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DISLOCATIONS, IMPERFECT INTERFACES
AND INTERFACE CRACKS IN ANISOTROPIC ELASTICITY

FOR QUASICRYSTALS

XU WANG AND PETER SCHIAVONE

We derive the detailed structures of the 6× 6 matrices Ni and N (−1)
i (i = 1, 2, 3)

in the Stroh formalism of anisotropic elasticity for quasicrystals. All six matrices
are expressed explicitly in terms of the sixty-six reduced elastic compliances.
The Green’s functions for bi-quasicrystals are also obtained. Next, we derive
compliant and stiff interface models in anisotropic quasicrystalline bimaterials.
It is observed that the phonon normal traction is always continuous across the
stiff interface. Finally we present the asymptotic fields associated with a traction-
free, semi-infinite interface crack in anisotropic quasicrystalline bimaterials and
solve the collinear interface crack problem. The interface crack-tip field consists
of three two-dimensional oscillatory singularities which are evaluated via the
introduction of three complex stress intensity factors.

1. Introduction

The theory of anisotropic elasticity for crystals has been actively investigated for
more than half a century; see, for example, [Lekhnitskii 1950; Eshelby et al. 1953;
Stroh 1958; Willis 1964; Willis 1970; Willis 1971; Clements 1971; Barnett and
Lothe 1973; Suo 1990; Suo et al. 1992; Gao et al. 1992; Ting 1986; Ting 1988;
Ting 1996; Ru 2001; Cheng and Reddy 2002; Ting and Schiavone 2010; Wang
and Pan 2010]. As pointed out in [Ting 1996], the Stroh formalism [1958], which
is based on Stroh eigenvalues and eigenvectors, allows for an elegant and powerful
analysis of two-dimensional deformations of anisotropic crystalline solids where
as many as fifteen elastic constants are involved. The beauty of the Stroh formalism
has indeed been observed by various researchers; see, for example, [Suo 1990; Ru
2001; Cheng and Reddy 2002; Lazar and Kirchner 2005; Wang and Pan 2010].

Quasicrystalline structures were first reported in [Shechtman et al. 1984]. The
generalized anisotropic elasticity for quasicrystals developed in [Hu et al. 2000]
requires that anisotropic quasicrystals have as many as one hundred and twenty elas-
tic constants. Even for the study of two-dimensional deformations of quasicrystals,
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sixty-six pertinent elastic constants remain. Ding et al. [1995] extended the original
six-dimensional Stroh formalism for crystals by developing a twelve-dimensional
version in order to study dislocation problems in quasicrystals.

Outline of paper. In Section 2 we present the Stroh formalism for two-dimensional
deformations in anisotropic quasicrystals. In Section 3, we derive the detailed struc-
tures of Ni and N (−1)

i (i = 1, 2, 3) appearing in the Stroh formalism for quasicrys-
tals through the introduction of sixty-six reduced elastic compliances Si j = S j i

(i, j = 1 . . . 15 and i, j 6= 3, 9, 10, 14). In Section 4, the Green’s functions for a
line force and dislocation located

(1) in a homogeneous quasicrystal,

(2) along the interface of bi-quasicrystals, and

(3) in one of two bonded quasicrystalline half-planes

are investigated. Based on the structures obtained for Ni (i = 1, 2, 3), we then
develop in Section 5 two imperfect interface models in anisotropic quasicrystalline
bimaterials. Finally, in Section 6, we derive the near-tip field of an interface crack
in anisotropic bi-quasicrystals consisting of three two-dimensional coupled oscil-
latory singularities. Three complex intensity factors K1, K2 and K3 are introduced
to quantify the near-tip field. Also studied in Section 6 is the collinear interface
crack problems in anisotropic bi-quasicrystals following the decoupling method
proposed in [Suo 1990] and [Suo et al. 1992].

2. The Stroh formalism

In a fixed rectangular coordinate system xi (i = 1, 2, 3), let ui and wi be the phonon
and phason displacements, σi j (σi j = σ j i ) and Hi j (Hi j 6= H j i ) be the phonon and
phason stresses in an anisotropic quasicrystalline material. The stress-strain law
and the equations of equilibrium are [Hu et al. 2000]:

σi j = Ci jkluk,l + Ri jklwk,l, σi j, j = 0,

Hi j = Rkli j uk,l + Ki jklwk,l, Hi j, j = 0,
(1)

where the comma denotes differentiation, Ci jkl are the elastic constants in the
phonon field, Ki jkl , are the elastic constants in the phason field and Ri jkl are the
phonon-phason coupling constants. In addition Ci jkl , Ri jkl and Ki jkl possess the
following symmetry:

Ci jkl = C j ikl = Ckli j = Ci jlk, Ri jkl = R j ikl, Ki jkl = Kkli j . (2)
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For two-dimensional deformations in which ui and wi depend only on x1 and
x2, the general solutions can be expressed as

u = [ u1 u2 u3 w1 w2 w3 ]
T
= A f (z)+ A f (z),

8= [81 82 83 91 92 93 ]
T
= B f (z)+ B f (z),

(3)

where

A= [a1 a2 a3 a4 a5 a6], B = [b1 b2 b3 b4 b5 b6],

f (z)= [ f1(z1) f2(z2) f3(z3) f4(z4) f5(z5) f6(z6)]
T ,

zi = x1+ pi x2, Im{pi }> 0 (i = 1, . . . , 6),

(4)

with [
N1 N2

N3 NT
1

][
ai

bi

]
= pi

[
ai

bi

]
(i = 1, . . . , 6), (5)

N1 =−T−1RT , N2 = T−1, N3 = RT−1RT
− Q, (6)

Q =



C11 C16 C15 R11 R19 R15

C16 C66 C56 R61 R69 R65

C15 C56 C55 R51 R59 R55

R11 R61 R51 K11 K19 K15

R19 R69 R59 K19 K99 K59

R15 R65 R55 K15 K59 K55

, R =



C16 C12 C14 R16 R12 R17

C66 C26 C46 R66 R62 R67

C56 C25 C45 R56 R52 R57

R61 R21 R41 K16 K12 K17

R69 R29 R49 K69 K29 K79

R65 R25 R45 K56 K25 K57

,
(7)

T =



C66 C26 C46 R66 R62 R67

C26 C22 C24 R26 R22 R27

C46 C24 C44 R46 R42 R47

R66 R26 R46 K66 K26 K67

R62 R22 R42 K26 K22 K27

R67 R27 R47 K67 K27 K77

 .

The matrices Q and T are symmetric and positive definite.
In (7), we have adopted the contracted notation

11↔ 1, 22↔ 2, 33↔ 3, 23↔ 4, 31↔ 5, 12↔ 6, 32↔ 7, 13↔ 8, 21↔ 9.

In addition the stress function vector 8 is defined, in terms of the phonon and
phason stresses, by

σi1 =−8i,2, σi2 =8i,1, Hi1 =−9i,2, Hi2 =9i,1 (i = 1, 2, 3). (8)

The 6× 6 matrices A and B satisfy the normalized orthogonal relationship
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BT AT

BT AT

][
A A
B B

]
= I . (9)

Therefore three real Barnett–Lothe tensors S, H and L can be introduced:

S= i(2ABT
− I), H = 2iAAT , L =−2iBBT . (10)

Here H and L are positive definite matrices. It can also be easily checked that[
N (−1)

1 N (−1)
2

N (−1)
3 N (−1)T

1

][
ai

bi

]
=

1
pi

[
ai

bi

]
(i = 1, . . . , 6), (11)

where

N (−1)
1 =−Q−1R, N (−1)

2 =−Q−1, N (−1)
3 = T − RT Q−1R. (12)

In addition, both the 6× 6 matrix M and its inverse M−1, defined by

M =−iB A−1
= H−1

+ iH−1 S, M−1
= iAB−1

= L−1
− iSL−1, (13)

are positive definite Hermitian matrices. In this work we make use of a positive
definite Hermitian matrix N involving bimaterial elastic constants and defined as

N = M−1
1 +M−1

2 = L−1
1 + L−1

2 + i(S2 L−1
2 − S1 L−1

1 ). (14)

It is clear from (7) that for two-dimensional deformations of quasicrystalline
materials, there are in total sixty-six elastic constants: fifteen in the phonon field,
twenty-one in the phason field and thirty phonon-phason coupling constants. In
the next section we present the detailed structures of Ni and N (−1)

i (i = 1, 2, 3).

