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TV-MIN AND GREEDY PURSUIT
FOR CONSTRAINED JOINT SPARSITY

AND APPLICATION TO INVERSE SCATTERING

ALBERT FANNJIANG

This paper proposes a general framework for compressed sensing of constrained
joint sparsity (CJS) which includes total variation minimization (TV-min) as an
example. The gradient- and 2-norm error bounds, independent of the ambient
dimension, are derived for the CJS version of basis pursuit and orthogonal match-
ing pursuit. As an application the results extend Candès, Romberg, and Tao’s
proof of exact recovery of piecewise constant objects with noiseless incomplete
Fourier data to the case of noisy data.

1. Introduction

One of the most significant developments of the last decade in imaging and signal
processing is compressive sensing (CS) which promises reconstruction with fewer
data than the ambient dimension. CS capability [Candès and Tao 2005; Donoho
2006] hinges on favorable sensing matrices and enforcing a key piece of prior
knowledge, that is, sparse objects.

Consider the linear inverse problem Y =8X + E where X ∈ Cm is the sparse
object vector to be recovered, Y ∈ Cn is the measurement data vector, and E ∈
Cn represents the (model or external) errors. The great insight of CS is that the
sparseness of X , as measured by the sparsity ‖X‖0 ≡ # of nonzero elements in X ,
can be effectively enforced by `1-minimization (`1-min) [Chen et al. 2001; Donoho
and Huo 2001]:

min‖Z‖1 subject to (s.t.) ‖8Z − Y‖2 ≤ ‖E‖2, (1)

with favorable sensing matrices 8.
The `1-min idea dates back to geophysics research in the 1970s [Claerbout

and Muir 1973; Taylor et al. 1979]. The `1-minimizer is often a much better
approximation of the sparse object than the traditional minimum energy solution
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via `2-minimization because the 1-norm is closer to ‖ · ‖0 than the 2-norm. More-
over, the `1-min principle is a convex optimization problem and can be efficiently
computed. The `1-min principle is effective in recovering the sparse object with
a number of data points n much smaller than m if the sensing matrix 8 satisfies
some favorable conditions such as the restricted isometry property (RIP) [Candès
and Tao 2005]: 8 is said to satisfy the RIP of order k if

(1− δk)‖Z‖22,2 ≤ ‖8Z‖22 ≤ (1+ δk)‖Z‖22 (2)

for any k-sparse vector Z where the minimum of such a constant δk is the restricted
isometry constant (RIC) of order k.

The drawback of the RIP is that only a few special types of matrices are known
to satisfy it, including independently and identically distributed (i.i.d.) random ma-
trices and random partial Fourier matrices formed by random row selections of the
discrete Fourier transform.

A more practical alternative CS criterion is furnished by the incoherence prop-
erty as measured by one minus the mutual coherence [Donoho and Elad 2003;
Tropp 2004]:

µ(8)=max
i 6= j

∣∣∑
k 8
∗

ik8k j
∣∣√∑

k |8ki |
2
√∑

k |8k j |
2
. (3)

A parallel development in image denoising pioneered by Osher and coworkers
[Rudin et al. 1992; Rudin and Osher 1994] seeks to enforce edge detection by total
variation minimization (TV-min):

min
∫
|∇g| s.t.

∫
|g− f |2 ≤ ε2, (4)

where f is the noisy image and ε is the noise level. The idea is that for the class of
piecewise constant functions, the gradient is sparse and can be effectively enforced
by TV-minimization.

For digital images, the TV-min approach to deblurring can be formulated as
follows. Let f ∈ Cp×q be a noisy complex-valued data set of p× q pixels. Let
T be the transformation from the true object to the ideal sensors, modeling the
imaging process. Replacing the total variation in (4) by the discrete total variation

‖g‖TV ≡
∑
i, j

√
|11g(i, j)|2+ |12g(i, j)|2,

1g = (11g,12g)(i, j)≡
(
g(i + 1, j)− g(i, j), g(i, j + 1)− g(i, j)

)
,

we obtain
min‖g‖TV s.t. ‖T g− f ‖2 ≤ ε (5)

(see [Chambolle and Lions 1997; Chan and Shen 2005]).
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In a breakthrough paper, Candès et al. [2006] show the equivalence of (5) to (1)
for a random partial Fourier matrix with noiseless data (ε = 0) and obtain a perfor-
mance guarantee of exact reconstruction of piecewise constant objects from (5).

A main application of this present work is to extend the result of Candès et
al. to inverse scattering with noisy data. In this context it is natural to work with
the continuum setting in which the object is a vector in an infinite-dimensional
function space, for example, L2(R d). To fit into CS’s discrete framework, we
discretize the object function by pixelating the ambient space with a regular grid
of equal spacing `.

The grid spacing ` can be thought of as the resolution length, the fundamental
parameter of the discrete model from which all other parameters are derived. For
example, the total number of resolution cells is proportional to `−d , that is, m =
O(`−d). As we will assume that the original object is well approximated by the
discrete model in the limit `→ 0, the sparsity s of the edges of a piecewise constant
object is proportional to `1−d , that is, the object is nonfractal. It is important to
keep in mind the continuum origin of the discrete model in order to avoid confusion
about the small ` limit throughout the paper.

First we introduce the notation for multivectors Y ∈ Cn×d :

‖Y‖b,a =
( n∑

j=1

‖row j (Y)‖ba

)1/b

, a, b ≥ 1, (6)

where row j (Y) is the j-th row of Y . The 2, 2-norm is exactly the Frobenius norm.
To avoid confusion with the subordinate matrix norm [Golub and Van Loan 1996],
it is more convenient to view Y as multivectors rather than a matrix.

