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A DIRECT APPROACH TO NONLINEAR SHELLS WITH
APPLICATION TO SURFACE-SUBSTRATE INTERACTIONS

MIROSLAV ŠILHAVÝ

The paper develops a direct, intrinsic approach to the equilibrium equations of
bodies coated by a thin film with a nonlinear shell like structure. The forms
of the equations in the reference and actual configurations are considered. The
equations are shown to coincide with those obtained by using coordinate systems
on the film or on the thin shell.

1. Introduction

This paper presents equilibrium equations of the system consisting of a bulk solid
and attached boundary film. The film is assumed to exhibit resistance to flexural
deformations in that its energy is a nonlinear function of the boundary first-order
deformation gradient and of a second-order tensor that represents a suitable version
of its curvature in the deformed state. Such a theory was developed by Steigmann
and Ogden [1997a; 1997b; 1999] in dimensions n = 2 (plane deformations) and
n = 3 (full three-dimensional deformations). The case n = 2 has also been treated
by Fried and Todres [Fried and Todres 2005]. The cited works by Steigmann
and Ogden generalize the situation in [Gurtin and Murdoch 1975; Podio-Guidugli
1988; Podio-Guidugli and Vergara-Caffarelli 1990; Steigmann and Li 1995; Stein-
mann 2008], where the film is modeled as a nonlinear membrane, i.e., its energy
is assumed to depend only on the first surface deformation gradient.

Steigmann and Ogden used a variational principle to derive the equilibrium
equations (among other things) and to show that they coincide with those of thin
nonlinear shells; see [Sanders 1963; Cohen and De Silva 1966; Naghdi 1971;
Pietraszkiewicz 1989].

The purpose of the present paper is to derive a direct, index-free, form of the
balance equations. This approach allows a more unified understanding of the under-
lying mechanics than the coordinate-based approach, where one is typically forced
to cover the manifold with coordinate patches.

The formalism I adopt is different from the intrinsic approaches in [Delfour
and Zolésio 1997] and [Favata and Podio-Guidugli 2011]. The basic feature of
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the present work is the treatment of the surface quantities as tensors in the three-
dimensional space and not just on the tangent space to the shell at the given point.
This allows for a fully tensorial form of the equilibrium equations. Both the ref-
erential and the actual configurations are considered. The main results are the
intrinsic form of the first variation of the surface energy Proposition 5.2 and the
associated equilibrium equations (15), the fully intrinsic form (17) of the effective
second-order stress tensor, the spatial intrinsic form of the equilibrium equations
Proposition 6.1, and the tangential and normal components of the equilibrium
equations Proposition 6.2. Up to the last mentioned item, no coordinate system is
invoked to derive the results. However, for reasons of comparison with the existing
coordinate approaches, in Section 7 I give the coordinate form of the main results
and show that they coincide with those obtained by different methods.

As for the intrinsic tensor calculus, only tensors in euclidean space will be em-
ployed, of orders 0, 1, 2, and 3. Tensors of orders 0 and 1 are scalars and vectors
from Rn (n ≥ 2; typically n = 2 or n = 3). Second-order tensors are either R-
valued bilinear forms on Rn

×Rn or linear transformations from Rn to Rn; we do
not distinguish these two interpretations graphically. The set of all second-order
tensors is denoted by Lin. The third-order tensors are mostly interpreted as Rn-
valued bilinear forms on Rn

×Rn . The set of all third-order tensors is denoted by T .

2. Geometry of deformation of a coated body

We identify the material points of the body with their positions x in a reference
configuration �⊂ Rn , where n ≥ 2 is arbitrary but in applications n = 2 or n = 3.
We assume that � is a bounded open set with sufficiently smooth boundary ∂�
with the unit outer normal n. We consider the bulk solid to be coated with an
elastic surface S ⊂ ∂�. We assume that S is a relatively open subset of ∂� with
a smooth boundary ∂S without corners.

The deformation of the coated body is described by a sufficiently smooth map
from the closure cl� of � so that the deformation y of the coating, i.e., the restric-
tion of y to the closure clS of S , is well defined and sufficiently smooth.

The deformation y of the bulk body is described by the bulk deformation gradient

F=∇y,

which is assumed to exist, be continuous, and of positive determinant, at every
point of cl�. Here ∇ indicates the gradient with respect to the position in the
reference configuration and at a given point of cl�, F is interpreted as a linear
transformation from Rn to Rn .

The surface deformation y of the coating is described by the surface deformation
gradient and by the referential version of the curvature tensor of the coating in the
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deformed configuration to be defined below. For the referential surface S of the
coating we introduce the curvature tensor L (also called the Weingarten tensor),
defined by

L=Vn, (1)

where V denotes the surface gradient. We here adopt the following convention for
the surface differentiation of maps with values is a finite-dimensional vector space
V defined on a manifold M of dimension k in Rn: if f :M→ V is a smooth
map then for every x ∈M the surface gradient V f (x) of f at x is a linear map
from the whole space Rn to V which satisfies V f (x)P(x)=V f (x), where P(x) is
a projection from Rn onto the tangent space Tan(M, x) of M at x, and

lim
x→x

x∈M,x 6=x

| f (x)− f (x)−V f (x)(x− x)|
|x− x|

= 0.

This convention differs from the alternative view [Federer 1969, Subsection 3.1.22;
Gurtin and Murdoch 1975; Gurtin 2000], where the surface gradient at the given
point is interpreted as a linear transformation from Tan(M, x) to V . The latter is
just the restriction of our V f (x) to Tan(M, x). Below we apply the same conven-
tion to the derivatives of the response functions for the surface energy with respect
to the surface deformation gradient and curvature. Our convention has the advan-
tage that the surface gradient at different points of M is an element of the same
linear space and one can thus iterate the procedure to define the second surface
gradient V 2 f (x) of f at x ∈M as the surface gradient of the surface gradient.
Thus V 2 f (x) = V (V f )(x) and we interpret V 2 f (x) as a bilinear transformation
from Rn

