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SYMMETRY CLASSES FOR EVEN-ORDER TENSORS

MARC OLIVE AND NICOLAS AUFFRAY

We give a complete general answer to the problem, recurrent in continuum
mechanics, of determining of the number and type of symmetry classes of an
even-order tensor space. This kind of investigation was initiated for the space of
elasticity tensors, and since then different authors have solved this problem for
other kinds of physics, such as photoelectricity, piezoelectricity, flexoelectricity,
and strain-gradient elasticity. All these problems were treated using the same
computational method, which, though effective, has the drawback of not pro-
viding general results. Furthermore, its complexity increases with the tensorial
order. Here we provide general theorems that directly give the desired results
for any even-order constitutive tensor. As an illustration of this method, and for
the first time, the symmetry classes of all even-order tensors of Mindlin second
strain-gradient elasticity are provided.

1. Introduction

Physical motivation. In the last years there has been increased interest in gener-
alized continuum theories; see, for example, [Forest 1998; dell’Isola et al. 2009;
2012; Lebée and Sab 2011]. These works, based on the pioneering articles [Toupin
1962; Mindlin 1964; 1965], propose extended kinematic formulations, to take into
account size effects within the continuum. The price to be paid for this is the
appearance of tensors of order greater than four in the constitutive relations. These
higher-order objects are difficult to handle and extracting physically meaningful
information from them is not straightforward. The aim of this paper is to provide
general results concerning the type and number of anisotropic systems an even-
order tensor can have.

Such results have important applications, at least, for the modeling and numeri-
cal implementation of nonclassical linear constitutive laws:

Modeling: The purpose of modeling is, given a material and a set of physical
variables of interest, to construct the more general constitutive law (a linear
one, in the present context) that describes the behavior of that material. An
example of such a method is provided in [Thionnet and Martin 2006], where,
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given a set of variables V and the material symmetry group S, the authors
derive mechanical behavior laws using the theory of invariants and continuum
thermodynamics. In such regard our results will say, without making any
computation whether or not S is contained in the set of symmetry classes of
L(v, v′) the space of linear maps from v ∈ V to v′ ∈ V .

Numerical implementation: To implement a new linear constitutive law in a
finite-element code, one has to know the complete set of matrices needed
to model the associated anisotropic behavior. In that regard, our result is
a precious guideline, as it tells you how many matrices there are and how
to construct them. This is illustrated in the case of three-dimensional strain
gradient elasticity in [Auffray et al. 2013].

Constitutive tensors symmetry classes. In mechanics, constitutive laws are usually
expressed in terms of tensorial relations between the gradients of primary variables
and their fluxes [Gu and He 2011]. As is well known, this feature is not restricted
to linear behaviors, since tensorial relations appear in the tangential formulation
of nonlinear ones [Triantafyllidis and Bardenhagen 1996]. It is also known that
a general tensorial relation can be divided into classes according to its symmetry
properties. Such classes are known in mechanics as symmetry classes [Forte and
Vianello 1996], and in mathematical physics as isotropic classes or strata [Abud
and Sartori 1983; Auffray et al. 2011].

In the case of second-order tensors, the determination of symmetry classes is
rather simple. Using spectral analysis it can be concluded that any second-order
symmetric tensor1 can either be orthotropic ([D2]), transverse isotropic ([O(2)]),
or isotropic ([SO(3)]). Such tensors are commonly used to describe, for example,
heat conduction and electric permittivity.

For higher-order tensors, the determination of the set of symmetry classes is
more involved, and is mostly based on an approach introduced in [Forte and Vianello
1996] for the case of elasticity. Let us briefly detail this case.

The vector space of elasticity tensors, denoted by Ela throughout this paper, is
the subspace of fourth-order tensors endowed with the following index symmetries:

Minor symmetries: Ei jkl = Ej ikl = E j ilk .

Major symmetry: Ei jkl = Ekli j .

Symmetries will be specified using notation such as E(i j) (kl), where (. .) indi-
cates invariance under permutation of the indices in parentheses, and . . . . indicates
invariance with respect to permutations of the underlined blocks. Index symmetries
encode the physics described by the mathematical operator. The minor symmetries

1Such a tensor is related to a symmetric matrix, which can be diagonalized in an orthogonal basis.
The stated result is related to this diagonalization.
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stem from the fact that rigid body motions do not induce deformation (the symme-
try of ε), and that the material is not subjected to volumic couple (the symmetry
of σ ). The major symmetry is the consequence of the existence of free energy.
An elasticity tensor, E, can be viewed as a symmetric linear operator on T(i j), the
space of symmetric second-order tensors. According to [Forte and Vianello 1996],
for the classical action of SO(3), Ela is divided into eight symmetry classes (see
page 183 for the notation):

[Ela] = {[1], [Z2], [D2], [D3], [D4], [O(2)], [O], [SO(3)]},

which correspond, respectively, to the following physical classes:2 triclinic, mon-
oclinic, orthotropic, trigonal, tetragonal, transverse isotropic, cubic, and isotropic.
Besides this fundamental result, the interest of the Forte and Vianello paper was to
provide a general method to determine the symmetry classes of any tensor space
[Auffray et al. 2011]. Other results have been obtained by this method since then:

Property Tensor
Number
of classes Action Studied in

Photoelasticity T(i j)(kl) 12 SO(3) [Forte and Vianello 1997]
Piezoelectricity T(i j)k 15 O(3) [Geymonat and Weller 2002]
Flexoelectricity T(i j)kl 12 SO(3) [Le Quang and He 2011]
A set of tensors

of order six Ti jklmn 14 or 17 SO(3) [Le Quang et al. 2012]

The limitations of the Forte–Vianello approach. The method introduced by Forte
and Vianello is actually the most general.3 But, at the same time, it suffers from at
least two limitations:

(1) The computation of the harmonic decomposition.

(2) The specificity of the study for each kind of tensor.

In its original setting, the method requires the computation of the explicit har-
monic decomposition of the studied tensor, that is, its decomposition into the sum
of its SO(3)-irreducible components, also known as harmonic tensors4. Its explicit
computation, which is generally based on an algorithm introduced by Spencer
[1970], turns out to be intractable in practice as the tensorial order increases. But

2These symmetry classes are subgroups of the group SO(3) of space rotations. This is because
the elasticity tensor is of even order. To treat odd-order tensors, the full orthogonal group O(3) has
to be considered.

3Some other methods can be found in the literature, such as counting the symmetry planes [Chad-
wick et al. 2001], or studying the SU(2)-action on Ela [Bóna et al. 2004], and others, but these
methods are difficult to generalize to arbitrary vector spaces.

4Harmonic tensors are completely symmetric and traceless. They inherit this name because of a
well-known isomorphism in R3 between these tensors and harmonic polynomials [Backus 1970].
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this is not a real problem, since the only information needed is the number of
different harmonic tensors of each order appearing in the decomposition, that is,
the isotypic decomposition. Based on arguments presented in [Jerphagnon et al.
1978], there exists a direct procedure to obtain this isotypic decomposition from
the tensor index symmetries [Auffray 2008]. Such an approach has been used in
[Le Quang et al. 2012] to obtain the symmetry classes of sixth-order tensors.

As each kind of tensor space requires specific study, this specificity constitutes
the other limitation of the method. This remark has to be considered together
with the observation that, for even-order tensors it seems that there exist only two
possibilities. Namely, a tensor space has as many classes as

• the full symmetric tensor space (for example, Ela is divided into eight classes,
like the full symmetric tensor space [Forte and Vianello 1996]), or

• the generic tensor space5 (other fourth-order tensor spaces such as those of
photoelasticity [Forte and Vianello 1997], flexoelectricity [Le Quang and He
2011], etc., are divided into 12 classes, like the generic tensor space).

The same observation can also be made for second and sixth-order tensors
[Le Quang et al. 2012]. Understanding the general rule behind this observation
would be an important result in mechanics. Its practical implication is the direct
determination of the number and the type of symmetry classes for any constitu-
tive law, no matter its order. This result is valuable for understanding generalized
continuum theories, in which higher-order tensors are involved in constitutive laws.