We aim at the following error bounds. Let V be the discretized object and V̂ an
estimate of V . We will propose a compressive sampling scheme that leads to the
error bound for the TV-minimizer V̂ :

‖1V −1V̂ ‖2,2 = O(ε), `→ 0, (7)

implying via the discrete Poincaré inequality that

‖V − V̂ ‖2 = O(ε/`) (8)

independent of the ambient dimension d.
If V̂ is the reconstruction by using a version of the greedy algorithm, orthogonal

matching pursuit (OMP) [Pati et al. 1993; Davis et al. 1997], for multivectors then
in addition to (7) we also have

‖V − V̂ ‖2 = O(ε/
√
`) (9)

independent of the ambient dimension d (see Section 3). We do not know if the
bound (9) applies to the TV-minimizer.
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A key advantage of the greedy algorithm used to prove (9) is the exact recov-
ery of the gradient support (that is, the edge location) under proper conditions
(Theorem 2 in Section 3). On the one hand, TV-min requires fewer data points for
recovery: O(s) for TV-min under the RIP versus O(s2) for the greedy algorithm
under incoherence where the sparsity s = O(`1−d) is as already mentioned. On the
other hand, the greedy algorithm is computationally more efficient and incoherent
measurements are much easier to design and verify than the RIP.

At heart our theory is based on reformulation of TV-min as CS of joint sparsity
with linear constraints (such as the curl-free constraint in the case of TV-min): basis
pursuit denoising (BPDN) for constrained joint sparsity (CJS) is formulated as

min‖Z‖1,2, s.t. ‖Y −ϕ(Z)‖2,2 ≤ ε, LZ = 0, (10)

where
ϕ(Z)= [81 Z1, . . . ,8d Zd ], Z j = the j-th column of Z,

and L represents a linear constraint. Without loss of generality, we assume the
matrices {8j } ⊂ Cn×m all have unit 2-norm columns.

In connection to TV-min, Z j is the j-th directional gradient of the discrete object
V . And from the definition of discrete gradients, it is clear that every measurement
of Z j can be deduced from two measurements of the object V , slightly shifted in
the j-th direction with respect to each other. As shown below, for inverse scattering
we have 8j =8 for all j , and L is the curl-free constraint which takes the form

11 Z2 =12 Z1

for d = 2 (see (53)). Our main results, Theorems 1 and 2, constitute performance
guarantees for CJS based, respectively, on the RIP and incoherence of the measure-
ment matrices 8j .

1.1. Comparison of existing theories. The gradient-based method of [Patel et al.
2012] modifies the original Fourier measurements to obtain Fourier measurements
of the corresponding vertical and horizontal edge images which then are sepa-
rately reconstructed by the standard CS algorithms. This approach attempts to
take advantage of typically lower separate sparsity and is different from TV-min.
Nevertheless, a similar 2-norm error bound [Patel et al. 2012, Proposition V.2] to
(8) is obtained.

Needell and Ward [2012] obtain interesting results for anisotropic total variation
(ATV) minimization in terms of the objective function

‖g‖ATV ≡
∑
i, j

|11g(i, j)| + |12g(i, j)|.

While for real-valued objects in two dimensions, the isotropic TV seminorm is
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equivalent to the anisotropic version, the two seminorms are, however, not the same
in dimension greater than 3 and/or for complex-valued objects. A rather remarkable
result of Needell and Ward is the bound ‖V − V̂ ‖2 = O(ε), modulo a logarithmic
factor, for d = 2. This is achieved by proving a strong Sobolev inequality for
two dimensions under the additional assumption of the RIP with respect to the bi-
variate Haar transform. Unfortunately, this latter assumption prevents the results in
[Needell and Ward 2012] from being directly applicable to structured measurement
matrices such as Fourier-like matrices which typically have high mutual coherence
with any compactly supported wavelet basis when adjacent subbands are present.
Their approach also does not guarantee exact recovery of the gradient support.

It is worthwhile to further consider these existing approaches from the perspec-
tive of the CJS framework for arbitrary d . The approach of [Patel et al. 2012] can
be reformulated as solving d standard BPDNs

min‖Zτ‖1, s.t. ‖Yτ −8Zτ‖2 ≤ ε, τ = 1, . . . , d,

separately without the curl-free constraint L where Zτ and Yτ are, respectively,
the τ -th columns of Z and Y . To recover the original image from the directional
gradients, an additional step of consistent integration becomes an important part
of the approach in [Patel et al. 2012].

From the CJS perspective, the ATV-min considered in [Needell and Ward 2012]
can be reformulated as follows. Let Z̃ ∈ C dm be the image gradient vector by
stacking the d directional gradients and let Ỹ ∈ C dn be the similarly concatenated
data vector. Likewise let 8̃= diag(81, . . . ,8d) ∈ C dn×dm be the block-diagonal
matrix with blocks 8j ∈ Cn×m . Then ATV-min is equivalent to BPDN for a single
constrained and concatenated vector:

min‖Z̃‖1, s.t. ‖Ỹ − 8̃Z̃‖2 ≤ ε, L̃Z̃ = 0, (11)

where L̃ is the same constraint L reformulated for concatenated vectors. Repeating
verbatim the proofs of Theorems 1 and 2 we obtain the same error bounds as (7)–(9)
for ATV-min as formulated in (11) under the same conditions for 8j separately.