×Rn to V , defined by

V 2 f (x)(a,b)=V (V f b)a

for every a, b ∈ Rn . A comparison with [Murdoch and Cohen 1979/80] shows
that the second gradient as defined there is similarly the present second gradient
restricted to Tan(M, x)×Tan(M, x). In [Steigmann and Ogden 1999] the notion
of the second gradient is employed in the special case of the second surface gradient.
We shall see below that this notion of the second surface gradient coincides with
the present one also as far as the definition domain is concerned. We note that the
bilinear map V 2 f (x) is generally nonsymmetric, but its restriction to Tan(M, x)×
Tan(M, x) is symmetric. If V = Rn , i.e., if f is a scalar function, we identify
the linear transformation V f (x) from Rn to R with an equally denoted element
of Rn via the identification V f (x)a = V f (x) · a for each a ∈ Rn . The equation
V f (x)P(x)=V f (x) then reduces to P(x)V f (x)=V f (x), i.e., V f (x) is an element
of the tangent space to M at x. Similarly, the second gradient V 2 f (x) is identified
with a second-order tensor in Lin via V 2 f (x)(a,b)= a·V 2 f (x)b for each a, b∈Rn .
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We refer to [Šilhavý 2011, Appendix A and B] for more details on the present
conventions on the derivatives and gradients.

We define the surface deformation gradient F of y by

F=V y.

At the given point x of S, F is a second-order tensor on Rn which is assumed to
map Tan(S, x) onto Tan(S, y(x)), where S = y(S) is the actual configuration of
the coating. We denote by P the orthogonal projection onto the tangent space to S
and by P the orthogonal projection onto the tangent space to S. Then we have

FP= F, PF= F.

The tensor F is always noninvertible. However, we denote by F−1 the pseudoin-
verse, which at a given point of S is a linear transformation from Rn to Rn satisfying

F−1F= P, FF−1
= P.

Then F−1 always exists and is determined uniquely. If, for a given point of S , F is
the bulk deformation gradient at that point, then

F= FP, F−1
= F−1P,

where F−1 is the inverse of F in the standard sense.
We assume that the response of the coating depends on the first and second

deformation gradients, but on the second deformation gradient V 2y only through a
combination that can be regarded as the curvature tensor of the deformed configu-
ration S viewed from the reference configuration. That is, we introduce a bilinear
form K which is identified with an equally denoted second-order tensor by

K(a,b)= n ·V 2y(Pa,Pb)

for every a,b ∈ Rn , where

n=
cofFn

|cofFn|

is the unit outer normal to S . Here cofF is the cofactor tensor of F. If for any map
B on Rn

×Rn we introduce the symbol B ◦ (P,P) to denote the map on Rn
×Rn

given by
B ◦ (P,P)(a,b)= B(Pa,Pb)

for any a, b ∈ Rn , then we have

K= n ·V 2y ◦ (P,P)

and
K= K ◦ (P,P).



NONLINEAR SHELLS AND SURFACE-SUBSTRATE INTERACTIONS 215

Also, when viewed as a second-order tensor, K satisfies

PKP= K.

It is useful to note that the curvature L=Vn of the surface S is

L=−F−TKF−1.

Here V is the surface gradient on S , i.e., the surface gradient as defined above, but
for maps on M= S, and F−T

:= (F−1)T where T denotes the transposition.
If M⊂ Rn is a smooth manifold of dimension k and if

Q :M→ Lin(Rn, V ) (2)

is a map on M with values in the space Lin(Rn, V ) of linear transformations from
Rn to a finite-dimensional inner product space V , we define the surface divergence
div Q :M→ V by

a · div Q= tr
(
V (QTa)

)
(3)

for each a ∈ V where the transpose

QT
:M→ Lin(V,Rn)

is defined by b ·QTa=Qb ·a for each b ∈ Rn and a ∈ V . It follows directly from
the definition that if a :M→ V then

div(QTa)= a · div Q+Q ·Va, (4)

where
Q ·Va := tr

(
QTVa

)
.

If V = R, we identify Q :M→ Lin(Rn,R) with a vector field q :M→ Rn by
Qa= q · a for each a ∈ Rn and define the divergence of q to be the divergence of
Q; thus div q is a scalar field defined by

div q= tr(Vq)

and (3) can be rewritten as a · div Q= div(QTa) for each a ∈ V .
We say that Q as in (2) is superficial if Q = QP. In particular if Q :M→

Lin(Rn,R) and q :M→ Rn are related as above, Q is superficial if and only if q
is tangential, i.e., q is an element of the tangent space at every point: Pq= q.

We define the relative boundary ∂M of M by ∂M = clM \M where clM
is the closure of M in Rn . We assume that ∂M is sufficiently smooth. We denote
by m the relative normal to ∂M. This is a map which, at a given point of ∂M,
is an element to the tangent space to M defined, e.g., by m=Vϕ/|Vϕ| where ϕ
is a function defined locally on M such that the equation ϕ = 0 expresses locally
∂M. We here assume that M can be extended to a smooth manifold of dimension
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k in Rn which contains clM; this makes the tangent space to M defined also at
the points of ∂M and the equation ϕ = 0 makes sense. The surface divergence
theorem asserts that if Q as in (2) is superficial then∫

M
div Q dHk

=

∫
∂M

Qm dHk−1.

Here Hk is the k-dimensional area measure on M and Hk−1 the (k−1)-dimensional
area measure on ∂M.

Furthermore, the surface Piola transformation asserts that if Q is as in (2) is
superficial, if 8 :M→M := 8(M) is a diffeomorphism and if Q is a field
defined on M by

Q= j−1QFT,

where j is the jacobian of 8, F :=V 8, then Q is superficial and

div Q= j−1 div Q (5)

where div is the surface divergence on M, i.e., the surface divergence as defined
above, but for fields defined on M. Below we need the cases M= S and M= ∂S .
Moreover, we shall employ V = R, V = Rn and V = Lin, i.e., Q will be a vector
field, second-order tensor field and third-order tensor field. We refer to [Marsden
and Hughes 1983, Chapter 1] for abstract formulations of Stokes’ theorem and
surface Piola transformation on manifolds from which the present euclidean cases
follow.