3. The structures of Ni and N(−1)
i

Consider first the structure of Ni (i = 1, 2, 3). Since the second column of Q is
identical to the first column of R, and the second row of R is identical to the first
row of T , we have

N1 =


∗ −1 ∗ ∗ ∗ ∗
∗ 0 ∗ ∗ ∗ ∗

∗ 0 ∗ ∗ ∗ ∗

∗ 0 ∗ ∗ ∗ ∗

∗ 0 ∗ ∗ ∗ ∗

∗ 0 ∗ ∗ ∗ ∗

 , N3 =


∗ 0 ∗ ∗ ∗ ∗
0 0 0 0 0 0
∗ 0 ∗ ∗ ∗ ∗
∗ 0 ∗ ∗ ∗ ∗
∗ 0 ∗ ∗ ∗ ∗
∗ 0 ∗ ∗ ∗ ∗

 , (15)

where ∗ denotes a possibly nonzero element.
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Next, we introduce the reduced elastic compliances Si j = S j i (i, j = 1 . . . 15
and i, j 6= 3, 9, 10, 14) such that

C11 C12 C14 C15 C16 R11 R12 R15 R16 R17 R19

C12 C22 C24 C25 C26 R21 R22 R25 R26 R27 R29

C14 C24 C44 C45 C46 R41 R42 R45 R46 R47 R49

C15 C25 C45 C55 C56 R51 R52 R55 R56 R57 R59

C16 C26 C46 C56 C66 R61 R62 R65 R66 R67 R69

R11 R21 R41 R51 R61 K11 K12 K15 K16 K17 K19

R12 R22 R42 R52 R62 K12 K22 K25 K26 K27 K29

R15 R25 R45 R55 R63 K15 K25 K55 K56 K57 K59

R16 R26 R46 R56 R66 K16 K26 K56 K66 K67 K69

R17 R27 R47 R57 R67 K17 K27 K57 K67 K77 K79

R19 R29 R49 R59 R69 K19 K29 K59 K69 K79 K99



×



S11 S12 S14 S15 S16 S17 S18 S111 S112 S113 S115

S12 S22 S24 S25 S26 S27 S28 S211 S212 S213 S215

S14 S24 S44 S45 S46 S47 S48 S411 S412 S413 S415

S15 S25 S45 S55 S56 S57 S58 S511 S512 S513 S515

S16 S26 S46 S56 S66 S67 S68 S611 S612 S613 S615

S17 S27 S47 S57 S67 S77 S78 S711 S712 S713 S715

S18 S28 S48 S58 S68 S78 S88 S811 S812 S813 S815

S111 S211 S411 S511 S611 S711 S811 S1111 S1112 S1113 S1115

S112 S212 S412 S512 S612 S712 S812 S1112 S1212 S1213 S1215

S113 S213 S413 S513 S613 S713 S813 S1113 S1213 S1313 S1315

S115 S215 S415 S515 S615 S715 S815 S1115 S1215 S1315 S1515



= I . (16)

Remark. We adopt the convention that if three digits appear as subscripts of Si j ,
the first digit is i and the remaining two form j . If four digits appear in the sub-
scripts of Si j , the first two digits are i and the remaining two will form j .

It can be easily deduced from (16) that[
Q R
RT T

][
q2 r2

rT
2 t

]
=

[
I − I2 I T

12
0 I

]
, (17)

where

q2 =



S11 0 S15 S17 S115 S111

0 0 0 0 0 0
S15 0 S55 S57 S515 S511

S17 0 S57 S77 S715 S711

S115 0 S515 S715 S1515 S1115

S111 0 S511 S711 S1115 S1111


,
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r2 =



S16 S12 S14 S112 S18 S113

0 0 0 0 0 0
S56 S25 S45 S512 S58 S513

S67 S27 S47 S712 S78 S713

S615 S215 S415 S715 S815 S1315

S611 S211 S411 S711 S811 S1113


,

t =



S66 S26 S46 S612 S68 S613

S26 S22 S24 S212 S28 S213

S46 S24 S44 S412 S48 S413

S612 S212 S412 S1212 S812 S1213

S68 S28 S48 S812 S88 S813

S613 S213 S413 S1213 S813 S1313


,

I12 =


0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , I2 = diag[0 1 0 0 0 0].

After some algebraic manipulations, we finally arrive at

N3 = −q−1
2 =

−1
1



Ŵ11 0 Ŵ12 Ŵ13 Ŵ14 Ŵ15

0 0 0 0 0 0
Ŵ12 0 Ŵ22 Ŵ23 Ŵ24 Ŵ25

Ŵ13 0 Ŵ23 Ŵ33 Ŵ34 Ŵ35

Ŵ14 0 Ŵ24 Ŵ34 Ŵ44 Ŵ45

Ŵ15 0 Ŵ25 Ŵ35 Ŵ45 Ŵ55

 , (18)

N1 = rT
2 q−1

2 − I12 =



r6 −1 s6 t6 u6 v6

r2 0 s2 t2 u2 v2

r4 0 s4 t4 u4 v4

r12 0 s12 t12 u12 v12

r8 0 s8 t8 u8 v8

r13 0 s13 t13 u13 v13

 , (19)