Organization of the paper. In Section 2, the main results of this paper, Theorems I,
II, and III, are stated. As an application, the symmetry classes of the even-order con-
stitutive tensor spaces of Mindlin second strain-gradient elasticity are determined.
Results concerning the sixth-order coupling tensor and the eighth-order second
strain-gradient tensor are given for the first time. Obtaining the same results with
the Forte–Vianello approach would have been much more difficult. Other sections
are dedicated to the construction of our proofs. In Section 3, the mathematical
framework used to obtain our result is introduced. Thereafter, we study the sym-
metry classes of a couple of harmonic tensors, which is the main purpose of the
tool named the clips operator. We then give the associated results for couples of
SO(3)-closed subgroups (Theorem 4.6 and Table 2). Thanks to these results, and
with the help of previous work on the topic [Ihrig and Golubitsky 1984], we obtain
in Section 5 some general results concerning symmetry classes for general even-
order tensors. In Section 6 our main results are finally proved. The Appendix is
devoted to proofs and the calculus of clips operations.

5The n-th order generic tensor is a n-th order tensor with no index symmetry.



SYMMETRY CLASSES FOR EVEN-ORDER TENSORS 181

2. Main results

In this section, our main results are stated. In the first subsection, the construction
of constitutive tensor spaces (CTS) is discussed. This construction allows us to
formulate our main results in the next subsection. Finally, the application of these
results to Mindlin second strain-gradient elasticity (SSGE) is considered. Precise
mathematical definitions of the symmetry classes are given in Section 3.

Construction of CTS. Linear constitutive laws are linear maps between the gradi-
ents of primary physical quantities and their fluxes. Each of these physical quanti-
ties (see Table 1 on the next page) is in fact related to subspaces6 of tensors spaces;
these subspaces will be called state tensor spaces (STS). These STS will be the
primitive notion from which the CTS will be constructed.

Notation. L(F,G) will indicate the vector space of linear maps from F to G.

Now we consider two STS, E1 = TG and E2 = Tf , respectively of order p
and order q, possibly with index symmetries. As a consequence, they belong to
subspaces of

⊗p
R3 and

⊗q
R3. A constitutive tensor C is a linear map between

E1 and E2, that is, an element of the space L(E1, E2). This space is isomorphic,
modulo the use of an euclidean metric, to E1 ⊗ E2. Physical properties lead to
some index symmetries on C ∈ E1⊗ E2; thus the vector space of such C is some
vector subspace TC of E1⊗ E2.

Now, each of the spaces E1, E2, and E1⊗ E2 has natural O(3) actions. In this
paper, we are concerned with cases in which p+ q = 2n. In such a situation, it is
known that the O(3)-action on E1⊗E2 reduces to that of SO(3) [Forte and Vianello
1996]. We therefore have

L(E1, E2)' E1⊗ E2 ⊂ Tp
⊗Tq

= Tp+q=2n.

Here are some examples of this construction:

Property E1 E2
Tensor product Number

for CTS of classes
Elasticity T(i j) T(i j) Symmetric 8
Photoelasticity T(i j) T(i j) Standard 12
Flexoelectricity T(i j)k Ti Standard 12
First-gradient elasticity T(i j)k T(i j)k Symmetric 17

This table shows two kinds of CTS, describing respectively:

• coupled physics (tensors such as photoelasticity and flexoelectricity, encoding
the coupling between two different physics), and

6Because of some symmetries.
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Physical notion Mathematical object Mathematical space

Gradient Tensor state T1 ∈
⊗p

R3 TG : tensor space with
index symmetries

Fluxes of gradient Tensor state T2 ∈
⊗q

R3 Tf : tensor space with
index symmetries

Linear constitutive law C ∈ L(TG,Tf ) TC ⊂ L(TG,Tf )

Table 1. Physical and mathematical links.

• proper physics (tensors such as classical and first-gradient elasticities, describ-
ing a single physical phenomenon).

On the mathematical side this implies:

• Coupled physics: the spaces E1 and E2 may differ, and when E1 = E2 linear
maps are not self-adjoint.

• Proper physics: we have E1 = E2 and linear maps are self-adjoint.7

Therefore, the elasticity tensor is a self-adjoint linear map between the vector
space of deformation tensors and the vector space of stress tensors. These two
spaces are modeled on T(i j). The vector space of elasticity tensors is therefore
completely determined by T(i j) and the symmetric nature of the tensor product,
that is, Ela= T(i j)⊗

S T(kl), where ⊗S denotes the symmetric tensor product. On
the side of coupling tensors, flexoelectricity is a linear map between E1 = T(i j)k ,
the space of deformation gradients, and E2 = Tl , the electric polarization; therefore
Flex= T(i j)k ⊗Tl .

Symmetry classes of even-order tensor spaces. Consider an even-order CTS T2n .
It is known [Jerphagnon et al. 1978] that this space can be decomposed orthogo-
nally8 into a full symmetric space and a complementary one which is isomorphic
to a tensor space of order 2n− 1, that is:

T2n
= S2n

⊕C2n−1.

Let us introduce:

S2n: the vector space of 2n-th order completely symmetric tensors.

G2n: the vector space of 2n-th order tensors with no index symmetries.9

The following observation is obvious:

S2n
⊆ T2n

⊆ G2n,

7This is a consequence of the assumption of the existence of a free energy.
8The related dot product is constructed by 2n products of the R3 canonical one.
9Formally this space is constructed as G2n

=
⊗2n R3.
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and therefore, if we denote by I the operator which gives to a tensor space the set
of its symmetry classes, we obtain:

I(S2n)⊆ I(T2n)⊆ I(G2n).

The symmetry group of even-order tensors is conjugate to SO(3)-closed subgroups
[Zheng and Boehler 1994; Forte and Vianello 1996]. Classification of SO(3)-closed
subgroups is a classical result that can be found in many references [Ihrig and
Golubitsky 1984; Sternberg 1994]. These subgroups are, up to conjugacy:

Lemma 2.1. Every closed subgroup of SO(3) is conjugate to precisely one group
from the following list:

{1,Zn,Dn,T,O,I,SO(2),O(2),SO(3)}.

Among these groups, we can distinguish:

Planar groups: {1,Zn,Dn,SO(2),O(2)}, which are O(2)-closed subgroups.

Exceptional groups: {T,O,I,SO(3)}, of which the first three are rotational sym-
metry groups of Platonic polyhedra.

Let us detail first the set of planar subgroups. We fix a base (i; j;k) of R3, and
denote by Q(v; θ) ∈ SO(3) the rotation about v ∈ R3, with angle θ ∈ [0; 2π).

• 1 is the identity.

• Zn (n ≥ 2) is the cyclic group of order n, generated by the n-fold rotation
Q(k; θ = 2π/n). which is the symmetry group of a chiral polygon.

• Dn (n ≥ 2) is the dihedral group of order 2n generated by Zn and Q(i;π),
which is the symmetry group of a regular polygon.

• SO(2) is the subgroup of rotations Q(k; θ) with θ ∈ [0; 2π).

• O(2) is the subgroup generated by SO(2) and Q(i;π).

The classes of exceptional subgroups are: T, the tetrahedral group of order
12 which fixes a tetrahedron, O, the octahedral group of order 24 which fixes an
octahedron (or a cube), and I, the subgroup of order 60 which fixes an icosahedron
(or a dodecahedron).

In Section 6, the symmetry classes of S2n and G2n are obtained:

Lemma 2.2. The symmetry classes of S2n are:

I(S2)= {[D2], [O(2)], [SO(3)]},

I(S4)= {[1], [Z2], [D2], [D3], [D4], [O(2)], [O], [SO(3)]},

I(S2n)= {[1], [Z2], . . . , [Z2(n−1)], [D2], . . . , [D2n], [O(2)], [T], [O], [I], [SO(3)]},
if n ≥ 3.
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Lemma 2.3. The symmetry classes of G2n are:

I(G2)={[1],[Z2],[D2],[SO(2)],[O(2)],[SO(3)]},

I(G4)={[1],[Z2],[Z3],[Z4],[D2],[D3],[D4],[SO(2)],[O(2)],[T],[O],[SO(3)]},

I(G2n)={[1],[Z2],...,[Z2n],[D2],...,[D2n],[SO(2)],[O(2)],[T],[O],[I],[SO(3)]},

if n ≥ 3.