3. Constitutive assumptions

We assume that the bulk body is made of a nonlinear hyperelastic material with the
bulk stored energy f̃ : Lin+→ R, where Lin+ is the set of all second-order tensors
with positive determinant. For a given deformation y : cl�→ Rn the stored energy
field is given by the constitutive equation

f (x)= f̃ (F(x)), x ∈ cl�, (6)

where F is the bulk deformation gradient. For the coating S we assume that for
each x ∈ S we have a surface stored energy function f̃ x : Dx→ Rn where Dx is
the set of all pairs (F,K) ∈ Lin×Lin such that FP(x) = F and K is symmetric
and satisfies P(x)KP(x) = K. For a given deformation y : S → Rn the field of
superficial stored energy f on S is given by the constitutive equation

f (x)= f̃ x(F(x),K(x)), x ∈ S, (7)

where F and K are defined in Section 2. We note that the response function for
the superficial stored energy depends on x since we are forced to assume that the
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domain Dx is different for different x ∈ S. The same applies for the derivatives
of f̃ x. However, below we simplify the notation and suppress the dependence of
f̃ x on x and write simply f̃ in place of f̃ x. The same convention applies for the
derivatives of f̃ . The constitutive assumption (7) is employed in [Steigmann and
Ogden 1999] in a coordinate form, who refer to [Hilgers and Pipkin 1992; Cohen
and De Silva 1966] for earlier employments of the same hypothesis. In n = 2
(plane deformations of the bulk body), equivalent hypotheses have been made in
[Steigmann and Ogden 1997a; 1997b; Fried and Todres 2005]. See Section 7
(below) for the coordinate version of this assumption for n = 3.

Following [Steigmann and Ogden 1999], we also treat the coating S as a general
second grade material, i.e., we treat the superficial stored energy as a function of
the first and second surface gradients. More precisely, we introduce a third-order
tensor G interpreted as an Rn-valued bilinear form on Rn

×Rn given by

G(a,b)=V 2y(Pa,Pb)

for all a, b ∈ Rn , note that

K(a,b)= n ·G(a,b), (8)

and introduce a response function f̂ ≡ f̂ x : Ex→ R related to f̃ by

f̂ (F,G)= f̃ (F,K)

where G and K are related by (8). The domain Ex of f̂ consists of all pairs (F,G) ∈
Lin×T , where T is the space of all Rn-valued bilinear forms on Rn

×Rn , satisfying

F= FP, G= G ◦ (P,P). (9)

The field f is then given by the constitutive equation

f (x)= f̂ (F(x),G(x)), x ∈ S.

4. The total energy

The total energy F of the bulk body plus the coating is assumed in the form

F(y)= Eb(y)+Ec(y)+W(y)

for each deformation y : cl�→ Rn , where Eb(y) is the internal energy of the bulk
body, Ec(y) is the internal energy of the coating, and W(y) is the potential energy
of the loads. Here

Eb(y)=
∫
�

f dLn,
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where f is given by the constitutive equation (6) and Ln is the n-dimensional
volume in Rn ,

Ec(y)≡ Ec(y)=

∫
S
f dHn−1

where f is given by the constitutive equation (7) and Hn−1 is the (n−1)-dimensional
area on ∂�, and

W(y)=−
∫
�

y ·b dLn
−

∫
∂�

y · s dHn−1
;

here b :�→ Rn is a prescribed body force and s : ∂�→ Rn is a prescribed surface
traction on the boundary of the body.

We assume that the response functions for the bulk and surface energies are
sufficiently smooth and define the first variation δF(y, v) of the total energy corre-
sponding to the variation v : cl�→ Rn by

δF(y, v)=
dF(y+ tv)

dt

∣∣
t=0.

We define the first variations δEb(y, v) and δEc(y, v) of the internal energies and
the first variation δW(y, v) of the potential energy of loads analogously.

5. The first variation of total energy and the Euler Lagrange equations

Proposition 5.1. For every deformation y : cl�→ Rn and every variation of de-
formation v : cl�→ Rn , we have

δEb(y, v)=−
∫
�

v · div S dLn
+

∫
∂�

v ·Sn dHn−1

where S is the bulk referential stress given by the constitutive equation

S(x)= S̃(F(x)), with x ∈ cl�, S̃= ∂F f̃ .

Furthermore,

δW(y, v)=−
∫
�

v ·b dLn
−

∫
∂�

v · s dHn−1.

This is standard.

Proposition 5.2. We have

δEc(y, v)=−

∫
S
v·div T dHn−1

+

∫
∂S

(
A⊥ ·V⊥v+(Tm−div‖A‖)·v

)
dHn−2 (10)

for each deformation y : clS→ Rn and for each variation v : clS→ Rn of defor-
mation, where Hn−2 is the (n−2)-dimensional area measure on ∂S,

T= S− (div A)P (11)
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with S and A the referential surface stress and the referential surface couple stress
given by the constitutive equations

S(x)= Ŝ(F(x),G(x)), A(x)= Â(F(x),G(x)), x ∈ clS,

with
Ŝ= ∂F f̂ , Â= ∂G f̂ , (12)

div‖ denotes the divergence on ∂S , V⊥v :=Vm v is the directional surface gradient
of v in the direction of the normal m, and A⊥ and A‖ are fields on ∂S given by

A⊥ = A(m,m), A‖a= A(P‖a,m)

for each a ∈ Rn , where P‖ is the orthogonal projection from Rn onto the tangent
space of ∂S at the given point.

We here recall that the response function f̂ is defined on the domain Ex which
consists of all pairs (F,G) ∈ Lin×T such that (9) hold. Thus for a given point
of S, the domain of f̂ is a linear subspace of the product Lin×T . The partial
derivatives of f̂ in (12) follow our convention about derivatives on submanifolds
of an euclidean space and interpret the total derivative (differential) D f̂ of f̂ as an
element of the space Lin×T , which satisfies

5D f̂ = f̂ (13)

where 5 is the orthogonal projection from Lin×T onto Ex. The value D f̂ is a
pair in Lin×T and we write D f̂ = (∂F f̂ , ∂K f̂ ) with ∂F f̂ ∈ Lin, ∂K f̂ ∈ T for the
“components” of D f̂ . Equation (13) and the definition of Ex gives

∂F f̂ P= ∂F f̂ , ∂K f̂ ◦ (P,P)= ∂K f̂ .

Proof. The definition of the variation gives

δEc(y, v)=

∫
S

(
S ·V v+A · (V 2v ◦ (P,P))

)
dHn−1.

Since A ·
(
V 2v◦(P,P)

)
=A◦(P,P) ·V 2v and A=A◦(P,P), this may be rewritten

as

δEc(y, v)=

∫
S
(S ·V v+A ·V 2v) dHn−1.