N2 = t − rT
2 q−1

2 r2 =



κ66 κ26 κ46 κ612 κ68 κ613

κ26 κ22 κ24 κ212 κ28 κ213

κ46 κ24 κ44 κ412 κ48 κ413

κ612 κ212 κ412 κ1212 κ812 κ1213

κ68 κ28 κ48 κ812 κ88 κ813

κ613 κ213 κ413 κ1213 κ813 κ1313

 , (20)

where q−1
2 is the pseudo-inverse of q2, 1 is the determinant of
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W =


S11 S15 S17 S115 S111

S15 S55 S57 S515 S511

S17 S57 S77 S715 S711

S115 S515 S715 S1515 S1115

S111 S511 S711 S1115 S1111

 , (21)

Ŵ = [Ŵi j ] is the cofactor matrix of W , and

rα =
1
1

∣∣∣∣∣∣∣∣∣∣

S1α S5α S7α S15α S11α

S15 S55 S57 S515 S511

S17 S57 S77 S715 S711

S115 S515 S715 S1515 S1115

S111 S511 S711 S1115 S1111

∣∣∣∣∣∣∣∣∣∣
, sα =

1
1

∣∣∣∣∣∣∣∣∣∣

S11 S15 S17 S115 S111

S1α S5α S7α S15α S11α

S17 S57 S77 S715 S711

S115 S515 S715 S1515 S1115

S111 S511 S711 S1115 S1111

∣∣∣∣∣∣∣∣∣∣
,

tα =
1
1

∣∣∣∣∣∣∣∣∣∣

S11 S15 S17 S115 S111

S15 S55 S57 S515 S511

S1α S5α S7α S15α S11α

S115 S515 S715 S1515 S1115

S111 S511 S711 S1115 S1111

∣∣∣∣∣∣∣∣∣∣
, uα =

1
1

∣∣∣∣∣∣∣∣∣∣

S11 S15 S17 S115 S111

S15 S55 S57 S515 S511

S17 S57 S77 S715 S711

S1α S5α S7α S15α S11α

S111 S511 S711 S1115 S1111

∣∣∣∣∣∣∣∣∣∣
,

vα =
1
1

∣∣∣∣∣∣∣∣∣∣

S11 S15 S17 S115 S111

S15 S55 S57 S515 S511

S17 S57 S77 S715 S711

S115 S515 S715 S1515 S1115

S1α S5α S7α S15α S11α

∣∣∣∣∣∣∣∣∣∣
(α = 6, 2, 4, 12, 8, 13),

καβ =
1
1

∣∣∣∣∣∣∣∣∣∣∣∣∣

S11 S1α S15 S17 S115 S111

S1β Sαβ S5β S7β S15β S11β

S15 S5α S55 S57 S515 S511

S17 S7α S57 S77 S715 S711

S115 S15α S515 S715 S1515 S1115

S111 S11α S511 S711 S1115 S1111

∣∣∣∣∣∣∣∣∣∣∣∣∣
(α, β = 6, 2, 4, 12, 8, 13).

In view of (6), N2 is positive definite, while (18) and the fact that W defined by
(21) is positive definite result in −N3 being positive semidefinite.

We next derive the structure of N (−1)
i (i = 1, 2, 3). It is not hard to check that

N (−1)
1 =


0 ∗ ∗ ∗ ∗ ∗

−1 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗ ∗

 , N (−1)
3 =


0 0 0 0 0 0
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗

 , (22)
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In addition, we have the identity[
Q R
RT T

][
q r1

rT
1 t1

]
=

[
I 0

I12 I − I1

]
, (23)

where

q =



S11 S16 S15 S17 S115 S111

S16 S66 S56 S67 S615 S611

S15 S56 S55 S57 S515 S511

S17 S67 S57 S77 S715 S711

S115 S615 S515 S715 S1515 S1115

S111 S611 S511 S711 S1115 S1111


, r1 =



0 S12 S14 S112 S18 S113

0 S26 S46 S612 S68 S613

0 S25 S45 S512 S58 S513

0 S27 S47 S712 S78 S713

0 S215 S415 S715 S815 S1315

0 S211 S411 S711 S811 S1113


,

t1 =



0 0 0 0 0 0
0 S22 S24 S212 S28 S213

0 S24 S44 S412 S48 S413

0 S212 S412 S1212 S812 S1213

0 S28 S48 S812 S88 S813

0 S213 S413 S1213 S813 S1313


, I1 = diag[1 0 0 0 0 0].