The following table lists how many classes there are for each n:

n = 1 2 ≥ 3

#I(S2n) 3 8 2(2n+ 1)
#I(G2n) 6 12 4n+ 5

The symmetry classes of T2n are clarified by the following theorem:

Theorem I. Let T2n be a tensor space. Then either I(T2n)= I(S2n) or I(T2n)=

I(G2n).

In other words, the number and type of classes are the same as those of

• S2n , the space of 2n-order completely symmetric tensors, in which case the
number of classes is minimal, or

• G2n , the space of 2n-order generic tensors, in which case the number of classes
is maximal.

In fact, as specified by the following theorems, in most situations the number of
classes is indeed maximal.

Theorem II (coupling tensors). Let us consider T2p the space of coupling tensors
between two physics described by two tensor vector spaces E1 and E2. If these
tensor spaces are of orders greater than or equal to one, then I(T2p)= I(G2p).

Theorem III (proper tensors). Let us consider T2p, the space of tensors of a proper
physics described by the tensor vector space E. If this tensor space is of order p≥ 3,
and is solely defined in terms of its index symmetries, then I(T2p)= I(G2p).

Remark 2.4. Exceptions occur for

p = 1, when the space of symmetric second-order tensors is obtained, and

p = 2, when, in the case of T(i j), the space of elasticity tensors is obtained.

In each of these situations the number of classes is minimal. There is no other
situation where this case occurs. It should therefore be concluded that the space of
elasticity tensors is exceptional.
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Second strain-gradient elasticity (SSGE). Application of the former theorems will
be made on the even-order tensors of SSGE. First, the constitutive equations will
be summed up, and then the results will be stated. It worth noting that obtain-
ing the same results with the Forte–Vianello approach would have been far more
complicated.

Constitutive laws. In the second strain-gradient theory of linear elasticity [Mindlin
1965; Forest et al. 2011], the constitutive law gives the symmetric Cauchy stress
tensor10 σ (2) and the hyperstress tensors τ (3) and ω(4) in terms of the infinitesimal
strain tensor ε(2) and its gradients η(3) = ε(2)⊗∇ and κ(4) = ε(2)⊗∇ ⊗∇ through
the three linear relations:

σ (2) = E(4) : ε(2)+M(5) ∴ η(3)+N(6)
:: κ(4),

τ (3) =MT (5)
: ε+A(6) ∴ η(3)+O(7)

:: κ(4),

ω(4) = NT (6)
: ε(2)+OT (7) ∴ η(3)+B(8) :: κ(4),

(2-1)

where : , ∴ , and :: denote, respectively, the double, third, and fourth contracted
products. Above,11 σ(i j), ε(i j), τ(i j)k , η(i j)k = ε(i j),k , ω(i j)(kl), and κ(i j)(kl) = ε(i j),(kl)

are, respectively, the matrix components of σ (2), ε(2), τ (3), η(3), ω(4), and κ(4) rela-
tive to an orthonormal basis (i; j;k) of R3. And E(i j) (lm), M(i j)(lm)n , N(i j)(kl)(mn),
A(i j)k (lm)n , O(i j)k(lm)(no), and B(i j)(kl) (mn)(op) are the matrix components of the
related elastic stiffness tensors.

Symmetry classes. The symmetry classes of the elasticity tensors and of the first
strain-gradient elasticity tensors has been studied in [Forte and Vianello 1996;
Le Quang et al. 2012]. Hence, here we solely consider the spaces of coupling
tensors N(6) and of second strain-gradient elasticity tensors B(8).
• We define Ces to be the space of coupling tensors between classical elasticity

and second strain-gradient elasticity:

Ces= {N(6)
∈ G6

| N(i j)(kl)(mn)}.

A direct application of Theorem II leads to the result that

I(Ces)={[1],[Z2],. . .,[Z6],[D2],. . .,[D6],[SO(2)],[O(2)],[T],[O],[I],[SO(3)]}.

Therefore Ces is divided into 17 symmetry classes.

• We define Sgr to be the space of second strain-gradient elasticity tensors:

Sgr= {O(8)
∈ G8

| O(i j)(kl) (mn)(op)}.

10In this subsection only, tensor orders will be indicated by superscripts in parentheses.
11The comma classically indicates the partial derivative with respect to spatial coordinates. Su-

perscript T denotes transposition. Transposition is defined by permuting the p first indices with the
q last, where p is the tensorial order of the image of a q-order tensor.
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A direct application of Theorem III leads to the result that

I(Sgr)={[1],[Z2],. . .,[Z8],[D2],. . .,[D8],[SO(2)],[O(2)],[T],[O],[I],[SO(3)]}.

Therefore Sgr is divided into 21 symmetry classes.

3. Mathematical framework

In this section the mathematical framework of symmetry analysis is introduced. In
the first two subsections the notions of symmetry group and class are introduced;
the last is devoted to the introduction of irreducible spaces. The presentation is
rather general, and will be specialized to tensor spaces only at the end of the section.

Isotropy/symmetry groups. Let ρ be a representation of a compact real Lie group12

G on a finite dimensional R-linear space E:

ρ : G→ GL(E).

This action will also be denoted by

g · x= ρ(g)(x),

where g ∈ G and x ∈ E. For any element of E, the set of operations g in G leaving
this element invariant is defined as

6x := {g ∈ G | g · x= x}.

This set is known to physicists as the symmetry group of x and to mathematicians as
the stabilizer or isotropy subgroup of x. Owing to G-compactness, every isotropy
subgroup is a closed subgroup of G. Conversely, a dual notion can be defined for
G-elements. For any subgroup K of G, the set of K-invariant elements in E is
defined as

EK
:= {x ∈ E | k · x= x for all k ∈ K }.

Such a set is referred to as a fixed point set and is a linear subspace of E. In this
context we will set d(K ) = dim EK . It has to be observed that fixed-point sets
are group inclusion reversing, that is, for subgroups K1 and K2 of G, we have the
property

K1 ⊂ K2 =⇒ EK2 ⊂ EK1 .

For a given isotropy group K , the former sets are linked by the property

x ∈ EK
=⇒ K ⊂6x.

12In the following G will always represent a compact real Lie group, so this specification will
mostly be omitted.
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Isotropy/symmetry classes. We aim to describe objects that have the same sym-
metry properties but may differ by their orientations in space. The first point is to
define the set of all the positions an object can have. To that aim we consider the
G-orbit of an element x of E:

Orb(x) := {g · x | g ∈ G} ⊂ E.

Due to G-compactness this set is a submanifold of E. Elements of Orb(x) will
be said to be G-related. A fundamental observation is that G-related vectors have
conjugate symmetry groups. More precisely,13

Orb(x)= Orb(y) =⇒ 6x = g6yg−1 for some g ∈ G. (3-1)

Let us define the conjugacy class of a subgroup K ⊂ G by

[K ] = {K ′ ⊂ G | K ′ = gK g−1 for some g ∈ G}. (3-2)

An isotropy class (or symmetry class) [6] is defined as the conjugacy class of an
isotropy subgroup 6. This definition implies that there exists a vector x ∈ E such
that 6 =6x and 6′ ∈ [6]; furthermore 6′ = g6g−1 for some g ∈ G. The notion
of isotropy class is a good notion to define the symmetry property of an object
modulo its orientation: a symmetric group is related to a specific vector, but we
deal with orbits, which are related to isotropy classes because of (3-1). Due to G-
compactness there is only a finite number of isotropy classes [Bredon 1972], and
we introduce the notation

I(E) := {[1]; [61]; . . . ; [6l]},

the set of all isotropy classes. In the case G = SO(3) this result is known as
Hermann’s theorem [Herman 1945; Auffray 2008]. The elements of I(E) are
conjugate to SO(3)-closed subgroups; this collection was introduced in Lemma 2.1.

Irreducible spaces. For every linear subspace F of E, we set

g ·F := {g.x | g ∈ G, x ∈ F}

and we say that F is G-stable if g ·F⊂F for every g ∈ G. It is clear that, for every
representation, the subspaces {0} and E are always G-stable. If, for a representation
ρ on E, the only G-invariant spaces are the proper ones, the representation will be
said to be irreducible. For a compact Lie group, the Peter–Weyl theorem [Sternberg
1994] ensures that every representation can be split into a direct sum of irreducible

13With the classical coset notation, if H is a subgroup of G and g ∈ G is not in the subgroup H ,
then a left coset of H in G is defined

gH = {gh : h ∈ H},

and symmetrically for a right coset.
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ones. Furthermore, in the case G = SO(3), those irreducible representations are
explicitly known.