We use the formula div(A ·V v) = div A ·V v+A ·V 2v ≡ (div A)P ·V v+A ·V 2v
[see (4)] and employ the surface divergence theorem noting that A is superficial to
obtain

δEc(y, v)=

∫
S
T ·V v dHn−1

+

∫
∂S

div Am · v dHn−2.
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Next we use the formula div(TTv) = (div T) · v+T ·V v and employ the surface
divergence theorem to obtain

δEc(y, v)=−

∫
S
v · div T dHn−1

+

∫
∂S

(
Am ·V v+Tm · v

)
dHn−2. (14)

The second integral on the right hand side is further transformed as follows. We
write V v = V⊥v +V ‖v where V ‖ denotes the surface gradient relative to ∂S to
obtain ∫

∂S
Am ·V v dHn−2

=

∫
∂S

(
A⊥ ·V⊥v+A‖ ·V ‖v

)
dHn−2.

Recalling that ∂2S =∅, we use the surface divergence theorem to obtain∫
∂S

div‖(A‖T · v) dHn−2
= 0.

Next we invoke the identity A‖ ·V ‖v = div‖(A‖T · v)− v · div‖ A‖. The last two
relations provide∫

∂S
Am ·V v dHn−2

=

∫
∂S

(
A⊥ ·V⊥v− v · div‖ A‖

)
dHn−2

and this reduces (14) to (10). �

Proposition 5.3. If δF(y, v) = 0 for a given deformation y : cl�→ Rn and all
variations of deformation v : cl�→ Rn , we have the equations

div S+b= 0 on �,

Sn= s on ∂� \S,
div T+ p= 0 on S
A⊥ = 0, Tm− div‖A‖ = 0 on ∂S,

 (15)

where
p= s−Sn.

If n = 3 and t is the counterclockwise unit tangent vector to ∂S then

A‖ = A(t,m)⊗ t, div‖ A‖ = (A(t,m))′

where ′ denotes the derivative with respect to the arc length parameter on ∂S.

Proof. Collecting the expressions in Propositions 5.1 and 5.2, we obtain

δF(y, v)=−
∫
�

v · (div S+b) dLn
+
∫
∂�\S v · (Sn− s) dHn−1

−
∫
S v · (div T−Sn+ s) dHn−1

+
∫
∂S
(
A⊥ ·V⊥v+ (Tm− div‖A‖) · v

)
dHn−2. (16)
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We first consider all variations v with compact support contained in the open set
�, then the integrals over ∂� \S , over S and over ∂S vanish and the arbitrariness
of v gives (15)1. With this knowledge the volume integral in (16) disappears. We
then consider variations v such that v = 0 on clS; then the integrals over S and
∂S vanish and the arbitrariness of the values of v on ∂� \S gives (15)2. With this
knowledge, also the integral over � \S disappears from (16). Then we consider
variations v = v| clS such that v has compact support in the relatively open set S.
This gives (15)3 and the integral over S in (16) disappears. We are thus left with
only the integral over ∂S in (16). Since the variations V⊥v and v|∂S can be chosen
independently, we obtain (15)4. �

We recall that our basic response function for the surface energy was f̃ , ex-
pressing the surface stored energy as a function of F and K. The next proposition
expresses the tensor T occurring in (10) and (15)3 in terms of the derivatives of f̃ .

Proposition 5.4. We have the following relation for the tensor T in (11):

T= ∂F f̃ − div
(
n⊗F∂K f̃

)
F−T. (17)

Proof. Let us show that the partial derivatives of the functions f̂ and f̃ are related
by

∂F f̂ = ∂F f̃ − n⊗
(
F−1G · ∂K f̃

)
, ∂G f̂ = n⊗ ∂K f̃ (18)

at the corresponding arguments, where F−1G · ∂K f̃ is a vector satisfying

a · (F−1G · ∂K f̃ )= R · ∂K f̃

for all a ∈ Rn , where R is a second-order tensor satisfying

R(p,q)= a ·F−1G(p,q)

for all p, q ∈ Rn . Indeed, we interpret n as a function of F determined locally
uniquely by the equations FTn = 0, |n| = 1. This functional interpretation of n
makes K a function of G and n. Differentiating the relation

f̂ (F,G)= f̃ (F, n(F) ·G) (19)

with respect to G we obtain (18)2. To obtain (18)1, we first note that interpreting
n as a function of F, we have the relation

∂FnA=−F−TATn

for each A ∈ Lin, where we interpret ∂Fn as a linear transformation from Lin to
Rn . Differentiating (19) with respect to F in the direction of A ∈ Lin and using the
above relation for the derivative on n, we obtain

∂F f̂ ·A=−(F−TATn ·G) · ∂K f̃ + ∂F f̃ ·A, (20)
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where for any vector a the symbol a ·G denotes a second-order tensor defined by

(a ·G)(p,q)= a ·G(p,q)

for any p,q ∈ Rn . We have the following rearrangements

(F−TATn ·G) · ∂K f̃ = (F−TATn) ·
(
G · ∂K f̃

)
= (ATn) ·

(
F−1G · ∂K f̃

)
=
(
n⊗

(
F−1G · ∂K f̃

))
·A

which reduces (20) to

∂F f̂ ·A=−
(
n⊗

(
F−1G · ∂K f̃

))
·A+ ∂F f̃ ·A

and the arbitrariness of A gives (18)1.
Using relations (18) one finds from the definition (11) of T that

T= S− (div A)P= ∂F f̃ − n⊗
(
F−1G · ∂K f̃

)
− div

(
n⊗ ∂K f̃

)
P

and the proof of (17) is completed by noting the following easily provable identity

div
(
n⊗F∂K f̃

)
F−T
= n⊗

(
F−1G · ∂K f̃

)
+ div

(
n⊗ ∂K f̃

)
P. �

6. The spatial form of equilibrium equations

The spatial form of the equilibrium equations (i.e., that on the deformed configura-
tion of the film) to be derived below admits a splitting into the tangential and normal
components with the tangential component given by a second-order equation and
the normal component a fourth-order equation with the iterated surface divergence.