In [Needell and Ward 2012], ATV-min is formulated in terms of the image,
instead of the image gradient, to get rid of the curl-free constraint. To proceed the
differently concatenated matrix [81, . . . ,8d ] is then assumed to satisfy the RIP
of higher order demanding 2dn measurement data points. For d = 2, Needell and
Ward assume the RIP of order 5s with δ5s <

1
3 for [81,82], which is much more

stringent than the RIP of order 2s with δ2s <
√

2− 1 for 81 and 82 separately in
(11). In particular, 81 =82 is allowed for (11) but not for Needell and Ward. To
get the aforementioned favorable O(ε) 2-norm error bound for d = 2, an additional
measurement matrix satisfying the RIP with respect to the bivariate Haar basis is
needed, which, as mentioned above, excludes partial Fourier measurements.
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1.2. Organization. The rest of the paper is organized as follows. In Section 2, we
present a performance guarantee for BPDN for CJS and obtain error bounds. In
Section 3, we analyze the greedy approach to sparse recovery of CJS and derive
error bounds, including an improved 2-norm error bound. In Section 4, we re-
view the scattering problem starting from the continuum setting and introduce the
discrete model. In Section 5, we discuss various sampling schemes including the
forward and backward sampling schemes for inverse scattering for point objects.
In Section 6 we formulate TV-min for piecewise constant objects as BPDN for CJS.
We present numerical examples and conclude in Section 7. We present the proofs
in the Appendices.

2. BPDN for CJS

Consider the linear inversion problem

Y = ϕ(X)+ E, LX = 0, (12)

where

ϕ(X)= [81 X1,82 X2, . . . ,8d Xd ], 8j ∈ Cn×m,

and the corresponding BPDN

min‖Z‖1,2, s.t. ‖Y −ϕ(Z)‖2,2 ≤ ε = ‖E‖2,2, LZ = 0. (13)

For TV-min in d dimensions, 8j =8 for all j , the vector X represents the discrete
gradient of the unknown object V , and L is the curl-free constraint. Without loss
of generality, we assume the matrices {8j } all have unit 2-norm columns.

We say that X is s-row sparse if the number of nonzero rows in X is at most s.
With a slight abuse of terminology we call X the object (of CJS).

In the following theorems, we let the object X be general, not necessarily s-row
sparse. Let X (s) consist of the s largest rows in the 2-norm of X . Then X (s) is the
best s-row sparse approximation of X .

Theorem 1. Suppose that the linear map ϕ satisfies the RIP of order 2s

(1− δ2s)‖Z‖22,2 ≤ ‖ϕ(Z)‖
2
2,2 ≤ (1+ δ2s)‖Z‖22,2 (14)

for any 2s-row sparse Z with δ2s <
√

2− 1. Let X̂ be the minimizer of (13). Then

‖X̂ − X‖2,2 ≤ C1s−1/2
‖X − X (s)

‖1,2+C2ε (15)

for absolute constants C1 and C2 depending only on δ2s .

Remark 1. Note that the RIP for joint sparsity (14) follows straightforwardly from
the assumption of the separate RIP:

(1− δ2s)‖Z‖22 ≤ ‖8j Z‖22 ≤ (1+ δ2s)‖Z‖22 for all j,
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with a common RIC.

Remark 2. For the standard Lasso with a particular choice of regularization pa-
rameter, [Candès and Plan 2009, Theorem 1.3] guarantees exact support recovery
under a favorable sparsity constraint. In our setting and notation, their TV-min
principle suggests

min
L Z=0

λσ‖Z‖1,2+ 1
2 ‖Y −ϕ(Z)‖

2
2,2, λ= 2

√
2 log m, (16)

where σ 2
= ε2/(2n) is the variance of the assumed Gaussian noise in each entry of

Y . Unfortunately, even if the result of Candès and Plan can be extended to (16), it
is inadequate for our purpose because they assume independently selected support
and signs, which is clearly not satisfied by the gradient of a piecewise constant
object.

The proof of Theorem 1 is given in Appendix A.
The error bound (15) implies (7) for s-row sparse X . For the 2-norm bound (8),

we apply the discrete Poincaré inequality [Cheung 1998]

‖ f ‖22 ≤
m2/d

4d
‖1 f ‖22

to get

‖V − V̂ ‖2 ≤
m1/d

2d1/2 C2ε = O
(
ε

`

)
, (17)

since `∼ m−1/d .

3. Greedy pursuit for CJS

One idea to improve the error bound is through exact recovery of the support. This
can be achieved by greedy algorithms. As before, we consider the general linear
inversion with CJS (12) with ‖E‖2,2 = ε.

Algorithm 1 on the next page is an extension of the joint-sparsity greedy algo-
rithms of [Cotter et al. 2005; Chen and Huo 2006; Tropp et al. 2006] to a setting
with multiple sensing matrices.

Note that the linear constraint is not enforced in Algorithm 1.
A natural indicator of the performance of OMP is the mutual coherence (3)

[Tropp 2004; Donoho et al. 2006]. Let

µmax =max
j
µ(8j ).

Then, analogous to [Donoho et al. 2006, Theorem 5.1], we have the following
performance guarantee.
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Algorithm 1. OMP for joint sparsity

Input: {8j },Y , ε > 0.
Initialization: X0

= 0, R0
= Y , and S0

=∅.
Iteration:

1) imax = arg maxi
∑d

j=1|8
∗

j,i Rk−1
j |, where 8∗j,i is the conjugate

transpose of the i-th column of 8j .
2) Sk

= Sk−1
∪ {imax}.

3) Xk
= arg min‖8Z−Y‖2,2 s.t. supp(Z) ⊆ Sk .

4) Rk
= Y −ϕ(Xk).

5) Stop if
∑

j‖R
k
j‖2 ≤ ε.

Output: Xk .