We can now arrive at

N (−1)
3 = t−1

1 =
1
1′



0 0 0 0 0 0
0 Ŵ ′11 Ŵ ′12 Ŵ ′13 Ŵ ′14 Ŵ ′15
0 Ŵ ′12 Ŵ ′22 Ŵ ′23 Ŵ ′24 Ŵ ′25
0 Ŵ ′13 Ŵ ′23 Ŵ ′33 Ŵ ′34 Ŵ ′35
0 Ŵ ′14 Ŵ ′24 Ŵ ′34 Ŵ ′44 Ŵ ′45
0 Ŵ ′15 Ŵ ′25 Ŵ ′35 Ŵ ′45 Ŵ ′55


, (24)

N (−1)
1 = r1 t−1

1 − I T
12 =



0 r ′1 s ′1 t ′1 u′1 v′1
−1 r ′6 s ′6 t ′6 u′6 v′6
0 r ′5 s ′5 t ′5 u′5 v′5
0 r ′7 s ′7 t ′7 u′7 v′7
0 r ′15 s ′15 t ′15 u′15 v

′

15
0 r ′11 s ′11 t ′11 u′11 v

′

11


, (25)

N (−1)
2 =−q+ r1 t−1

1 rT
1 =−



κ ′11 κ ′16 κ ′15 κ ′17 κ ′115 κ ′111
κ ′16 κ ′66 κ ′56 κ ′67 κ ′615 κ ′611
κ ′15 κ ′56 κ ′55 κ ′57 κ ′515 κ ′511
κ ′17 κ ′67 κ ′57 κ ′77 κ ′715 κ ′711
κ ′115 κ

′

615 κ
′

515 κ
′

715 κ
′

1515 κ
′

1115
κ ′111 κ

′

611 κ
′

511 κ
′

711 κ
′

1115 κ
′

1111


, (26)
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where 1′ is the determinant of

W ′ =


S22 S24 S212 S28 S213

S24 S44 S412 S48 S413

S212 S412 S1212 S812 S1213

S28 S48 S812 S88 S813

S213 S413 S1213 S813 S1313

 , (27)

Ŵ ′ = [Ŵ ′i j ] is the cofactor of W ′, and

r ′α =
1
1′

∣∣∣∣∣∣∣∣∣∣

S2α S4α S12α S8α S13α

S24 S44 S412 S48 S413

S212 S412 S1212 S812 S1213

S28 S48 S812 S88 S813

S213 S413 S1213 S813 S1313

∣∣∣∣∣∣∣∣∣∣
, s ′α =

1
1′

∣∣∣∣∣∣∣∣∣∣

S22 S24 S212 S28 S213

S2α S4α S12α S8α S13α

S212 S412 S1212 S812 S1213

S28 S48 S812 S88 S813

S213 S413 S1213 S813 S1313

∣∣∣∣∣∣∣∣∣∣
,

t ′α =
1
1′

∣∣∣∣∣∣∣∣∣∣

S22 S24 S212 S28 S213

S24 S44 S412 S48 S413

S2α S4α S12α S8α S13α

S28 S48 S812 S88 S813

S213 S413 S1213 S813 S1313

∣∣∣∣∣∣∣∣∣∣
, u′α =

1
1′

∣∣∣∣∣∣∣∣∣∣

S22 S24 S212 S28 S213

S24 S44 S412 S48 S413

S212 S412 S1212 S812 S1213

S2α S4α S12α S8α S13α

S213 S413 S1213 S813 S1313

∣∣∣∣∣∣∣∣∣∣
,

v′α =
1
1′

∣∣∣∣∣∣∣∣∣∣

S22 S24 S212 S28 S213

S24 S44 S412 S48 S413

S212 S412 S1212 S812 S1213

S28 S48 S812 S88 S813

S2α S4α S12α S8α S13α

∣∣∣∣∣∣∣∣∣∣
(α = 1, 6, 5, 7, 15, 11),

κ ′αβ =
1
1′

∣∣∣∣∣∣∣∣∣∣∣∣∣

Sαβ S2β S4β S12β S8β S13β

S2α S22 S24 S212 S28 S213

S4α S24 S44 S412 S48 S413

S12α S212 S412 S1212 S812 S1213

S8α S28 S48 S812 S88 S813

S13α S213 S413 S1213 S813 S1313

∣∣∣∣∣∣∣∣∣∣∣∣∣
(α, β = 1, 6, 5, 7, 15, 11).

In view of (12), the matrix −N (−1)
2 is positive definite, while, by (24) and the

fact that W ′ defined by (27) is positive definite, we also have that N (−1)
3 is positive

semidefinite.