Proposition 6.1. Assume that the stored energy f̃ is objective in the sense that

f̃ (QF,K)= f̃ (F,K)

for all orthogonal tensors Q and all arguments F and K from the domain of f̃ . Then
(15)3 is equivalent to

div T+ j−1p= 0, (21)

where j = |cofF| is the jacobian of the transformation y : S→ S := y(S), div is
the divergence on the actual configuration S, and

T= j−1TFT
≡N− LM− n⊗ (PdivM), (22)

where
N= j−1 ∂F f̃ F

T, M= j−1F∂K f̃ F
T (23)
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and L=Vn is the curvature of the deformed configuration of the film. Equations
(15)4 are equivalent to

M(m,m)= 0, Tm− div
‖

(n⊗Mm)= 0, (24)

where m is the unit normal to ∂S in the tangent space to S and div
‖

is the diver-
gence relative to ∂S. If n = 3, then (24)2 reads

Tm−
(
nM(t,m)

)′
= 0,

where t is the counterclockwise unit vector tangent to ∂S and the superscript ′

denotes the derivative with respect to the arc length parameter on ∂S .

Here and below in this section we distinguish the objects related to the deformed
configuration by a superimposed bar. Here N is the normal stress and M the couple
stress in the film.

Proof. Note first that a standard argument based on the objectivity implies that N,
given by (23)1, is a symmetric tensor. Furthermore, the definition (23)1 immedi-
ately implies that Nn= 0 and NP=N, where P is the orthogonal projection from
Rn onto the tangent space to S, which by the symmetry implies that PN=N.

We note further that if T is given by (22)1 then (21) is equivalent to (15)3 by
the surface version of the Piola transformation (5). To obtain the equivalent form
(22)2, we note that by (17) we have

T=N− j−1 div
(
n⊗F∂K f̃

)
P. (25)

Employing the surface version of the Piola transformation once more and invoking
the formula for the divergence of a tensor product, we find that

j−1 div
(
n⊗F∂K f̃

)
P=

(
div(n⊗M)

)
P= LM+ n⊗PdivM.

The insertion into (25) yields (22)2.
Equation (24)1 is clearly equivalent to the first equation in (15)4. To obtain

the equivalence of (24)2 and the second equation in (15)4, we employ the Piola
transformation to the passage from ∂S to ∂S. We note that the jacobian of this
transformation is

j= j|F−Tm|

and the unit normal m to ∂S is given by

m= F−Tm/|F−Tm|.

The basic relation (5) of the Piola transformation is then

div
‖

(j−1
|F−Tm|−1A‖FT)= j−1

|F−Tm|−1 div‖ A‖
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which reduces the second equation in (15)4 to

Tm+ div
‖

(j−1
|F−Tm|−1A‖FT)= 0.

Recalling (18)2, we note that
A= n⊗ ∂K f̃

and we use this in the following computation:

j−1
|F−Tm|−1A‖FTa= j−1

|F−Tm|−1A(P‖FTa,m)

= j−1
|A(P‖FTa,FTm)

= j−1
|A(FTP‖a,FTm)

=M(P‖a,m)n

=M
(
(P−m⊗m)a,m

)
n

=M(a,m)n−M(m,m)(m · a)n

=M(a,m)n,

where we have used (24)1. Thus we conclude that

j−1
|F−Tm|−1A‖FT

= n⊗Mm

and the above computation also shows that Mm is a tangential vector on ∂S, i.e.,
P‖Mm=Mm. Thus we have (24)2. �

Proposition 6.2. The tangential and normal components of (21) read

Pdiv(N− LM)− L divM+ j−1p‖ = 0,

div(PdivM)+ L ·N− L2
·M− j−1p⊥ = 0,

}
(26)

where
p‖ = Pp, p⊥ = n · p.

The tangential and normal components of (24)2 read

(N− 2LM)m= 0,

m · divM+ div
‖

(P‖Mm)= 0

}
(27)

on ∂S. If n = 3 then (27)2 reads

m · divM+
(
M(t,m)

)′
= 0. (28)

We recall that N and M depend on the first and second gradients of the surface
deformation, which gives that (26)1 is of the second order in the deformation and
(26)2 of the fourth order.
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Proof. To obtain the tangential component of (21), we use the identity

Pdiv T= P2 div T= Pdiv(PT)−PVPT, (29)

where we note that employing the formula PN=N we obtain

PT=N− LM. (30)

Furthermore, differentiating P= 1− n⊗ n one finds that the directional gradient
in S of P in the direction a satisfies

PV aPb=−La(n ·b)

for each a,b ∈ Rn; it follows that

PVPT=−LTTn= L divM. (31)

Inserting (30) and (31) into (29), one obtains (26)1.
To obtain the normal component of (21), we employ the identity

n · div T= div(TTn)−T · L. (32)

Since N is symmetric, we have NTn=Nn= 0; combining with Ln= 0, we find

TTn=−PdivM. (33)

Also

T · L=N · L− LM · L. (34)

Inserting (33) and (34) into (32), we obtain (26)2.
To obtain (27), we invoke the identity

div
‖

(n⊗Mm)=V ‖nMm+ n div
‖

(Mm)

=VnP‖Mm+ n div
‖

(P‖Mm)

= LMm+ n div
‖

(P‖Mm)

and combining with the second expression in (22) we conclude that (24)2 is equiv-
alent to

Nm− 2LMm− n
((
(PdivM) ·m

)
+ div

‖

(P‖Mm)
)
= 0.

Taking the tangential and normal components, we obtain (27). �



226 MIROSLAV ŠILHAVÝ

7. Coordinate expressions

For the purpose of comparison with the existing literature, we now establish the
component expressions of the main formulas.

Throughout this section we use the convention that the Greek indices α, β, γ
run from 1 to n − 1 while the Latin indexes i, j, k run from 1 to n. We use the
Einstein summation convention for repeated indices.

We assume that S is parametrized by a map 8 : D→ S, where D ⊂ Rn−1 and
note that we can express the general maps m defined on S as functions m̃ of the
variables (θ1, . . . , θn−1) ∈ D of the parametrization 8(θ1, . . . , θn−1). The maps
m and m̃ are related by m̃ =m ◦8 but below we denote both m̃ and m by the same
letter m. A Greek subscript following a comma denotes the partial differentiation
with respect to the corresponding variable in the collection (θ1, . . . , θn−1).

We denote by ei ≡ ei the canonical basis in Rn and introduce the coordinate
vectors eα in the tangent space of S by

eα =8,α.