Theorem 2. Suppose the sparsity s satisfies

s < 1
2

(
1+ 1

µmax

)
−

√
dε

µmax Xmin
, Xmin =min

k
‖rowk(X)‖1. (18)

Let Z be the output of Algorithm 1, with the stopping rule that the residual drops
to the level ε or below. Then supp(Z)= supp(X).

Let X̂ solve the least-squares problem

X̂ = arg min
B
‖Y −8B‖2,2, s.t. supp(B)⊆ supp(X), LB = 0. (19)

Then

‖X̂ − X‖2,2 ≤
2ε

√
1−µmax(s− 1)

. (20)

The proof of Theorem 2 is given in Appendix B.
The main advantage of Theorem 2 over Theorem 1 is the guarantee of exact

recovery of the support of X . Moreover, a better 2-norm error bound follows
because now the gradient error is guaranteed to vanish outside a set of cardinality
O(`1−d): Let L⊂ Zd be a finite lattice of O(`−d) cardinality and {Ll : l = 1, . . . , L}
a partition of L, i.e., L=

⋃
l Ll and Ll ∩ Lk =∅ for l 6= k. Let the scaled sets `Ll ,

l = 1, . . . , L , be the level sets of the object V such that

V =
L∑

l=1

vl I`Ll,

where I`Ll is the indicator function of `Ll . The reconstructed object V̂ from X̂
given in (19) also takes the same form:

V̂ =
L∑

l=1

v̂l I`Ll .
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To fix the undetermined constant, we may assume that v1 = v̂1. Since

‖1(V − V̂ )‖2,2 = O(ε)

by (20) and the gradient error occurs only on the boundaries of `Ll of cardinality
O(`1−d), we have

|vl − v̂l | = O(ε`(d−1)/2) for all l.

Namely
‖V − V̂ ‖∞ = O(ε`(d−1)/2)

and thus
‖V − V̂ ‖2 = O(ε/

√
`).

4. Application: inverse scattering

In this section, we discuss the main application of the CJS formulation, that is, the
TV-min for the inverse scattering problem.

A monochromatic wave u propagating in a heterogeneous medium characterized
by a variable refractive index n2(r) = 1 + v(r) is governed by the Helmholtz
equation

∇
2u(r)+ω2(1+ v(r))u(r)= 0, (21)

where v describes the medium inhomogeneities. For simplicity, the wave velocity
is assumed to be unity and hence the wavenumber ω equals the frequency.

Consider the scattering of the incident plane wave

ui(r)= eiωr·d̂, (22)

where d̂ is the incident direction. The scattered field us
= u− ui then satisfies

∇
2us
+ω2us

=−ω2vu (23)

which can be written as the Lippmann–Schwinger equation:

us(r)= ω2
∫

R d
v(r ′)(ui(r ′)+ us(r ′))G(r, r ′)d r ′, (24)

where G is the Green function for the operator −(∇2
+ω2).

The scattered field necessarily satisfies Sommerfeld’s radiation condition

lim
r→∞

r (d−1)/2
(
∂

∂r
− iω

)
us
= 0,

reflecting the fact that the energy which is radiated from the sources represented
by the right-hand side of (23) must scatter to infinity.
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Thus the scattered field has the far-field asymptotic

us(r)=
eiω|r|

|r|(d−1)/2

(
A(r̂, d̂, ω)+O(|r|−1)

)
, r̂ = r/|r|, (25)

where A is the scattering amplitude and d the spatial dimension. In inverse scat-
tering theory, the scattering amplitude is the measurement data determined by the
formula [Colton and Kress 1998]

A(r̂, d̂, ω)= ω2

4π

∫
d r ′v(r ′)u(r ′)e−iωr ′·r̂ ,

which under the Born approximation becomes

A(r̂, d̂, ω)= ω2

4π

∫
d r ′v(r ′)eiωr ′·(d̂−r̂). (26)

For simplicity of notation we consider the two-dimensional case in detail. Let
L⊂ Z2 be a square sublattice of m integral points. Suppose that s point scatterers
are located in a square lattice of spacing `:

`L= {r j = `(p1, p2) : j = (p1− 1)
√

m+ p2, p= (p1, p2) ∈ L}. (27)

In the context of inverse scattering, it is natural to treat the size of the discrete ambi-
ent domain `L as being fixed independent of the resolution length `. In particular,
m ∼ `−2 in two dimensions.

First let us motivate the inverse scattering sampling scheme in the case of point
scatterers and let v j , j = 1, . . . ,m be the strength of the scatterers. In other words,
the total object is a sum of δ-functions:

v(r)=
∑

j

v jδ(r − r j ). (28)

Let S= {ri j : j = 1, . . . , s} be the locations of the scatterers. Hence v j = 0 for all
r j 6∈ S.

For point objects the scattering amplitude becomes a finite sum:

A(r̂, d̂, ω)= ω2

4π

m∑
j=1

v j eiωr j ·(d̂−r̂). (29)

In the Born approximation the exciting field u(r j ) is replaced by the incident field
ui(r j ).