There is a natural action of SO(3) on the space of R3-harmonic polynomials.
If p is a harmonic polynomial and x ∈ R3, then for every g ∈ SO(3) we write

g · p(x)= p(g−1
· x).

Harmonic polynomials form a graded vector space, and to each subspace of a
given degree is associated an SO(3)-irreducible representation. Hk will be the
vector space of harmonic polynomials of degree k, with dim Hk

= 2k + 1. If we
take a vector space V to be an SO(3)-representation, it can be decomposed into
SO(3)-irreducible spaces:

V =
⊕

Hki .

Grouping together irreducible spaces of the same order, one obtains the SO(3)-
isotypic decomposition of a representation:

V =
n⊕

i=0

αi H
i ,

where αi is the multiplicity of the irreducible space Hi in the decomposition, and
n is the order of the highest-order irreducible space of the decomposition.

Application to tensor spaces. In mechanics, V is a vector subspace of
⊗p

R3. In
R3 there exists an isomorphism, φ, between harmonic polynomial spaces and har-
monic tensor spaces [Backus 1970; Forte and Vianello 1996]. Therefore all that
has been said for harmonic polynomials can be translated in terms of harmonic
tensors. A detailed discussion on this isomorphism can be found in [Backus 1970].
Therefore Hk

= ϕ(Hk) is the space of harmonic tensors, that is, the space of
completely symmetric and traceless tensors. According to this isomorphism, any
tensor space Tn can be decomposed into SO(3)-irreducible tensors:

Tn
=

n⊕
i=0

αi H
i .

The symmetry group of T ∈ Tn is the intersection of the symmetry groups of all
its harmonic components:14

6T =

n⋂
i=0

( αi⋂
j=0

6Hi, j

)
.

14In the notation Hi, j , the first superscript refers to the order of the harmonic tensor, while the
second indexes the multiplicity of Hi in the decomposition.
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In the same way, I(Tn) will be obtained as a function of the symmetry classes of
the irreducible representations involved in the harmonic decomposition of Tn . The
symmetry classes of SO(3)-irreducible representations are explicitly known [Ihrig
and Golubitsky 1984; Golubitsky et al. 1988]; what is unknown is how to combine
these results to determine the symmetry classes of V (or Tn).

4. The clips operation

The aim of this section is to construct symmetry classes of a reducible representa-
tion from irreducible ones. With that goal a new class-operator, named the clips
operator, will be defined. The main result of this section is given in Table 2,
which contains all clips operations between SO(3)-closed subgroups. It is worth
noting that this table contains more results than strictly needed for the proofs of our
theorems. Nevertheless, we believe that these results are interesting on their own
and may find application in other problems. The explicit proofs of these results
can be found in the Appendix.

Here we consider the intersection of two symmetry classes only. Extensions to
more general reducible representations will be treated in Section 5. Let us start
with the following lemma:

Lemma 4.1. Let E be a representation of a compact Lie group G that splits into a
direct sum of two G-stable subspaces:

E= E1⊕ E2, where g · E1 ⊂ E1 and g · E2 ⊂ E2 for all g ∈ G.

If we denote by I the set of all isotropy classes associated with E and by Ii the set
of all isotropy classes associated with Ei (i = 1, 2), then [6] ∈ I if and only if there
exist [61] ∈ I1 and [62] ∈ I2 such that 6 =61 ∩62.

Proof. If we take [61] ∈ I1 and [62] ∈ I2, we know there exist two vectors x1 ∈ E1

and x2 ∈ E2 such that 6i =6xi (i = 1, 2). Then, let x := x1+ x2.
For every g ∈61∩62 we have g ·x1+ g ·x2 = x1+x2 = x; thus 61∩62 ⊂6x.

Conversely for every g ∈6x we have

g · x= x= g · x1+ g · x2.

But, since the Ei are G-stable and form a direct sum, we conclude that g · xi = xi

(i = 1, 2). The reverse inclusion is proved.
The other implication is similar: if we take [6] ∈ I then we have 6 = 6x for

some x∈ E, and x can be decomposed into x1+x2. The same proof as above shows
that 6 =6x1 ∩6x2 . �

Lemma 4.1 shows that the isotropy classes of a direct sum are related to inter-
sections of isotropy subgroups. But as intersection of classes is meaningless, the
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results cannot be directly extended. To solve this problem, a tool called the clips
operator will be introduced. We will make sure of a lemma:

Lemma 4.2. For every two G-classes [6i ] (i = 1, 2), and for every g1 and g2 in
G, there exists g = g−1

1 g2 in G such that

[g161g−1
1 ∩ g262g−1

2 ] = [61 ∩ g62g−1
].

Proof. Let g = g−1
1 g2 and

6 = g161g−1
1 ∩ g262g−1

2 .

For every γ ∈ 6 we have γ = g1γ1g−1
1 = g2γ2g−1

2 for some γi ∈ 6i (i = 1, 2);
then

g1γ g−1
1 = γ1 ∈61 and g1γ g−1

1 = gγ2g−1
∈ g62g−1.

Thus we have g16g−1
1 ⊂61∩g62g−1, and conversely. Since g16g−1

1 is conjugate
to 6, we have proved the lemma. �

Definition 4.3 (clips operator). We define the action of the clips operator } on
G-classes [61] and [62] by setting

[61]} [62] := {[61 ∩ g62g−1
] | g ∈ G},

which is a subset of G-classes.

If we denote by 1 the identity subgroup, we have some immediate properties:

Proposition 4.4. For every G-class [6] we have

[1]} [6] = {[1]} and [G]} [6] = {[6]}.

Given two G-representations E1 and E2, if we denote by Ii the set of all isotropy
classes of Ei , the action of the clips operator can be extended to these sets via

I1} I2 :=
⋃
61∈I1
62∈I2

[61]} [62].

Then, by Lemma 4.1, we obtain:

Corollary 4.5. For every two G-representations E1 and E2, if I1 denotes the
isotropy classes of E1 and I2 the isotropy classes of E2, then I1 } I2 are all
the isotropy classes of E1⊕ E2.

Theorem 4.6. For any two SO(3)-closed subgroups 61 and 62, we have 1 ∈

[61]} [62]. The remaining classes in the clips product [61]} [62] are given
in Table 2.
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} [Zn] [Dn] [T] [O] [I] [SO(2)] [O(2)]

[Zm] [Zd ]

[Dm]
[Zd2]

[Zd ]

[Zd2]

[Zd ′2], [Zdz]

[Zd ], [Dd ]

[T]
[Zd2]

[Zd3]

[Z2]

[Zd3], [Dd2]

[Z2]

[Z3]

[T]

[O]

[Zd2]

[Zd3]

[Zd4]

[Z2]

[Zd3], [Zd4]

[Dd2], [Dd3]

[Dd4]

[Z2]

[Z3]

[T]

[Z2]

[D2], [Z3]

[D3], [Z4]

[D4], [O]

[I]

[Zd2]

[Zd3]

[Zd5]

[Z2]

[Zd3], [Zd5]

[Dd2]

[Dd3], [Dd5]

[Z2]

[Z3]

[T]

[Z2]

[Z3], [D3]

[T]

[Z2]

[Z3], [D3]

[Z5], [D5]

[I]

[SO(2)] [Zn]
[Z2]

[Zn]

[Z2]

[Z3]

[Z2]

[Z3], [Z4]

[Z2]

[Z3], [Z5]
[SO(2)]

[O(2)]
[Zd2]

[Zn]

[Z2]

[Dn]

[D2]

[Z3]

[D2]

[D3], [D4]

[D2]

[D3], [D5]

[Z2]

[SO(2)]
[Z2]

[O(2)]

Table 2. Action of the clips operation on SO(3)-subgroups.
Conventions: Z1 := D1 := 1; d2 := gcd(n, 2); d3 := gcd(n, 3);
d5 := gcd(n, 5); d ′2 := gcd(m, 2); dz := 2 if d = 1, 1 otherwise;
d4 := 4 if 4 |n, 1 otherwise.