4. Line force and line dislocation

4.1. Line force and dislocation in a homogeneous quasicrystal. Let a line of
uniformly distributed force p = [p1 p2 p3 q1 q2 q3]

T per unit length be ap-
plied on the x3-axis which also includes a line dislocation with Burgers vector
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b = [b1 b2 b3 d1 d2 d3]
T . The analytic vector function f (z) due to the line

force and dislocation is given by

f (z)= 〈ln zα〉
AT p+ BT b

2π i
, (28)

where 〈∗〉 is a 6×6 diagonal matrix in which each component varies with the index
α (from 1 to 6). The elastic energy for the annular region 0< r0 ≤ r ≤ R0 per unit
length of the line force and dislocation is

U = 1
4π

ln
( R0

r0

)
( pT H p+ bT Lb) > 0, (29)

which also provides an indirect proof that H and L must be positive definite if the
elastic energy is to remain positive.

4.2. Interfacial Green’s function. We consider a bimaterial made of two bonded
dissimilar anisotropic quasicrystalline half-planes, denoted by #1 (x2 > 0) and #2
(x2 < 0). The bimaterial is subjected to a line force p and line dislocation with
Burgers vector b at the origin. In fact the solution can be found from [Ting 1996].
The elastic energy for the annular region 0< r0 ≤ r ≤ R0 of the quasicrystalline
bimaterial is

U = 1
2π

ln
( R0

r0

)
( pT H̃ p+ bT L̃b) > 0, (30)

where H̃ and L̃ are two 6× 6 positive definite real symmetric matrices given by

H̃ = Re{(M1+M2)
−1
}, L̃ = Re{(M−1

1 +M−1
2 )−1

}. (31)

4.3. Green’s function for quasicrystalline bimaterials. We consider a bimaterial
made of two perfectly bonded dissimilar anisotropic quasicrystalline half-planes
again denoted by #1 (x2 > 0) and #2 (x2 < 0). A line force p and line dislocation
with Burgers vector b are applied at (x1, x2)= (0, δ) (δ > 0) in material #1. The
structure of the solution is similar to that in [Suo 1990] and [Ting 1996]. The
image force tending to move a pure dislocation ( p= 0) away from the interface is
described by

F = 1
4πδ

bT (2L̃− L1)b, (32)

where L̃ is given by (31). For a sliding interface on which σ12 = σ32 = 0, the image
force acting on the line dislocation is now characterized by

F = 1
4πδ

(2bT
0 L̂b0− bT L1b), (33)
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where

b0 = [b2 d1 d2 d3]
T , L̂ = Re{N̂−1

}, N̂=


N22 N24 N25 N26

N̄24 N44 N45 N46

N̄25 N̄45 N55 N56

N̄26 N̄46 N̄56 N66

 , (34)

Ni j being the components of the 6× 6 Hermitian matrix N defined by (14). Both
N̂ and L̂ are positive definite.

5. Imperfect interface models

In [Benveniste 2006], the author rigorously derives imperfect interface models for
a three-dimensional curved interphase between two anisotropic crystalline solids
by making use of the idea of Taylor expansion of the corresponding fields in thin
regions. In this section we will derive compliant and stiff interface models in
anisotropic quasicrystalline bimaterials using the Stroh formalism and the struc-
tures of Ni presented in Sections 2 and 3. To simplify the analysis, we consider here
a straight imperfect interface. The stress-strain law for an interphase of constant
thickness h between the upper and lower anisotropic quasicrystalline materials 1
and 2 is described by

σ1 = Qcu,1+ Rcu,2, σ2= RT
c u,1+ Tcu,2, (35)

where Q, R, T are defined in (7) with the subscript c being used to identify the
quantities associated with the intermediate interphase, and

σ1 = [σ11 σ21 σ31 H11 H21 H31]
T , σ2= [σ12 σ22 σ32 H12 H22 H32]

T . (36)

(1) If we assume that C (c)
i jkl � C (1)

i jkl,C (2)
i jkl ; R(c)i jkl � R(1)i jkl, R(2)i jkl and K (c)

i jkl �

K (1)
i jkl, K (2)

i jkl (the so-called compliant interphase) and that the interphase is also
very thin, then it follows from (35)2 that

u1− u2 = h N (c)
2 σ

(1)
2 = h N (c)

2 σ
(2)
2 on the compliant interface. (37)

This is, in fact, the anisotropic spring-type interface.