5. Sampling schemes

Next we review the sampling schemes introduced in [Fannjiang 2010] for point
objects (28).
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Let d̂l and r̂l , l = 1, . . . , n, be various incident and sampling directions for the
frequencies ωl , l = 1, . . . , n, to be determined later. Define the measurement vector
Y = (yl) ∈ Cn with

yl =
4π
ω2√n

A(r̂l, d̂l, ωl), l = 1, . . . , n. (30)

The measurement vector is related to the point object vector X = (v j ) ∈ Cm by the
sensing matrix 8 as

Y =8X + E, (31)

where E is the measurement error. Let θl and θ̃l be the polar angles of d̂l and r̂l ,
respectively. The (l, j)-entry of 8 ∈ Cn×m is

n−1/2e−iωl r̂l ·r j eiωl d̂l ·r j = n−1/2eiωl`(p2(sin θl−sin θ̃l )+p1(cos θl−cos θ̃l )), (32)

with j = (p1− 1)+ p2. Note that 8 has unit 2-norm columns.
Let (ξl, ζl) be i.i.d. uniform random variables on [−1, 1]2 and let ρl and φl be

the polar coordinates as in

(ξl, ζl)= ρl(cosφl, sinφl), ρl =

√
ξ 2

l + ζ
2
l ≤
√

2. (33)

Let the sampling angle θ̃l be related to the incident angle θl via

θl + θ̃l = 2φl +π, (34)

and set the frequency ωl to be

ωl =
�ρl

√
2 sin(θl − θ̃l/2)

, (35)

where � is a control parameter. Then the entries (32) of the sensing matrix 8 under
the condition

�`= π/
√

2 (36)

are those of the random partial Fourier matrix

eiπ(p1ξl+p2ζl ), l = 1, . . . , n, p1, p2 = 1, . . . ,
√

m. (37)

We consider two particular sampling schemes: The first employs multiple fre-
quencies with the sampling angle always in the back-scattering direction, resem-
bling the imaging geometry of synthetic aperture radar; the second employs only a
single high frequency with the sampling angle in the forward direction, resembling
the imaging geometry of X-ray tomography.
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I. Backward Sampling. This scheme employs �-band limited probes, that is,
ωl ∈ [−�,�]. This and (35) lead to the constraint∣∣∣sin θl−θ̃l

2

∣∣∣≥ ρl
√

2
. (38)

A simple way to satisfy (34) and (38) is to set

φl = θ̃l = θl −π, (39)

ωl =
�ρl
√

2
, (40)

where l = 1, . . . , n. In this case the scattering amplitude is sampled exactly in
the backward direction, resembling synthetic-aperture radar imaging. In contrast,
exact forward sampling with θ̃l = θl almost surely violates the constraint (38).

II. Forward Sampling. This scheme employs single-frequency probes no less
than �:

ωl = γ�, γ ≥ 1, l = 1, . . . , n. (41)

We set

θl = φl + arcsin
ρl

γ
√

2
, (42)

θ̃l = φl − arcsin
ρl

γ
√

2
. (43)

The difference between the incident angle and the sampling angle is

θl − θ̃l = 2 arcsin
ρl

γ
√

2
, (44)

which diminishes as γ →∞. In other words, in the high-frequency limit, the sam-
pling angle approaches the incident angle, resembling X-ray tomography [Natterer
1986].

6. Piecewise constant objects

Next let us consider the following class of piecewise constant objects:

v(r)=
∑
p∈L

v p I�
( r
`
− p

)
, �=

[
−

1
2 ,

1
2

]2
, (45)

where I� is the indicator function of the unit square �. As remarked in Section 1,
we think of the pixelated v as a discrete approximation of some compactly sup-
ported function on R2 and having a well-defined limit as `→ 0. Set V = (v j )∈ Cm

and j = (p1− 1)
√

m+ p2.
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The discrete version of (26) is, however, not exactly the same as (29) since
extended objects have different scattering properties from those of point objects.

The integral on the right-hand side of (26), modulo the discretization error, is∫
d r ′v(r ′)eiωr ′·(d̂−r̂)

=

∑
p∈L

v peiω` p·(d̂−r̂)
∫

eiωr ′·(d̂−r̂) I�
( r ′
`

)
dr ′.

Now letting d̂l , r̂l , and ωl , l = 1, . . . , n, be selected according to Scheme I or II
and substituting them into the above equation, we obtain∫

d r ′v(r ′)eiωl r ′·(d̂l−r̂l ) = `2
∑
p∈L

v peiπ(p1ξl+p2ηl )

∫
�

eiπ(xξl+yηl ) dx dy

= `2
∑
p∈L

v peiπ(p1ξl+p2ηl )
2 sin (πξl/2)

πξl

2 sin (πηl/2)
πηl

.

Let
x j = `

2v p, j = (p1− 1)
√

m+ p2,

and

yl =
4π

ω2
l g̃l
√

n
A(r̂l, d̂l, ωl)+ El, l = 1, . . . , n,

where

g̃l =
2 sin (πξl/2)

πξl

2 sin (πηl/2)
πηl

and E = (el) is the noise vector.
Define the sensing matrix 8= [φkp] as

φkp =
1
√

n
eiπ(p1ξk+p2ηk), p = (p1− 1)

√
m+ p2, p1, p2 = 1, . . . ,

√
m. (46)

Then the system above can be written in the same form as (31):

Y =8X + E, X = (x j ), (47)

where the data and error vectors have been modified as above to account for the
differences between extended and point objects.

Our goal is to establish the performance guarantee for TV-min

min‖Z‖TV, s.t. ‖Y −8Z‖2 ≤ ‖E‖2. (48)

We accomplish this by transforming (48) into BPDN for CJS (13).
Define X = (X1, X2) with

(X1, X2)= `
2(11V,12V ) ∈ Cm×2.