5. Isotropy classes of harmonic tensors

We now turn to the construction of the symmetry classes of a reducible represen-
tation from its irreducible components. The first subsection states the main results
on symmetry classes of irreducible representations. Thereafter we derive from
the results of the previous section the basic properties of reducible representations.
These results will be used in Section 6 to prove the theorems stated in Section 2.

From now on, all results will be expressed in terms of tensor spaces.

Isotropy classes of irreducibles. The following result was obtained in [Ihrig and
Golubitsky 1984; Golubitsky et al. 1988]:
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Theorem 5.1. Let SO(3) act on Hk . The following groups are symmetry classes
of Hk :

(a) 1 for k ≥ 3.

(b) Zn (n ≥ 2) for n ≤ k when k is odd, n ≤ k/2 when k is even.

(c) Dn (n ≥ 2) for n ≤ k.

(d) T for k = 3, 6, 7 or k ≥ 9.

(e) O for k 6= 1, 2, 3, 5, 7, 11.

(f) I for k = 6, 10, 12, 15, 18 or k ≥ 20 and k 6= 23, 29.

(g) SO(2) for k odd.

(h) O(2) for k even.

(i) SO(3) for any k.

For future purposes, let us introduce some notation. For each integer k, we let:

0T(k) :=

{
T if T ∈ Ik,

∅ otherwise;

0O(k) :=

{
O if O ∈ Ik,

∅ otherwise;

0I(k) :=

{
I if I ∈ Ik,

∅ otherwise;

6(k) :=
{

SO(2) if SO(2) ∈ Ik,

∅ otherwise;

�(k) :=
{

O(2) if O(2) ∈ Ik,

∅ otherwise;

where Ik is the set of symmetry classes of Hk .

Isotropy classes of direct sum. We have this obvious lemma, directly deduced
from Theorem 5.1:

Lemma 5.2. 0T(k) 6=∅ =⇒ {[D2], [D3]} ⊂ Ik,

0O(k) 6=∅ =⇒ {[D2], [D3], [D4]} ⊂ Ik,

0I(k) 6=∅ =⇒ {[D2], . . . , [D5]} ⊂ Ik .

We denote by I(k, n) the (n− 1)-fold self clips product of Ik , which is the set
of isotropy classes of a n-tuple of k-th harmonic tensors [Auffray et al. 2011], that
is, nHk . The basic operations are, for all integers k ≥ 1 and n ≥ 2,

I(k, n) := Ik } I(k, n− 1) and I(k, 1) := Ik .
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On the simple example of H2, the following fact can be observed:

I(2, n) := I2} I(2, n− 1)= I2} I2
= {[1], [Z2], [D2], [O(2)], [SO(3)]}.

This result can be generalized:

Corollary 5.3. For all integers n ≥ 2 and k ≥ 2, the isotropy classes of nHk are

I(k, n) = Ik } Ik

= {[1], [Z2], . . . , [Zk],

[D2], . . . , [Dk], [0T(k)], [0O(k)], [0I(k)], [6(k)], [�(k)], [SO(3)]}.

Proof. From Theorem 5.1 we know that [Dl] ∈ Ik for 2 ≤ l ≤ k; furthermore,
[SO(3)] ∈ Ik . Then from Proposition 4.4 we know that, for all integers 2≤ l ≤ k
we will have (by induction), for all n ≥ 2, [Dl] ∈ I(k, n). Then, when we compute
I(k, n)}Ik we will have [Dl]}[Dl]= {[1], [Zl], [Dl]}. Neither [O(2)] nor [SO(2)],
with cyclic or dihedral conjugacy classes, generates other cases. The same occurs
for the clips product of cyclic groups. Now, because of Lemma 5.2 we also see
that no exceptional conjugacy class generates other cases. �

Corollary 5.4. For all integers 2≤ 2p < 2q, we have

I(2p, 2q) :=I2p } I2q

={[1], [Z2], . . . , [Zmax(q;2p)], [D2], . . . , [D2q ], [0T (2p)∪0T (2q)],
[0O(2p)∪0O(2q)], [0I (2p)∪0I (2q)], [O(2)], [SO(3)]}.

Proof. Because [SO(3)] ∈ Iki (i = 1, 2), it is clear that we will have all [Dl] for
2 ≤ l ≤ 2q. Then we will have all [Zi ]} [SO(3)], for 1 ≤ i ≤ p. We also have
[Z j ] ∈ [D j ]} [D j ], for 1≤ j ≤ 2q; this shows that

{[1], [Z2], . . . , [Zmax(q;2p)]} ⊂ I[2p, 2q].

Now, we can observe that the clips product of dihedral groups and [O(2)] does not
generate cyclic groups, and Lemma 5.2 shows that no other cases can be generated
with exceptional subgroups. �

6. Isotropy classes of constitutive tensors

The symmetry classes of an even-order tensor space. Let us consider the CTS T2n .
It is known that this space can be decomposed orthogonally into a full symmetric
space and a complementary one which is isomorphic to a tensor space of order
2n− 1 [Jerphagnon et al. 1978]:

T2n
= S2n

⊕C2n−1.
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Let us consider the SO(3)-isotypic decomposition of T2n:

T2n
=

2n⊕
k=0

αkHk, with α2n = 1.

The part related to S2n solely contains even-order harmonic tensors with multiplic-
ity one [Jerphagnon et al. 1978], that is,

S2n
=

n⊕
k=0

H2k and C2n−1
=

2n−1⊕
k=0

α′kHk with α′k =
{
αk for k odd,
αk − 1 for k even.

Using the clips operator, the symmetry classes of T2n can be expressed:

I(T2n) := I(S2n)} I(C2n−1).

Let us first determine the symmetry classes of S2n . Using the results of the previous
section, we have:

Lemma 6.1.

I(S2)= {[D2], [O(2)], [SO(3)]}

I(S4)= {[1], [Z2], [D2], [D3], [D4], [O(2)], [O], [SO(3)]}

I(S2n)= {[1], [Z2], . . . , [Z2(n−1)], [D2], . . . , [D2n], [O(2)], [T], [O], [I], [SO(3)]}
if n ≥ 3.

In particular,

#I(S2)= 3, #I(S4)= 8, #I(S2n)= 2(2n+ 1).

Proof. The case n = 1 is obtained as a direct application of Theorem 5.1 and
Proposition 4.4. For n ≥ 2, let us consider Corollary 5.4 in the case of k1= 2(n−1)
and k2 = 2n:

I(2(n− 1), 2n)

:= {[1], [Z2], . . . , [Z2(n−1)], [D2], . . . , [D2n], [0T (2(n− 1))∪0T (2n)],

[0O(2(n− 1))∪0O(2n)], [0I (2(n− 1))∪0I (2n)], [O(2)], [SO(3)]}.

In the collection of planar isotropy classes, [Z2n−1] and [Z2n] are missing. It should
be observed that the clips product I[2(n−1), 2n]}I2(n−2) can never complete the
sequence.

For exceptional groups it can be observed that for any n≥3 the SO(3)-irreducible
decomposition will contain H6. As {[T], [O], [I]} are isotropy classes for H6, it
would be the same for any space that contains H6.

Therefore, for n ≥ 3,
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I(S2n)={[1], [Z2], . . . , [Z2(n−1)], [D2], . . . , [D2n], [O(2)], [T], [O], [I], [SO(3)]}

and #I(S2n)= 2(2n+ 1).
For the case n = 2, we obtain the same result but without the classes T and I

and, in such a case, #I(S4)= 8. �

Definition 6.2. For a given SO(3) representation on the tensor space T2n (n ≥ 3),
we define

C(2n)

= {[1], [Z2], . . . , [Z2n], [D2], . . . , [D2n], [SO(2)], [O(2)], [T], [O], [I], [SO(3)]}.

We also define

C(2)= {[1], [Z2], [D2], [SO(2)], [O(2)], [SO(3)]},

C(4)= {[1], [Z2], . . . , [Z4], [D2], . . . , [D4], [SO(2)], [O(2)], [T], [O], [SO(3)]}.

One can observe that these sets are in fact all the isotropy classes allowed by
Hermann’s theorem, and we clearly have

#C(2)= 6, #C(4)= 12, #C(2n, n ≥ 3)= 4n+ 5.

Definition 6.3. Let T2n be a tensor space which SO(3)-irreducible decomposition
is T2n

'
⊕2n

k=0 αkHk . T2n is said to be even-harmonic (EH) if α2p+1 = 0 for each
0≤ p ≤ (n− 1).