(2) If we assume that C (c)
i jkl � C (1)

i jkl,C (2)
i jkl and K (c)

i jkl � K (1)
i jkl, K (2)

i jkl (the so-called
stiff interphase) and that the interphase is also very thin, then it follows from
(35) and the equilibrium equation σ1,1+ σ2,2 = 0 that

u1= u2, σ
(1)
2 −σ

(2)
2 = h N (c)

3 u1,11= h N (c)
3 u2,11 on the stiff interface. (38)

This is an extension of the Young–Laplace model to anisotropic quasicrys-
talline materials.
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In view of the structure of N3 given by (18), the phonon normal traction com-
ponent σ22 is continuous across the stiff interface.

6. Interface crack problems

First we derive the asymptotic fields associated with a traction-free semi-infinite
crack which lies along the interface between the upper and lower anisotropic qua-
sicrystalline half-planes #1 (x2 > 0) and #2 (x2 < 0). The portion x2 = 0, x1 > 0 of
the interface is perfectly bonded, whereas the remaining portion x2 = 0 and x1 < 0
of the interface is fully debonded. In the following analysis, in view of the fact
that z1 = z2 = z3 = z4 = z5 = z6 = z on the interface x2 = 0, we will replace the
complex variables zk (k = 1, . . . , 6) by the common complex variable z = x1+ ix2.
After the analysis is completed, we can simply revert back to the corresponding
complex variables.

We introduce an analytic vector function h(z) defined by

h(z)= B1 f ′1(z)= N−1 N B2 f ′2(z). (39)

Consequently the traction and displacement jumps can be expressed in terms of
h(z) as

σ2(x1)= h+(x1)+ N−1 Nh−(x1), id ′(x1)= N[h+(x1)− h−(x1)], (40)

We then arrive at the following homogeneous vector Riemann–Hilbert problem:

h+(z)− h−(z)= 0, z /∈ C,

Nh+(z)+ Nh−(z)= 0, z ∈ C.
(41)

Consider the eigenvalue problem

Nw = e2πεNw. (42)

It can be concluded that:

(1) As a result of the positive definiteness of N , the eigenvalue e2πε is always
positive; thus ε is real.

(2) If (ε,w) is an eigenpair, then (−ε,w) is another eigenpair.

Three positive real numbers ε1, ε2, ε3 and three complex vectors w1, w2, w3 form
six eigenpairs:

(ε1,w1), (−ε1,w1), (ε2,w2), (−ε2,w2), (ε3,w3), (−ε3,w3). (43)

The following orthogonal relationships can also be established:

wT
i Nw j = w

T
k Nwl = w

T
k Nwl = 0 (i, j, k, l = 1, 2, 3 and k 6= l), (44)
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The three positive real numbers (or oscillatory indices) ε1, ε2, ε3 are given by

ε j =
1

2π
ln

1+β j

1−β j
( j = 1, 2, 3), (45)

where β j ( j = 1, 2, 3) are the three positive roots of the following cubic equation
in β2:

β6
+

1
2 tr(S̆2)β4

−
1
2 |S̆| tr(S̆

−2)β2
− |S̆| = 0. (46)

Here
S̆= (L−1

1 + L−1
2 )−1(S1 L−1

1 − S2 L−1
2 ). (47)

The oscillatory indexes ε1, ε2, ε3 are then explicitly determined.
Following Suo [1990], we can obtain for h(z) the expression

h(z)=
3∑

j=1

eπε j K j ziε jw j + e−πε j K̄ j z−iε jw j

2(2π z)
1
2 coshπε j

, (48)

where K1, K2 and K3 are three complex stress intensity factors. f ′1(z) and f ′2(z)
in the two half-planes are then given by

B1 f ′1(z)=
3∑

j=1

eπε j K j ziε jw j + e−πε j K̄ j z−iε jw j

2(2π z)
1
2 coshπε j

(Im{z}> 0),

B2 f ′2(z)=
3∑

j=1

e−πε j K j ziε jw j + eπε j K̄ j z−iε jw j

2(2π z)
1
2 coshπε j

(Im{z}< 0).

(49)

The traction at the bonded interface a distance r ahead of the crack tip is

σ2(r)=
3∑

j=1

[t j (r)w j + t̄ j (r)w j ], (50)

where

t j (r)= t2 j + it1 j =
wT

j Nσ2(r)

wT
j Nw j

=
K jr iε j

√
2πr

.

Equation (50) states that the interface traction can be decomposed into three com-
ponents, each in the plane spanned by Re{w j } and Im{w j } ( j = 1, 2, 3).