94 ALBERT FANNJIANG

Suppose the support of {v p+e1, v p+e2} is contained in L. Simple calculation yields

yl =
`2
√

n
eiπξl

∑
p∈L

v p+e1eiπ(p1ξl+p2ηl ) =
`2
√

n
eiπηl

∑
p∈L

v p+e2eiπ(p1ξl+p2ηl )

and thus

(e−iπξl − 1)yl =
`2
√

n

∑
p∈L

(v p+e1 − v p)eiπ(p1ξl+p2ηl ), (49)

(e−iπηl − 1)yl =
`2
√

n

∑
p∈L

(v p+e2 − v p)eiπ(p1ξl+p2ηl ). (50)

Define Y = (Y1, Y2) with

Y1 = ((e−iπξl − 1)yl), Y2 = ((e−iπηl − 1)yl) ∈ Cn,

and E = (E1, E2) with

E1 = ((e−iπξl − 1)el), E2 = ((e−iπηl − 1)el) ∈ Cn. (51)

We rewrite (47) in the form

Y =8X + E, (52)

subject to the constraint
11 X2 =12 X1 (53)

which is the discrete version of curl-free condition. This ensures that the reconstruc-
tion by line integration of (v p) from X is consistent (that is, path-independent).

To see that (53) is necessary and sufficient for the recovery of (v p), consider,
for example, the notations in Figure 1 and suppose v0,0 is known. By definition of
the difference operators 11 and 12 we have

v1,0 = v0,0+ (11V )0,0, v0,1 = v0,0+ (12V )0,0.

In general, we can determine v p, p ∈ L, iteratively from the relationship

v p+e1 = v p+ (11V ) p, v p+e2 = v p+ (12V ) p,

and the knowledge of V at any grid point. The path-independence in evaluating
vp1+1,p2+1,

vp1+1,p2+1 = vp1,p2 + (11V )p1,p2 + (12V )p1+1,p2

= vp1,p2 + (12V )p1,p2 + (11V )p1,p2+1,

implies that

(12V )p1+1,p2 − (12V )p1,p2 = (11V )p1,p2+1− (11V )p1,p2,
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(0,0)

(0,1) (1,1)

(1,0)

C C ′

C ′′

Figure 1. Consistency among cells C , C ′, and C ′′.

which is equivalent to (53).
Now (47) is equivalent to (52) with the constraint (53) provided that the value

of V at (any) one grid point is known. The equivalence between the original TV-
min (48) and the CJS formulation (13) with 8j =8 for all j , then hinges on the
equivalence of their respective feasible sets which can be established under the
assumption of Gaussian noise. When E in (47) is Gaussian noise, then so is E,
and vice versa, with variances precisely related to each other.

The random partial Fourier measurement matrix satisfies the RIP with n = O(s),
up to a logarithmic factor [Candès et al. 2006], while its mutual coherence µ be-
haves like O(n−1/2) [Fannjiang et al. 2010]. Therefore (18) implies the sparsity
constraint s=O(

√
n ) for the greedy approach which is more stringent than s=O(n)

for the BPDN approach.

7. Conclusion

We have developed a general compressive sensing (CS) theory (Theorems 1 and 2)
for constrained joint sparsity with multiple sensing matrices and obtained perfor-
mance guarantees parallel to those for CS theory for a single measurement vector
and matrix.

From the general theory we have derived 2-norm error bounds for the object and
the gradient, independent of the ambient dimension, for total variation minimiza-
tion (TV-min) and greedy estimates of piecewise constant objects.

In addition, the constrained joint sparsity (CJS) greedy algorithm can recover
exactly the gradient support (that is, the edges of the object) leading to an improved
2-norm error bound. Although the CJS greedy algorithm needs a higher number of
measurement data points than TV-min for Fourier measurements the incoherence
property required is much easier to check, and is often the only practical way to
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Figure 2. The original 256× 256 Shepp–Logan phantom (left)
and the Shepp–Logan phantom and the magnitudes of its gradient
(right) with sparsity s = 2,184.

verify the restricted isometry property when the measurement matrix is not inde-
pendently and identically distributed or Fourier.

We end by presenting a numerical example demonstrating the noise stability
of TV-min. Efficient algorithms for TV-min denoising/deblurring exist [Beck and
Teboulle 2009; Weiss et al. 2009]. We use the open source code `1-MAGIC for
our simulation.

Figure 2 shows the 256 × 256 image of the Shepp–Logan phantom and the
modulus of its gradient. Clearly the sparsity (s = 2,184) of the gradient is much
smaller than that of the original image. We take 10,000 Fourier measurement data
points for the `1-min (1) and TV-min (5) reconstructions.

Because the image is not sparse, `1-min reconstruction produces a poor result
even in the absence of noise, shown in Figure 3. The relative error is 66.8% in

Figure 3. Noiseless `1-min reconstructed image (left) and the dif-
ferences (middle) from the original image. The plot on the right
is the gradient of the reconstructed image.

http://users.ece.gatech.edu/justin/l1magic/
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Figure 4. TV-reconstructed image with 5% (top left) and 10%
(bottom left) and the respective differences (middle) from the orig-
inal image. The plots on the right column are the magnitudes of
the reconstructed image gradients.

the `2 norm and 72.8% in the TV norm. Only the outer boundary, which has the
largest pixel values, is reasonably recovered.

Figure 4 shows the results of TV-min reconstruction in the presence of 5% (top)
or 10% (bottom) noise. Evidently, the performance is greatly improved.

Appendix A: Proof of Theorem 1

The argument is patterned after [Candès 2008] with adaptation to the CJS setting.

Proposition 1. We have

|<〈ϕ(Z), ϕ(Z′)〉| ≤ δs+s′‖Z‖2,2‖Z′‖2,2

for all Z, Z′ supported on disjoint subsets T, T ′ ⊂ {1, . . . ,m} with |S| ≤ s and
|S′| ≤ s ′.

