45)

where B; (j =1, 2, 3) are the three positive roots of the following cubic equation
in B2
B+ 5u(SHB* — 1181 w(S™3)p* — S| = 0. (46)

Here
S= L+ LY USILT = L. (47)

The oscillatory indexes €1, €, €3 are then explicitly determined.
Following [Suo [1990]], we can obtain for k(z) the expression

3 e i€ —TEj J7 ., —i€] 3
e"K ;7w +e T K iz W)
h(x)=) —— 1 / L (48)
= 2(2wz)2 coshrme;

where K, K> and K3 are three complex stress intensity factors. f{(z) and f;(z)
in the two half-planes are then given by

3 TE; i€; —T€; ., —l€j =
Ze JK]'Z ‘wj+e /KjZ w;

B fi{() = ] (Im{z} > 0),
s 2(2mz)2 coshme;
; ' o (49)
e TG K ~z‘€f'w . e K 'Zile/’w .
B f,(2) = Z ! Jl 4 L (Im{z} < 0).
i 2(2mz)2 coshrme;
The traction at the bonded interface a distance r ahead of the crack tip is
3
oa(r) =Y [tj(w; +1; ("], (50)

j=1

where
w;Noy(r)  K;rie

tiry="t;+it; = .
’ T wliNw; 2mr
states that the interface traction can be decomposed into three com-
ponents, each in the plane spanned by Re{w;} and Im{w;} (j =1, 2, 3).

The displacement jump a distance r behind the crack tip is

1 3 i€ K i€ w

— /T \2 Kir'iw; Kir~“iw;
d(r) = (N N(—) L - e |- G
(r)=(N+ )27_[ ;[(1+216j)coshn’ej+(1—21€j)COShJTEj G
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The energy release rate is therefore given by

8 3 wlI(N+Nyw:
| T j( w;

G=1lim— | ol =rdr)d _2—
10 /0 5 ( ryd(r)dr

j=1

4 cosh® re; |Kj|2 =0 ©2)
j

Next, we consider a set of collinear cracks between two dissimilar anisotropic
quasicrystalline half-planes with prescribed traction #(x1) on the crack lines C.
Suppose there are n finite cracks in the intervals (a;, b;) (j =1,2,...,n) and two
semi-infinite cracks (—oo, bg) and (ag, +00). The prescribed traction #y(x1) on the
crack lines C will result in the inhomogeneous Riemann—Hilbert vector problem:

B () + N 'Nh~(x)) = to(x;), x €C. (53)

In order to solve this, we follow the method in [[Suo 1990] and [Suo et al. 1992]
and write h(z) and £y(x;) in terms of their components using the eigenvector rep-
resentation

h(z) = hi()w; +h2(2)w; + h3(2)wa + ha(2)Wa + hs(2)ws +he(2) w3,
to(x1) = tor (x) w1 + o1 (x1) W1 + fo2 (x1) w2 + o2 (X1) W2 + fo3 (X1) W3 + 103 (x1) W3.
As a result, [(53)| can be decoupled as follows:
R (o) 42T ()= to1 (x1)
R () + e R (x))= fo (x1)

R (x1) +e 2Ny (x1)= to2(x1)

" _ for x; € C, 54
hi(x1) + e 2Ry (x1)=fpa(x1)
hE(x1) +e S hy (x1)= to3(x1)
h (x1) + e Shg (x1)=fo3(x1)
whose solution can be given simply by
x1(2) for(x1) dxy
hi(z) = - + x1(2) P1(2),
27i Jexim (e (x1 — 2)
x1(2) 101 (x1) dx; _
ha(z) = - — + x1(2) P2(2),
27i Je xi (e (xg — 2)
x2(2) to2(x1) dxy
h3(z) = . + x2(2) P3(2),
27i Je xs (e (x1 — 2)
Xx2(2) 102(x1) dx; _
ha(z) = - - + Xx2(2) P4(2),
27i Je %3 (x1)(x1 —2)
If d
hs(py = L2 [ o),

27i Jex3 (e (xg —2)
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_ x3(2) 103(x1) dx;

he(z) - - + x3(2) Ps(2),
27 Je 3y (x)(x1 —2)
where x1(z), x2(z) and x3(z) are defined as
x@=[]e-a @byt (j=1,23), (55)

k=0

and P;(z) i =1,...,6) are polynomials in z of order less than n + 1 [Ting 1996].

7. Conclusions

In this paper all six 6 x 6 matrices NV; and Ni(_l) (i =1, 2, 3) in the Stroh formalism
of anisotropic elasticity for quasicrystals have been explicitly expressed in terms
of the sixty-six reduced elastic compliances S;; = §;; (i, j=1...15and i, j #
3,9, 10, 14). It is found that N, and —Nz(_l) are positive definite, whilst —N3 and
N3(_1) are positive semidefinite.

In the study of Green’s functions, we present the elastic energy expressions [(29)]
for a line force and dislocation in a homogeneous quasicrystal and [(30)] for a line
force and dislocation lying on a bi-quasicrystal interface, and obtain the image
force on a dislocation near a perfect or sliding interface between two anisotropic
quasicrystalline half-planes.

We also derive compliant and stiff interface models using the Stroh formalism.
Green’s function solutions for quasicrystalline bimaterials with imperfect interface
can be further studied by using the method described in [Wang and Pan 2010].

Perhaps the most interesting conclusion from this research is that the interface
crack-tip field consists of three two-dimensional oscillatory stress singularities
pae; (j =1, 2, 3) characterized through the introduction of three complex stress
intensity factors K; (j = 1,2, 3). We end by again noting the beauty and power
of the Stroh formalism which is fully demonstrated here.
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