The displacement jump a distance r behind the crack tip is

d(r)= (N + N)
( r

2π

) 1
2

3∑
j=1

[
K jr iε jw j

(1+ 2iε j ) coshπε j
+

K̄ jr−iε jw j

(1− 2iε j ) coshπε j

]
. (51)
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The energy release rate is therefore given by

G = lim
δ→0

1
2δ

∫ δ

0
σ T

2 (δ− r)d(r) dr =
3∑

j=1

wT
j (N + N)w j

4 cosh2 πε j
|K j |

2 > 0. (52)

Next, we consider a set of collinear cracks between two dissimilar anisotropic
quasicrystalline half-planes with prescribed traction t0(x1) on the crack lines C .
Suppose there are n finite cracks in the intervals (a j , b j ) ( j = 1, 2, . . . , n) and two
semi-infinite cracks (−∞, b0) and (a0,+∞). The prescribed traction t0(x1) on the
crack lines C will result in the inhomogeneous Riemann–Hilbert vector problem:

h+(x1)+ N−1 Nh−(x1)= t0(x1), x1 ∈ C. (53)

In order to solve this, we follow the method in [Suo 1990] and [Suo et al. 1992]
and write h(z) and t0(x1) in terms of their components using the eigenvector rep-
resentation

h(z)= h1(z)w1+h2(z)w1+h3(z)w2+h4(z)w2+h5(z)w3+h6(z)w3,

t0(x1)= t01(x1)w1+ t̄01(x1)w1+ t02(x1)w2+ t̄02(x1)w2+ t03(x1)w3+ t̄03(x1)w3.

As a result, (53) can be decoupled as follows:

h+1 (x1)+ e−2πε1h−1 (x1)= t01(x1)

h+2 (x1)+ e+2πε1h−2 (x1)= t̄01(x1)

h+3 (x1)+ e−2πε2h−3 (x1)= t02(x1)

h+4 (x1)+ e+2πε2h−4 (x1)= t̄02(x1)

h+5 (x1)+ e−2πε3h−5 (x1)= t03(x1)

h+6 (x1)+ e+2πε3h−6 (x1)= t̄03(x1)


for x1 ∈ C, (54)

whose solution can be given simply by

h1(z)=
χ1(z)
2π i

∫
C

t01(x1) dx1

χ+1 (x1)(x1− z)
+χ1(z)P1(z),

h2(z)=
χ̄1(z)
2π i

∫
C

t̄01(x1) dx1

χ̄+1 (x1)(x1− z)
+ χ̄1(z)P2(z),

h3(z)=
χ2(z)
2π i

∫
C

t02(x1) dx1

χ+2 (x1)(x1− z)
+χ2(z)P3(z),

h4(z)=
χ̄2(z)
2π i

∫
C

t̄02(x1) dx1

χ̄+2 (x1)(x1− z)
+ χ̄2(z)P4(z),

h5(z)=
χ3(z)
2π i

∫
C

t03(x1) dx1

χ+3 (x1)(x1− z)
+χ3(z)P5(z),
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h6(z)=
χ̄3(z)
2π i

∫
C

t̄03(x1) dx1

χ̄+3 (x1)(x1− z)
+ χ̄3(z)P6(z),

where χ1(z), χ2(z) and χ3(z) are defined as

χ j (z)=
n∏

k=0

(z− ak)
−

1
2−iε j (z− bk)

−
1
2+iε j ( j = 1, 2, 3), (55)

and Pi (z) (i = 1, . . . , 6) are polynomials in z of order less than n+ 1 [Ting 1996].

7. Conclusions

In this paper all six 6×6 matrices Ni and N (−1)
i (i = 1, 2, 3) in the Stroh formalism

of anisotropic elasticity for quasicrystals have been explicitly expressed in terms
of the sixty-six reduced elastic compliances Si j = S j i (i, j = 1 . . . 15 and i, j 6=
3, 9, 10, 14). It is found that N2 and −N (−1)

2 are positive definite, whilst −N3 and
N (−1)

3 are positive semidefinite.
In the study of Green’s functions, we present the elastic energy expressions (29)

for a line force and dislocation in a homogeneous quasicrystal and (30) for a line
force and dislocation lying on a bi-quasicrystal interface, and obtain the image
force on a dislocation near a perfect or sliding interface between two anisotropic
quasicrystalline half-planes.

We also derive compliant and stiff interface models using the Stroh formalism.
Green’s function solutions for quasicrystalline bimaterials with imperfect interface
can be further studied by using the method described in [Wang and Pan 2010].

Perhaps the most interesting conclusion from this research is that the interface
crack-tip field consists of three two-dimensional oscillatory stress singularities
r−

1
2±iε j ( j = 1, 2, 3) characterized through the introduction of three complex stress

intensity factors K j ( j = 1, 2, 3). We end by again noting the beauty and power
of the Stroh formalism which is fully demonstrated here.
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