Proof. Without loss of generality, suppose that ‖Z‖2,2=‖Z′‖2,2= 1. Since Z⊥ Z′,
‖Z± Z′‖22,2 = 2. Hence we have from the RIP (14)

2(1− δs+s′)≤ ‖ϕ(Z± Z′)‖22,2 ≤ 2(1+ δs+s′). (54)
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By the parallelogram identity and (54)

|<〈ϕ(Z), ϕ(Z′)〉| = 1
4

∣∣‖ϕ(Z)+ϕ(Z′)‖22,2−‖ϕ(Z)−ϕ(Z′)‖22,2∣∣≤ δs+s′,

which proves the proposition. �

By the triangle inequality and the fact that X is in the feasible set we have

‖ϕ(X̂ − X)‖2,2 ≤ ‖ϕ(X̂)−Y‖2,2+‖Y −ϕ(X)‖2,2 ≤ 2ε. (55)

Set X̂ = X + D and decompose D into a sum of DS0, DS1, DS2, . . . , each of row
sparsity at most s. Here S0 corresponds to the locations of the s largest rows of X ;
S1 the locations of the s largest rows of DSc

0
; S2 the locations of the next s largest

rows of DSc
0
; and so on.

Step (i). Define the norm

‖Z‖∞,2 =max
j
‖row j (Z)‖2.

For j ≥ 2,
‖DS j‖2,2 ≤ s1/2

‖DS j‖∞,2 ≤ s−1/2
‖DS j−1‖2,2

and hence ∑
j≥2

‖DS j‖2,2 ≤ s−1/2
∑
j≥1

‖DS j‖1,2 ≤ s−1/2
‖DSc

0
‖1,2. (56)

This yields, by the Cauchy–Schwarz inequality,

‖D(S0∪S1)c‖2,2 =

∥∥∥∥∑
j≥2

DS j

∥∥∥∥
2,2
≤

∑
j≥2

‖DS j‖2,2 ≤ s−1/2
‖DSc

0
‖1,2. (57)

Also we have

‖X‖1,2 ≥ ‖X̂‖1,2 = ‖XS0 + DS0‖1,2+‖XSc
0
+ DSc

0
‖1,2

≥ ‖XS0‖1,2−‖DS0‖1,2−‖XSc
0
‖1,2+‖DSc

0
‖1,2,

which implies
‖DSc

0
‖1,2 ≤ 2‖XSc

0
‖1,2+‖DS0‖1,2. (58)

Note that ‖XSc
0
‖1,2 = ‖X − X (s)

‖1,2 by definition. Applying (57), (58), and the
Cauchy–Schwartz inequality to ‖DS0‖1,2 gives

‖D(S0∪S1)c‖2,2 ≤ ‖DS0‖2,2+ 2e0, (59)

where e0 ≡ s−1/2
‖X − X (s)

‖1,2.
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Step (ii). Define the inner product

〈A, B〉 =
∑
i, j

A∗i j Bi j .

Observe that

‖ϕ(DS0∪S1)‖
2
2,2

= 〈ϕ(DS0∪S1), ϕ(D)〉−
〈
ϕ(DS0∪S1),

∑
j≥2

ϕ(DS j )
〉

=<〈ϕ(DS0∪S1), ϕ(D)〉−
∑
j≥2

<〈ϕ(DS0∪S1), ϕ(DS j )〉

= <〈ϕ(DS0∪S1), ϕ(D)〉−
∑
j≥2

[<〈ϕ(DS0), ϕ(DS j )〉+<〈ϕ(DS1), ϕ(DS j )〉]. (60)

From (55) and the RIP (14) it follows that

|〈ϕ(DS0∪S1), ϕ(D)〉| ≤ ‖ϕ(DS0∪S1)‖2,2‖ϕ(D)‖2,2 ≤ 2ε
√

1+ δ2s‖DS0∪S1‖2,2.

Moreover, it follows from Proposition 1 that

|<〈ϕ(DS0), ϕ(DS j )〉| ≤ δ2s‖DS0‖2,2‖DS j‖2,2, (61)

|<〈ϕ(DS1), ϕ(DS j )〉| ≤ δ2s‖DS0‖2,2‖DS j‖2,2, (62)

for j ≥ 2. Since S0 and S1 are disjoint:

‖DS0‖2,2+‖DS1‖2,2 ≤
√

2
√
‖DS0‖

2
2,2+‖DS1‖

2
2,2 =

√
2‖DS0∪S1‖2,2.

Also by (60)–(62) and the RIP,

(1− δ2s)‖DS0∪S1‖
2
2,2 ≤ ‖ϕ(DS0∪S1)‖

2
2,2

≤ ‖DS0∪S1‖2,2

(
2ε
√

1+ δ2s + δ2s

∑
j≥2

‖DS j‖2,2

)
.

Therefore from (56) we obtain

‖DS0∪S1‖2,2 ≤ αε+ ρs−1/2
‖DSc

0
‖1,2, α =

2
√

1+ δ2s

1− δ2s
, ρ =

√
2δ2s

1− δ2s
,

and moreover by (58) and the definition of e0

‖DS0∪S1‖2,2 ≤ αε+ ρ‖DS0‖2,2+ 2ρe0

after applying the Cauchy–Schwartz inequality to bound ‖DS0‖1,2 by s1/2
‖DS0‖2,2.

Thus
‖DS0∪S1‖2,2 ≤ (1− ρ)

−1(αε+ 2ρe0)

if (14) holds.



100 ALBERT FANNJIANG

Finally,

‖D‖2,2 ≤ ‖DS0∪S1‖2,2+‖D(S0∪S1)c‖2,2 ≤ 2‖DS0∪S1‖2,2+ 2e0

≤ 2(1− ρ)−1(αε+ (1+ ρ)e0),

which is the desired result.