We denote by eβ the dual basis in the tangent space, satisfying

eα · e
β
= δβα

and the Christoffel symbols 0γαβ defined by

0
γ

αβ = eγ · eα,β .

We then have

eα,β = 0
γ

αβeγ − Lαβn, e
γ

,β =−0
γ

αβe
α
− L

γ

βn,

where Lαβ = Leα · eβ and L
γ

β = Leγ · eβ , and where L is the curvature tensor of the
reference configuration of the film, see (1). (We note in passing that the second
fundamental form of S is given by bαβ =−Lαβ .) If V is a finite-dimensional vector
space and f : S→ V a class 2 mapping then

V f = f,α ⊗ eα (35)

and consequently

V 2 f = ( f,α ⊗ eα),β ⊗ eβ . (36)

Differentiating the above product by the product rule and employing the formula
for eα,β given above we obtain

V 2 f = f,αβ ⊗ eα ⊗ eβ − f,α ⊗0αγβe
γ
⊗ eβ − Lαβ f,α ⊗ n⊗ eβ .
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It follows that

V 2 f ◦ (P,P)= f,αβ ⊗ eα ⊗ eβ − f,α ⊗0αγβe
γ
⊗ eβ .

If V is a finite-dimensional vector space and Q : S→ Lin(Rn, V ) a superficial
map then we have the formula

div Q= J−1(JQα),α, (37)

where Qα = Qeα and J = (det∇8T
∇8)1/2 is the jacobian of 8. This formula

coincides with the well known expression for the divergence based on covariant
derivatives of tangential vector fields. However, with the divergence defined in (3),
Formula (37) holds for an arbitrary superficial field Q : S→ Lin(Rn, V ), where
V is arbitrary finite-dimensional vector space with inner product, in particular also
for second and third-order tensor fields, whereas (37) does not hold for divergence
based on the covariant derivative of tensor fields of order ≥ 2. See also (43) (below).

By (35) and (36), the first and second surface deformation gradients are deter-
mined by the components of the deformation function yi

:= y · ei as follows:

F=V y = Fi
αei ⊗ eα,

V 2y = Fi
α,βei ⊗ eα ⊗ eβ −Fi

,α(0
α
γβei ⊗ eγ ⊗ eβ + Lαβei ⊗ n⊗ eβ),

where
Fi
α = yi

,α.

It follows that

G=V 2y ◦ (P,P)= (Fi
α,β −Fi

,γ0
γ

αβ)ei ⊗ eα ⊗ eβ . (38)

Let us express the energy as a function of Fi
α and Fi

α,β , viz.,

f̂ (F,G)= f (Fi
α,F

i
α,β),

where F,G and Fi
α,F

i
α,β are related by the formulas established above. This is the

assumption employed in [Steigmann and Ogden 1999].

Proposition 7.1. We have

δEc(y, v)=−

∫
S
J−1(JTαi ),αv

i dHn−1
+

∫
∂S
(Mαβ

i vi
,αmβ+T

α
i mαv

i ) dHn−2 (39)

for each v ∈ C2(clS,Rn), where

Tαi = ∂Fi
α
f −J−1(JMα,β

i ),β, Mαβ

i = ∂Fi
α,β
f ; (40)

furthermore Tαi and Mαβ

i are the components of the tensors T and M, satisfying

T= Tαi ei
⊗ eα, M=Mαβ

i ei
⊗ eα ⊗ eβ .
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Up to a change of notation, (39) coincides with Equation (4.8) of [Steigmann
and Ogden 1999].

Proof. If Tαi and Mαβ

i are the components of T and M, we see that (10) reduces to
(39). Thus it remains to prove (40). Let the components Sαi of S be defined by

S= Sαi ei
⊗ eα.

The components of the partial derivatives f̂ and the partial derivatives of f are
related as follows:

Sαi ≡ ∂F f̂ |
α
i = ∂Fi

α
f + ∂Fi

γ,β
f 0αγβ, Mαβ

i ≡ ∂G f̂ |
αβ

i = ∂Fi
α,β
f , (41)

where we have used (38). Equation (40)2 then follows immediately from (41)2. To
prove (40)1, we note that by (37), we have

(divM)i= J−1(JMαβ

i eα),β

= J−1(JMαβ

i ),βeα +Mαβ

i eα,β

= J−1(JMαβ

i ),βeα +Mαβ

i (0
γ

αβeγ − Lαβn),

where (divM)i = (divM)Tei . Thus

((divM)P)i = J−1(JMαβ

i ),βeα +Mαβ

i 0
γ

αβeγ , (42)

where ((divM)P)i = ((divM)P)Tei . Combining (42) with (41)1, we obtain (40)1.
�

Next, let us express the energy as a function f of Fi
α and Kαβ := K(eα, eβ). We

have
Kαβ = niG

i
αβ,

where
Gi
αβ = ei

·G(eα, eβ)= Fi
α,β −Fi

,γ0
γ

αβ,

where we have used (38). Using the relation niFi
,γ = 0 we obtain

Kαβ = niF
i
α,β .

The function f satisfies the relation

f (Fi
α,Kαβ)= f (Fi

α,F
i
α,β).

Proposition 7.2. In terms of the partial derivatives of f we have

Tαi = ∂Fi
α
f −J−1(F−1)αj

(
J ni F

j
β ∂Kβγ f

)
,γ
,
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where the components (F−1)αj are defined via the identification

F−1
= (F−1)αj eα ⊗ e j ,

where F−1 is the pseudoinverse of F.

Proof. This follows immediately from Proposition 5.4. �

We note that the parametrization 8 of the referential surface S which introduces
a coordinate system θ1, . . . , θn−1 on S gives, via the composition with the defor-
mation y a parametrization 8 := y ◦8 of the deformed surface S which introduces
the coordinate system θ1, . . . , θn−1 on S. If m is a function defined on S with
values in a finite-dimensional vector space, we use the subscript comma followed
by the index α to denote the derivative of m ◦8 with respect to θα . The coordinate
vectors eα corresponding to the coordinate system θ1, . . . , θn−1 on S are given by
eα = Feα and the dual vectors are eα = F−Teα. We denote by 0γαβ the Christoffel
symbols corresponding to the coordinate system θ1, . . . , θn−1 on S, given by

0
γ

αβ = eγ · eα,β .