Lemma 6.4. The vector space G2n of 2n-th order tensors with no index symmetries
is not EH.

Proof. For n ≥ 1, the induced reducible SO(3)-representation on G2n
=
⊗2n

R3 is
constructed by tensorial products of the vectorial one. Such a construction implies
odd-order tensors in the harmonic decomposition of G2n . �

Now we can prove Theorem I, which we restate in the following form:

Theorem I. Let T2n be a tensor space, with n ≥ 3. If T2n is EH then I(T2n) =

I(S2n); otherwise, I(T2n)= I(G2n).

Proof. We consider the SO(3)-irreducible decomposition of T2n , which can be
written T2n

' S2n
⊕C2n−1. The following inclusions always hold:

I(S2n)⊆ I(T2n)⊆ I(G2n)⊆ C(2n).

If T2n is not EH, there exists at least one k ∈ N such that α2k+1 6= 0; then

I(S2n)} [SO(2)] ⊆ I(S2n)} I(C2n−1)= I(T2n),

since, from Theorem 5.1, any odd-order harmonic tensor admits [SO(2)] as a sym-
metry class. From Lemma 6.1, dihedral groups are contained up to 2n in I(S2n),
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so the missing cyclic groups of I(S2n) are obtained by clips products with [SO(2)].
Therefore

I(S2n)}SO(2)= C(2n);

hence I(T2n) = C(2n). Since G2n is not EH, I(G2n) = C(2n). We conclude, as
desired, that if T2n is not EH then I(T2n)= I(G2n).

Conversely, if T2n is EH, C2n−1 contains only even-order irreducible spaces and
its leading harmonic spaces are, at most, of order 2(n − 1). If the orders of the
leading harmonic spaces are strictly less than 2(n− 1), the same analysis as for
Lemma 6.1 leads to the same conclusion. Now suppose that α′2(n−1) ≥ 1; using all
the previous results, we have

I(T2n)= I(S2n)} I(C2n−1)

= (I2n } I2(n−1))}
(
I(2(n− 1), α′2(n−1))} I(2(n− 2), α′2(n−2))

)
=
(
I2n } I(2(n− 1), 2)

)
= I(S2n)} I2(n−1).

Since I2(n−1) does not contain [SO(2)], the missing classes cannot be generated;
therefore I(T2n)= I(S2n). �

We must conclude, then, that for any 2n-order tensor space, the symmetry
classes are the same as those of either S2n or G2n . In the next subsection we
investigate under what conditions each of the possibilities holds.

Construction of a CTS. This last subsection will be devoted to the proof of our
main result. The space of constitutive tensors is a subspace of linear maps from E1

to E2. As seen in Section 2,

L(E1, E2)' E1⊗ E2 ⊂ Tp
⊗Tq

' T2n=p+q .

These vector spaces describe the physical quantities involved in the problem under
study. We know, from the previous section, that any CTS has as many symmetry
classes as either the complete symmetric tensor space, or the generic tensor space.
Here we are interested in obtaining the conditions both on E1 to E2 and on the tensor
product (symmetric or not) under which T2n is even-harmonic, and therefore has a
minimal number of symmetry classes. Distinction will be made between coupling
and proper tensor spaces, in the sense previously defined in Section 2.

Coupling tensor spaces. We consider here two STS given by their SO(3) isotypic
decompositions:

E1 = Tp
=

p⊕
i=0

βi H
i and E2 = Tq

=

q⊕
i=0

γ j H
j ,

with βp = γq = 1.

Lemma 6.5. If E1 6= E2, p > q and if Tp
⊗Tq is EH, then Tp is EH and Tq

=H0.
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Proof. It is sufficient to consider the tensor product of the two leading irreducible
spaces, and to use the Clebsch–Gordan product for SO(3) [Jerphagnon et al. 1978;
Auffray 2008]. We obtain

Hp
⊗Hq

=

p+q⊕
i=|p−q|

Hi .

Therefore p must be even, and q = 0. Therefore Tq
= γ0H0, and by hypothesis

γ0 = 1. Thus Tp has to be EH. �

Lemma 6.6. If E1 = E2 (and then p = q) and if Tp
⊗ Tp is EH then βi = γi .

Furthermore, if L(E1) is not self-adjoint then Tp
= H0.

Proof. The demonstration is the same as the preceding proof. �

As a direct application of the two preceding two lemmas, we have:

Theorem II. Consider T2p, the space of coupling tensors between two physics
described by two tensor vector spaces E1 and E2. If these tensor spaces have order
at least one, then I(T2n)= I(G2n).

Proper tensor spaces. In this case we have:

Lemma 6.7. Let E = E1 = E2 = Tp. Assume T2p
⊂ L(E) is self-adjoint and EH.

Then:

• If p = 2m+ 1, then T2m+1
= H2m+1.

• If p = 2m, then T2m
= H2m

⊕β0H0.

Proof. Because L(E) is self-adjoint the tensor product is replaced by the symmetric
tensor product, and if Tp

=
⊕p

i=0 βi H
i , the symmetric tensor product Tp

⊗
S Tp

can be decomposed into a direct sum of

β2
i Hi
⊗

S Hi and βiβ j H
i
⊗H j , with i < j ∈ {0, . . . , p},

with the following Clebsch–Gordan rule for the symmetric product:

Hk
⊗

S Hk
=

k⊕
i=0

H2i .

Therefore, we cannot have the tensor product Hi
⊗H j for 1≤ i ≤ p− 1 and i 6= j ;

thus we deduce that

Tp
= β0H0

⊕Hp and Tp
⊗

S Tp
= β0H0

⊕ (Hp
⊗

S Hp)⊕ 2β0Hp.

Then either p is odd, and β0 = 0, or p is even, and Tp
= β0H0

⊕Hp. �

We therefore obtain:
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Theorem III. Consider T2p, the space of tensors of a proper physics described
by the tensor vector space E. If this tensor space is of order p ≥ 3, and is solely
defined in terms of its index symmetries, then I(T2n)= I(G2n).

Proof. Any tensor subspace defined in terms of its index symmetries contains, as a
subspace, the space of full symmetric tensors. Since p = 3, the harmonic decom-
position of S3 does not satisfy the condition of Lemma 6.7. Direct application of
this lemma leads to the conclusion. �

Remark 6.8. It can be observed that CTS having a minimum number of classes
can nevertheless be constructed. They consist in spaces of self-adjoint linear appli-
cations between harmonic spaces, which are defined both from complete symmetry
under index permutations and a traceless property.

7. Conclusion

In this paper the symmetry class determination of even-order tensors has been
studied. Based on a new geometric approach, a complete and general answer to
this recurrent problem in continuum mechanics has been given. Application of our
results solves problems directly that would have been difficult to manage with the
Forte–Vianello method. As an example, and for the first time, the symmetry classes
of the even-order tensors involved in Mindlin second strain-gradient elasticity were
given. To reach this goal a geometric tool, called the clips operator, has been intro-
duced. Its main properties and all the products for SO(3)-closed-subgroups were
also provided. We believe that these results may find applications in other contexts.
Using the geometrical framework introduced in this paper, some extensions of the
current method can be considered:

• Extending this approach to odd-order tensors.

• Taking into account the coexistence of different symmetry properties for the
physical properties of architectured multimaterials.

These extensions will be the objects of forthcoming papers.

Appendix: Clips operation on SO(3)-subgroups

Here we establish results concerning the clips operator on SO(3)-subgroups. The
geometric idea to study the intersection of symmetry classes relies on the sym-
metry determination of composite figures the symmetry groups of which are the
intersection of two elementary figures. As an example we consider the rotation
r = Q(k;π/3); determining D4 ∩ rD4rt is tantamount to establishing the set of
transformations letting the composite Figure 1 invariant.
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i

j

Figure 1. Composite figure associated with D4 ∩ rD4rt , where r=Q(k;π/3).

Parametrization of subgroups. We will define geometric elements for each SO(3)
closed subgroup:

• The cyclic group Zn is characterized by the Oz axis; it will be denoted by
Z0

n := Zn .

• The same convention is retained for the dihedral group Dn , that is, D0
n := Dn .

• For the cube C0 (see Figure 2a) we defined its vertex collection {Ai }i=1...8 =

(±1;±1± 1); C0 is O0-invariant.