Appendix B: Proof of Theorem 2

We prove the theorem by induction.
Let supp(X)= S= {J1, . . . , Js} and

Xmax = ‖rowJ1(X)‖1 ≥ ‖rowJ2(X)‖1 ≥ · · · ≥ ‖rowJs (X)‖1 = Xmin.

In the first step,

d∑
j=1

|8∗j,J1
Y j | =

d∑
j=1

∣∣X J1 j + X J2 j8
∗

j,J1
8 j,J2 + · · ·+ X Js j8

∗

j,J1
8 j,Js +8

∗

j,J1
E j
∣∣

≥ Xmax− Xmax(s− 1)µmax−
∑

j

‖E j‖2. (B.1)

On the other hand, for any l /∈ supp(X),

d∑
j=1

|8∗j,lY j | =

d∑
j=1

∣∣X J1 j8
∗

j,l8 j,J1 + X J2 j8
∗

j,l8 j,J2 + · · · X Js j8
∗

j,l8 j,Js +8
∗

j,l E j
∣∣

≤ Xmaxsµmax+
∑

j

‖E j‖2. (B.2)

Hence, if

(2s− 1)µmax+
2
∑

j‖E j‖2

Xmax
< 1,

then the right-hand side of (B.1) is greater than the right-hand side of (B.2) which
implies that the first index selected by OMP must belong to supp(X).

To continue the induction process, we state the straightforward generalization
of a standard uniqueness result for sparse recovery to the joint sparsity setting
[Donoho et al. 2006, Lemma 5.3].

Proposition 2. Let Z = ϕ(X) and Y = Z+ E. Let Sk be a set of k indices and let
A ∈ Cn×d with supp (A)= Sk . Define

Y ′ = Y −ϕ(A) (B.3)

and
Z′ = Z−ϕ(A).
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Clearly, Y ′ = Z′ + E. If Sk ( supp(X) and the sparsity s of X satisfies 2s <
1+µ−1

max, then Z′ has a unique sparsest representation Z′ = ϕ(X ′) with the sparsity
of X ′ at most s.

Proposition 2 says that the selection of a column, followed by the formation of
the residual signal, leads to a situation like before, where the ideal noiseless signal
has no more representing columns than before, and the noise level is the same.

Suppose that the set Sk
⊆ supp(X) of k distinct indices has been selected and

that A in Proposition 2 solves the following least-squares problem:

A= arg min‖Y −8B‖2,2, s.t. supp(B)⊆ Sk, (B.4)

without imposing the constraint L. This is equivalent to the concatenation A= [A j ]

of d separate least-squares solutions

A j = arg min
B j
‖Y j −8j B j‖2, s.t. supp(B j )⊆ Sk . (B.5)

Let 8 j,Sk be the column submatrix of 8j indexed by the set Sk . By (B.3) and
(B.5), we have 8∗j,Sk Y ′j = 0 for all j , which implies that no element of Sk gets
selected at the (k+ 1)-st step.

In order to ensure that some element in supp(X) \ Sk gets selected at the
(k+ 1)-st step we only need to repeat the calculation (B.1)–(B.2) to obtain the
condition

(2s− 1)µmax+
2
∑

j‖E j‖2

‖X Jk+1‖1
< 1. (B.6)

Since
∑

j‖E j‖2 ≤
√

d‖E‖2,2 =
√

dε, (B.6) follows from

(2s− 1)µmax+
2
√

dε
Xmin

< 1, (B.7)

which is the same as (18) and allows us to apply Proposition 2 repeatedly.
By the s-th step, all elements of the support set are selected and by the nature of

the least-squares solution the 2-norm of the residual is at most ε. Thus the stopping
criterion is met and the iteration stops after s steps.

On the other hand, it follows from the calculation∑
j

‖Y ′j‖2 ≥
d∑

j=1

∣∣8∗j,Jk+1
Y ′j
∣∣=∑

j

∣∣X Jk+1 j +

s∑
i=k+2

X Ji i8
∗

j,Jk+1
8i,Ji +8

∗

j,Jk+1
E j
∣∣

≥ ‖rowJk+1(X)‖1−µmax(s− k− 1)‖rowJk+2(X)‖1−
∑

j

‖E j‖2

≥ (1−µmax(s− k− 1))‖rowJk+1(X)‖1−
∑

j

‖E j‖2,
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and (B.7) (equivalently, Xmin(1−µmax(2s− 1)) > 2
√

dε) that ‖Y‖1,2 >
√

dε for
k = 0, 1, . . . , s− 1. Thus the iteration does not stop until k = s.

Since X̂ is the solution of the least-squares problem (19), we have

‖Y −8X̂‖2,2 ≤ ‖Y −8X‖2,2 ≤ ε

and
‖8(X − X̂)‖22,2 ≤ 2‖Y −8X‖22,2+ 2‖Y −8X̂‖22,2 ≤ 2ε2,

which implies
‖X̂ − X‖2,2 ≤

√
2ε/λmin,

where

λmin=min
j
{the s-th singular value of the column submatrix of 8 j indexed by S}.

The desired error bound (20) can now be obtained from the following result
[Donoho et al. 2006, Lemma 2.2].

Proposition 3. Suppose s < 1+µ(8j )
−1. Every m × s column submatrix of 8j

has the s-th singular value bounded below by
√

1−µ(8j )(s− 1).

By Proposition 3, λmin ≥
√

1−µmax(s− 1) and thus

‖X̂ − X‖2,2 ≤
√

2ε
√

1−µmax(s− 1)
.
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