We denote by a vertical bar followed by an index α the covariant differentiation
on S using the Christoffel symbols 0γαβ , i.e., if v = vαeα and A= Aαβeα ⊗ eβ is a
tangential vector and superficial tensor defined on S then

vα β = vα,β −0
α
βγ v

γ ,

Aαβ γ = Aαβ,γ −0
α
γ δA

δβ
−0

β
γ δA

αδ.

We shall also employ the divergences based on the covariant differentiation, i.e.,
the objects vα α and Aαβ β . It is easy to see that the superficial derivative is related
to the just mentioned divergences by

div A= vα α, Pdiv A= Aαβ β eα. (43)

For the subsequent discussion we define the superficial right Cauchy–Green
tensor components Cαβ = Fi

αF
i
β . Furthermore, assume that the stored energy f̃ is

objective and let us express the energy as a function ˆ̂f of Cαβ and Kαβ , i.e.,

ˆ̂
f (Cαβ,Kαβ)= f̃ (F,K)= f (Fi

α,Kαβ).

We note that this is possible by the objectivity.

Proposition 7.3. Assume that the stored energy f̃ is objective and denote by Nαβ

and Mαβ the components of N and M identified by

N=Nαβeα ⊗ eβ, M=Mαβeα ⊗ eβ .
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In terms of these components, Equations (26) read

(Nαβ − LαγM
γβ) β −L

α
γM

γβ
β +j

−1pα = 0,

Mαβ
αβ +LαβN

αβ
− LαγL

γ

β ·M
αβ
− j−1p⊥ = 0,

}
(44)

where
p‖ = pαeα.

If n = 3, the system of boundary conditions (24)1, (27)1, and (28) is equivalent to

Mαβmαmβ = 0,

(Nαβ − 2LαγM
γβ)mβ = 0,

Mαβ
β mα + (Mαβtαmβ)

′
= 0,

 (45)

where mα and tα are the components of the unit normal and tangent to ∂S given
by

m=mαe
α, t= tαe

α,

and the superscript ′ denotes the derivative with respect to the arc length parameter
on ∂S. One has

Nαβ = j−1 ∂Cαβ
ˆ̂
f , Mαβ

= j−1 ∂Kαβ
ˆ̂
f . (46)

Apart from differences in notation, Equations (44) coincide with Equations
(4.37) of [Steigmann and Ogden 1999]. They also coincide with the first and second
of equations (9.47) of [Naghdi 1971] when the latter are specialized to the case of
equilibrium of a shell, and with the equations in Theorem 7.1-3 of [Ciarlet 2000].

Proof. Equations (44) follow from (26) and the identities (43).
To prove (46), we note that differentiating the relation

f̃ (Fi
αei ⊗ eα,Kαβe

α
⊗ eβ)= f (Fi

α,Kαβ)

one obtains
∂F f̃ = ∂Fi

α
f ei
⊗ eα, ∂K f̃ = ∂Kαβ f eα ⊗ eβ . (47)

From (47)1 follows that
Ni j = j−1 ∂Fi

α
f F j

α,

where Ni j are the components of N is the orthonormal basis ei
≡ ei . The compo-

nents of N in the basis eα = Fi
αei are then related by Ni j =NαβFi

αF
j
β , which gives

Nαβ =Ni j (F
−1)αi (F

−1)
β

j = j−1(F−1)αi ∂Fi
β
f . (48)

Likewise, from (47)2 follows that

Mi j = j−1Fi
αF

j
β ∂Kαβ f ,
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where Mi j are the components of M in the basis ei
≡ ei . It follows as above that

the components Mαβ in the basis eα are

Mαβ
=Mi j (F

−1)αi (F
−1)

β

j = j−1 ∂Kαβ f . (49)

Differentiating the relation

ˆ̂
f (Fi

αF
i
β,Kαβ)= f (Fi

α,Kαβ)

we obtain
∂Cαβ
ˆ̂
f Fi

β = ∂Fi
α
f , ∂Kαβ

ˆ̂
f = ∂Kαβ f . (50)

A combination of (48) with (50)1 provides (46)1 and a combination of (49) with
(50)2 provides (46)2.

The equivalence of the system (24)1, (27)1, and (28) with (45) is proved simi-
larly. �

References

[Ciarlet 2000] P. G. Ciarlet, Mathematical elasticity, III: Theory of shells, Studies in Mathematics
and its Applications 29, North-Holland, Amsterdam, 2000.

[Cohen and De Silva 1966] H. Cohen and C. N. De Silva, “Nonlinear theory of elastic surfaces”, J.
Mathematical Phys. 7 (1966), 246–253.

[Delfour and Zolésio 1997] M. C. Delfour and J.-P. Zolésio, “Differential equations for linear shells:
comparison between intrinsic and classical models”, pp. 41–124 in Advances in mathematical sci-
ences: CRM’s 25 years (Montreal, 1994), edited by L. Vinet, CRM Proc. Lecture Notes 11, Amer.
Math. Soc., Providence, RI, 1997.

[Favata and Podio-Guidugli 2011] A. Favata and P. Podio-Guidugli, “A new CNT-oriented shell
theory”, Eur. J. Mech. A Solids 35 (2011), 75–96.

[Federer 1969] H. Federer, Geometric measure theory, Grundlehren math. Wiss. 153, Springer, New
York, 1969.

[Fried and Todres 2005] E. Fried and R. E. Todres, “Mind the gap: the shape of the free surface of a
rubber-like material in proximity to a rigid contactor”, J. Elasticity 80:1-3 (2005), 97–151.

[Gurtin 2000] M. E. Gurtin, Configurational forces as basic concepts of continuum physics, Applied
Mathematical Sciences 137, Springer, New York, 2000.

[Gurtin and Murdoch 1975] M. E. Gurtin and A. I. Murdoch, “A continuum theory of elastic material
surfaces”, Arch. Rational Mech. Anal. 57 (1975), 291–323.

[Hilgers and Pipkin 1992] M. G. Hilgers and A. C. Pipkin, “Elastic sheets with bending stiffness”,
Quart. J. Mech. Appl. Math. 45:1 (1992), 57–75.

[Marsden and Hughes 1983] J. E. Marsden and T. J. R. Hughes, Mathematical foundations of elas-
ticity, Prentice-Hall, Englewood Cliffs, NJ, 1983.