• For the tetrahedron we consider Figure 2a and define T0 to be the tetrahedron
A1 A3 A7 A5; T0 is T0-invariant.

• For the dodecahedron (see Figure 2b), we denote by D0 the figure with the
following vertices (where φ is the golden ratio):

– twelve vertices of type (±a/2,±φ2a/2, 0) circularly permuted and
– eight vertices of a cube with coordinates (±φa/2,±φa/2,±φa/2).

b
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b
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Figure 2. Cube C0 (a) and dodecahedron D0 (b).
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Axes and subgroup classes. For every SO(3)-subgroup, we defined its g conju-
gate in the following way: K g

= gK 0gt , where the superscript g indicates the
transformation, and 0 the initial configuration. To proceed towards our analysis
we need to introduce the following group decomposition [Ihrig and Golubitsky
1984; Golubitsky et al. 1988].

Definition A.1. Let K1, K2, . . . , Ks be subgroups of6. Then 6 is the direct union
of the Ki if

6 =

s⋃
i=1

Ki and Ki ∩ K j = {e} if i 6= j.

In this case we write K =
⊎s

i=1 Ki .

We give some important details about the geometric structure of an SO(3)-
subgroup:

• Z0
n is characterized by the Oz axis, generated by k. For every rotation g ∈

SO(3), we denote by a the axis generated by gk and let Za
n = Zg

n indicate the
rotation axis.

• D0
n is characterized by its primary axis Oz and several secondary axes bl .

Therefore

D0
n = Z0

n

n−1⊎
l=0

Zbl
2 . (A.1)

Each bl is perpendicular to Oz. They are related by the Z0
n generator. D0

n is
chosen such that one bl is generated by i. For every rotation g ∈ SO(3) we
define a — generated by gk — to be the primary axis and b — generated by
gi — to be the secondary one; this is denoted by

Da,b
n = Dg

n .

• The subgroup T0 can be split into a direct union of cyclic subgroups [Ihrig
and Golubitsky 1984]:

T0
=

4⊎
i=1

Zvti
3 ]

3⊎
j=1

Zet j
2 , (A.2)

where the vertex axes of the tetrahedron are written vti and the edge axes et j ;
the details of these axes appear in Figure 2a. Each conjugate subgroup Tg

will be characterized by the set of its axes (gvti , geti ), g ∈ SO(3).

• The octahedral subgroup O0 splits into

O0
=

3⊎
i=1

Z f ci
4 ]

4⊎
j=1

Zvc j
3 ]

6⊎
l=1

Zecl
2 , (A.3)
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Figure 3. Symmetry axes of C0.

where the vertex, edge, and face axes are denoted respectively by vci , ec j ,
and f c j . Details can be found in Figure 3. For every rotation g ∈ SO(3), Og

is characterized by its set of transformed axes (g f ci , gec j , gvcl).

• The icosahedral group I0 splits into

I0
=

6⊎
i=1

Z f di
5 ]

10⊎
j=1

Zvd j
3 ]

15⊎
l=1

Zedl
2 , (A.4)

where the vertex, edge, and face axes are denoted respectively by vdi , ed j ,
and f d j ; the details can be found in Figure 2b. The vertex axes vd j are
characterized by the vertices D j for j = 1 . . . 10.

Planar subgroups.

Cyclic subgroups. We begin with the following lemma.

Lemma A.2. For every two integers m and n greater than 2, and for every two
axes a and b:

• If a 6= b then Za
n ∩Zb

m = 1.

• If a = b then by setting d := gcd(m, n) we will have Za
n ∩Zb

m = Za
d .

Proof. Let g ∈ Za
n∩Zb

m , with a 6= b. Both a and b are generated by two noncollinear
eigenvectors for g, with eigenvalue 1. As det g = 1 the third eigenvalue is also 1,
therefore g = e. Thus we have the first point of the lemma. If now we take, for
example, a common rotation of Z0

n and Z0
m , then this rotation corresponds to an
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angle θ = 2lπ/n = 2rπ/m with r and l integers. Thus lm = rn and, setting
m = dm1 and n = dn1, we will have lm1 = rn1. As m1 and n1 are relatively prime,
we deduce that

l = αn1 and then θ = 2lπ
n
=

2απ
d
∈ Z0

d .

The converse inclusion is obvious, so we can conclude the lemma. �

A direct application of Lemma A.2 to the intersection Z0
n ∩Zg

n leads to the result:

Lemma A.3. For all integers n and m, we set d=gcd(n,m); we have [Zn]}[Zm]=

{[1], [Zd ]}.

Dihedral subgroups. Let us consider first the intersection 0 = D0
n ∩Za

m . As D0
n =

Z0
n
⊎n

l=1 Zbl
2 the following cases have to be considered:

• When Oz = a, the intersection 0 = Z0
n ∩Za

m and one can apply Lemma A.2.

• When, for some l, we have a = bl , then Z0
n ∩Za

m = 1 and one has to consider
Zb

2 ∩Za
m , which equals the identity as soon as m is odd.

Lemma A.4. For every two integers n and m, we set d := gcd(n,m) and d2(m) :=
gcd(m, 2); then we have

[Dn]} [Zm] = {[1], [Zd2(m)], [Zd ]}.

Now consider the second kind of intersection:

0 = D0
n ∩Dg

m =

(
D0

n = Z0
n ]

n⊎
l=1

Zbl
2

)
∩

(
Dg

m = Za
m ]

m⊎
l=1

Zgbl
2

)
.

The following cases have to be considered:

• When Oz = a and Ox = gbl0 for some l: if d = 1 then 0 = Zb0
2 , otherwise

0 = D0
m .

• When Oz = a and Ox 6= gbl : 0 = Z0
d .

• When Oz = gbl for some l: if n is even then 0 = Z2, otherwise 0 = 1. The
results are the same when the primary axis of Dg

m coincides with a secondary
axis of D0

n .

Lemma A.5. For all integers n and m, we set d := gcd(n,m) and

d2(m) := gcd(m, 2), d2(n) := gcd(n, 2), dz :=
{

2 if d = 1,
1 otherwise.

Then we have [Dn]} [Dm] = {[1], [Zd2(n)], [Zd2(m)], [Zdz], [Zd ], [Dd ].
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Clips operations on exceptional and maximum subgroups. Here we are concerned
with the subgroups T0, O0, I0, SO(2)0, and O(2)0. For these studies, we will
use results concerning their proper subgroups [Ihrig and Golubitsky 1984]. This
information is summed up in the following diagram [Auffray et al. 2011], whose
arrows are to be understood as inclusion of conjugates.

Figure 4. Exceptional subgroups in the poset of the closed sub-
group of SO(3).

Tetrahedral subgroup. We revisit the decomposition (A.2):

T0
= Zvt1

3 ]Zvt2
3 ]Zvt3

3 ]Zvt4
3 ]Zet1

2 ]Zet2
2 ]Zet3

2 .

We begin by studying T0
∩Za

n . As a consequence of Lemma A.2, the primary axis
of Za

n must be an edge axis or a face axis of the tetrahedron. We therefore obtain:

Lemma A.6. For every integer n, we set d2(n) := gcd(n, 2) and d3(n) := gcd(3, n);
then we have [Zn]} [T] = {[1], [Zd2(n)], [Zd3(n)]}.

Now let us consider 0 = T0
∩Dg

n . We will use the primary and secondary axes
of the dihedral subgroup:

Dg
n = Za

n

⊎
Zb

2.

We recall that the vertex axes of the tetrahedron are denoted by vti and the edge
axes are denoted by et j . It is clear that 0 is a subgroup of T0. Furthermore:
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• As soon as 3 |n if a = vti then 0 = Z3 is maximal.

• When 2|n we can find g such that a = et j . Then if b= et j , 0=D2; otherwise
0 = Z2.

• In any case, when we only have b = et j , then 0 = Z2.

Finally we can deduce the lemma:

Lemma A.7. For every integer n we denote d2(n) := gcd(2, n) and d3(n) :=
gcd(3, n); then we have [Dn]} [T] = {[1], [Z2], [Zd3(n)], [Dd2(n)]}.

Now, for the study of 0 =T0
∩Tg the arguments will be based on T subgroups

as well as on the axes.

• First, we can find a g such that all the axes are modified; in this case 0 = 1.