[Murdoch and Cohen 1979/80] A. I. Murdoch and H. Cohen, “Symmetry considerations for material
surfaces”, Arch. Rational Mech. Anal. 72:1 (1979/80), 61–98.

[Naghdi 1971] P. M. Naghdi, The theory of shells and plates, edited by C. Truesdell, Handbuch der
Physik VIa/2, Springer, Berlin, 1971.

http://dx.doi.org/10.1063/1.1704926
http://dx.doi.org/10.1016/j.euromechsol.2012.01.006
http://dx.doi.org/10.1016/j.euromechsol.2012.01.006
http://dx.doi.org/10.1007/s10659-005-9019-z
http://dx.doi.org/10.1007/s10659-005-9019-z
http://dx.doi.org/10.1007/BF00261375
http://dx.doi.org/10.1007/BF00261375
http://dx.doi.org/10.1093/qjmam/45.1.57
http://dx.doi.org/10.1007/BF00250737
http://dx.doi.org/10.1007/BF00250737


232 MIROSLAV ŠILHAVÝ

[Pietraszkiewicz 1989] W. Pietraszkiewicz, “Geometrically nonlinear theories of thin elastic shells”,
Adv. in Mech. 12:1 (1989), 51–130.

[Podio-Guidugli 1988] P. Podio-Guidugli, “A variational approach to live loadings in finite elastic-
ity”, J. Elasticity 19:1 (1988), 25–36.

[Podio-Guidugli and Vergara-Caffarelli 1990] P. Podio-Guidugli and G. Vergara-Caffarelli, “Surface
interaction potentials in elasticity”, Arch. Rational Mech. Anal. 109:4 (1990), 343–383.

[Sanders 1963] J. L. Sanders, Jr., “Nonlinear theories for thin shells”, Quart. Appl. Math. 21 (1963),
21–36.

[Šilhavý 2011] M. Šilhavý, “Equilibrium of phases with interfacial energy: a variational approach”,
J. Elasticity 105:1-2 (2011), 271–303.

[Steigmann and Li 1995] D. J. Steigmann and D. Li, “Remarks on a theory of elasticity for fluid
films”, Proc. Royal Soc. London 449 (1995), 223–231.

[Steigmann and Ogden 1997a] D. J. Steigmann and R. W. Ogden, “Plane deformations of elastic
solids with intrinsic boundary elasticity”, Proc. Roy. Soc. London Ser. A 453:1959 (1997), 853–
877.

[Steigmann and Ogden 1997b] D. J. Steigmann and R. W. Ogden, “A necessary condition for energy-
minimizing plane deformations of elastic solids with intrinsic boundary elasticity”, Math. Mech.
Solids 2:1 (1997), 3–16.

[Steigmann and Ogden 1999] D. J. Steigmann and R. W. Ogden, “Elastic surface-substrate interac-
tions”, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455:1982 (1999), 437–474.

[Steinmann 2008] P. Steinmann, “On boundary potential energies in deformational and configura-
tional mechanics”, J. Mech. Phys. Solids 56:3 (2008), 772–800.

Received 29 Feb 2012. Revised 17 Sep 2012. Accepted 20 Oct 2012.

MIROSLAV ŠILHAVÝ: silhavy@math.cas.cz
Institute of Mathematics, Academy of Sciences of the Czech Republic, Žitná 25, 115 67 Prague 1,
Czech Republic

MM ∩
msp

http://dx.doi.org/10.1007/BF00041693
http://dx.doi.org/10.1007/BF00041693
http://dx.doi.org/10.1007/BF00380381
http://dx.doi.org/10.1007/BF00380381
http://dx.doi.org/10.1007/s10659-011-9341-6
http://dx.doi.org/10.1098/rspa.1995.0041
http://dx.doi.org/10.1098/rspa.1995.0041
http://dx.doi.org/10.1098/rspa.1997.0047
http://dx.doi.org/10.1098/rspa.1997.0047
http://dx.doi.org/10.1177/108128659700200101
http://dx.doi.org/10.1177/108128659700200101
http://dx.doi.org/10.1098/rspa.1999.0320
http://dx.doi.org/10.1098/rspa.1999.0320
http://dx.doi.org/10.1016/j.jmps.2007.07.001
http://dx.doi.org/10.1016/j.jmps.2007.07.001
mailto:silhavy@math.cas.cz
http://www.univaq.it
http://memocs.univaq.it/
http://msp.org


MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS
msp.org/memocs

EDITORIAL BOARD
ANTONIO CARCATERRA Università di Roma “La Sapienza”, Italia

ERIC A. CARLEN Rutgers University, USA
FRANCESCO DELL’ISOLA (CO-CHAIR) Università di Roma “La Sapienza”, Italia

RAFFAELE ESPOSITO (TREASURER) Università dell’Aquila, Italia
ALBERT FANNJIANG University of California at Davis, USA

GILLES A. FRANCFORT (CO-CHAIR) Université Paris-Nord, France
PIERANGELO MARCATI Università dell’Aquila, Italy

JEAN-JACQUES MARIGO École Polytechnique, France
PETER A. MARKOWICH DAMTP Cambridge, UK, and University of Vienna, Austria

MARTIN OSTOJA-STARZEWSKI (CHAIR MANAGING EDITOR) Univ. of Illinois at Urbana-Champaign, USA
PIERRE SEPPECHER Université du Sud Toulon-Var, France

DAVID J. STEIGMANN University of California at Berkeley, USA
PAUL STEINMANN Universität Erlangen-Nürnberg, Germany

PIERRE M. SUQUET LMA CNRS Marseille, France

MANAGING EDITORS
MICOL AMAR Università di Roma “La Sapienza”, Italia

CORRADO LATTANZIO Università dell’Aquila, Italy
ANGELA MADEO Université de Lyon–INSA (Institut National des Sciences Appliquées), France

MARTIN OSTOJA-STARZEWSKI (CHAIR MANAGING EDITOR) Univ. of Illinois at Urbana-Champaign, USA

ADVISORY BOARD
ADNAN AKAY Carnegie Mellon University, USA, and Bilkent University, Turkey

HOLM ALTENBACH Otto-von-Guericke-Universität Magdeburg, Germany
MICOL AMAR Università di Roma “La Sapienza”, Italia
HARM ASKES University of Sheffield, UK
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