• A rotation around a face or an edge axis can be found such that only this axis
is left fixed. Then 0 = Z2 or 0 = Z3 depending on the fixed axis.

• If we have 0 ⊃ D2 then we can deduce that g carries two edge axes onto two
edge axes. After a given permutation of axes (which leaves fixed T0) we can
suppose that g leaves fixed axes vt1 and vt2; we then conclude that g fixes
also the axis vt3 and then Tg

= T0. Thus we have here 0 = T0.

We deduce here the following lemma:

Lemma A.8. We have [T]} [T] = {[1], [Z2], [Z3], [T].

Octahedral subgroup. We begin by taking back the decomposition (A.3):

O0
=

3⊎
i=1

Z f ci
4 ]

4⊎
j=1

Zvc j
3 ]

6⊎
l=1

Zecl
2 .

As in the case of the tetrahedron, we directly get the lemma:

Lemma A.9. For every integer n, we write

d2(n)= gcd(n, 2), d3(n)= gcd(n, 3), d4(n)=
{

4 if 4 |n,
1 otherwise.

Then we have [Zn]} [O] = {[1], [Zd2(n)], [Zd3(n)], [Zd4(n)].

To study the clips operation with dihedral groups, we proceed in the same way
as for the tetrahedron subgroup. The purpose is to examine axes of the cube and
dihedral group. The arguments are about the same in each case. Therefore we will
only detail the cases where 4 - n, 3 |n and n is odd.

• If a = vc j : then if b = f c j , 0 = D3; otherwise 0 = Z3.

• If a = f c j : then if b = f c j , 0 = Z2; otherwise 0 = 1.

• If a = ec j : then if b = ec j or b = f c j , 0 = Z2.
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All these arguments leads us to the following lemma:

Lemma A.10. For every integer n, we set

d2(n) := gcd(n, 2), d3(n) := gcd(n, 3), d4(n) :=
{

4 if 4 |n,
1 otherwise.

Then we have [Dn]} [O] = {[1], [Z2], [Zd3(n)], [Zd4(n)], [Dd2(n)], [Dd3(n)], [Dd4(n)]}.

Now, we take 0=O0
∩Tg and one can observe that if 0 is necessarily a common

subgroup of O0 and Tg, then its class must contain (in the sense of the partial order)
[1], [Z2], [Z3], [D2], or [T]. After that:

• There exists a rotation g around an edge axis of T0 (that is, a common face
axis of the cube) such that only this axis is fixed; and then 0 = Z2.

• There exists a rotation g around a vertex axis of T0 (that is, a common vertex
axis of the cube) such that only this axis is fixed; and then 0 = Z3.

• As soon as 0 ⊃ D2, as in the tetrahedral case, we necessarily have 0 = T0.

We conclude here the lemma:

Lemma A.11. We have [T]} [O] = {[1], [Z2], [Z3], [T]}.

For the study of 0 = O0
∩ Og we will also use arguments based on subgroups.

Some results are nevertheless more subtle:

• First, there exists a rotation g that fixes only one edge axis, and in that case
0 = Z2.

• Then there exists a rotation that leaves fixed only one vertex axis, and in that
case 0 = Z3.

• There exists also a rotation that leaves fixed only one face axis, and no other
axis is fixed. See the figure below, which illustrates the case 0 = Z4.

b b

bbb

b b

bb

b

b

b

b

b

b

b

b

b

O0
∩Og
= Z4

• We can also find a rotation that leaves fixed a face axis and which brings an
edge axis onto a face axis. Indeed, when we take g = Q(i;π/4) we obtain
0 = Zi

4 ]Zk
2 = D4; see left figure on the next page.
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O0
∩Og
= D4 O0

∩Og
= D2

• If we take g = Q(k;π/4) ◦Q(i;π/4) we directly obtain 0 = D2. We can
exactly compute that g f c3 = ec6, gec1 = f c1, and gec2 = ec5 and no other
axes correspond; see figure above and to the right.

• If we take g =Q(vc1, π) we will find 0 = D3 with vc1 as primary axis and
ec5 a secondary axis.

• If 0⊃T then, necessarily, g leaves fixed the three edge axes of the tetrahedron,
and then g will fix the cube C0; thus 0 = O0.

Finally we get the lemma:

Lemma A.12. We have [O]} [O] = {[1], [Z2], [D2], [Z3], [D3], [Z4], [D4], [O]}.

Icosahedral subgroup. We take the decomposition (A.4):

I0
=

6⊎
i=1

Z f di
5 ]

10⊎
j=1

Zvd j
3 ]

15⊎
l=1

Zedl
2 .

As in the previous situations, we directly get the lemma:

Lemma A.13. For every integer n, we set

d2 := gcd(n, 2), d3 := gcd(n, 3), d5 := gcd(n, 5).

Then we have [Zn]} [I] = {[1], [Zd2], [Zd3], [Zd5]}.

Now, for the study of I0
∩Dg

n we again use the arguments about axes:

• If a = f t j or a = vt j , then 0 ∈ {Zd3,Zd5,Dd3Dd5}.

• If a = et j then 0 ∈ {Zd2,Dd2}.

When we argue on the secondary axis of Dg
n , we see that we can always have Z2.

Finally we get the lemma:
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Lemma A.14. For every integer n, we set

d2 := gcd(n, 2), d3 := gcd(n, 3), d5 := gcd(n, 5).

Then we have

[Dn]} [I] = {[1], [Z2], [Zd3], [Zd5], [Dd2], [Dd3], [Dd5]}}.

For the intersection I0
∩Tg it is clear, because of the inclusion T0

⊂ I0, that we
can obtain all the classes of [T]} [T]. If now this intersection contains a subgroup
D2, we will necessarily have

D2 = Zget1
2 ]Zget3

2 ]Zget3
2 ,

where geti are the three edge axis of the tetrahedron gT0. These three axes will
then have to correspond to three perpendicular axes of the dodecahedron. After
permutation of the axes, which leaves the dodecahedron fixed, we can suppose
that these three axes are generated by the three vectors of the basis. But, then, the
vertex axes of the tetrahedron will correspond to vertex axes of the embedded cube
in the dodecahedron. We can then deduce that the intersection will be the whole
T subgroup.

Now we have to study 0 = I0
∩Og. For that, we refer to the common subgroups

of [O] and [I]. Such subgroups can clearly be taken from the poset on page 203.
First, it is clear that, when the cube related to Og is the embedded cube in the
dodecahedron, we will have 0 = T.

We also can find a rotation g such that 0 contains D3: indeed, g has to bring
the vertex axis of the cube vc1 onto the vertex axis of the dodecahedron vd5 and
the edge axis of the cube ec5 onto the edge axis of the dodecahedron ed7. With the
maximality argument, we can deduce that 0 = D3. We now have to examine the
case of D2, Z3, and Z2:

• When 0 ⊃ D2, then, after permuting of the axes of the dodecahedron, we can
suppose that g leaves fixed the three axes of the basis vector. But these three
axes are axes of rotation of order 2 of the dodecahedron. Thus, g will fix the
cube C0 and we can deduce that Og

= O0. We then have 0 = T.

• We can find a rotation g around a vertex axis, for example, vd5 such that
0 = Z3.

• As above, we can find a rotation around an edge axis, such that 0 = Z2.

We finally conclude with the formula:

[O]} [I] = {[1], [Z2], [Z3], [D3], [T]}.

For the intersection 0= I0
∩Ig we will have to study the case of classes [T], [D3],

[D5], [D2], [Z3], [Z5], and [Z2]:
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• When 0 ⊃ T or 0 ⊃ D2, it then contains all the three second-order rotations
around each base axis, which will be three edge axes of the dodecahedron.
Thus we can deduce that g, after permutation of these axes, leaves fixed three
perpendicular axes, and then g leaves fixed I0; finally 0 = I.

• There exists a rotation g around an edge axis so that 0 = Z2. The same
argument leads us to Z3 and Z5.

• If we take g to be the second-order rotation around the axis vd3, we can
compute that this rotation only leaves fixed the axes vd3, ed6, ed8, and ed15,
and then 0 = D3.

• If we take g to be the second-order rotation around the face axis f d1 we can
also compute that it only leaves fixed the axes f d1, ed7, ed11, ed12, and ed14,
thus 0 = D5.
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