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A SUFFICIENT CONDITION FOR A DISCRETE SPECTRUM OF THE
KIRCHHOFF PLATE WITH AN INFINITE PEAK

FEDOR L. BAKHAREV, SERGEY A. NAZAROV AND GUIDO H. SWEERS

Sufficient conditions for a discrete spectrum of the biharmonic equation in a two-
dimensional peak-shaped domain are established. Different boundary conditions
from Kirchhoff’s plate theory are imposed on the boundary and the results de-
pend both on the type of boundary conditions and the sharpness exponent of the
peak.

1. Motivation

Elliptic boundary value problems on domains which have a Lipschitz boundary and
a compact closure, in particular when they generate positive self-adjoint operators,
have fully discrete spectra. However, if the domain loses the Lipschitz property
or compactness, other situations may occur. It is well-known that for the Dirichlet
case boundedness is sufficient but not necessary for having discrete spectrum. See
the famous paper [Rellich 1948] or the more recent [Rozenbljum 1972; van den
Berg 1984]. On the other hand, for the Neumann problem of the Laplace operator
there exist numerous examples of bounded domains such that the spectrum gets a
nonempty continuous component (see e.g. [Courant and Hilbert 1953; Maz’ya and
Poborchii 2006; 1997; Simon 1992; Hempel et al. 1991]).

The literature on the spectra for the Laplace operator with various boundary
conditions on special domains is focused on domains that have a cusp, a finite or
infinite peak or horn [van den Berg 1984; Hempel et al. 1991; Jakšić et al. 1992;
Davies and Simon 1992; Jakšić 1993; Ivrii 1999; Boyarchenko and Levendorskii
2000; van den Berg and Lianantonakis 2001; Kovařík 2011] or even a rolled horn
[Simon 1992].

The criteria in [Adams and Fournier 2003] and [Evans and Harris 1987] for
the embedding H 1(�) ⊂ L2(�) to be compact show that the Neumann–Laplace
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problem on a domain � with the infinite peak

5R = {x = (x1, x2) ∈ R2
: x1 > R,−H(x1) < x2 < H(x1)}, (1)

where the function H > 0 is smooth and monotone decreasing, has discrete spec-
trum if and only if

lim
y→+∞

∫
+∞

y

H(η)
H(y)

dη = 0
(
⇐⇒ lim

y→+∞

H(y+ ε)
H(y)

= 0 for any ε > 0
)
. (2)

The function H is assumed to have a first derivative that tends to zero and a bounded
second derivative. It will be convenient to use the notation ϒ(y)= (−H(y), H(y)).
Here is an image of such a domain:

The simplest boundary irregularity violating the Lipschitz condition is just the
(finite) peak

$R = {x : 0< x1 < R,−h(x1) < x2 < h(x1)}, (3)

where h(x1) = h0x1+α
1 , h0 > 0 and α > 0. Nevertheless, the spectrum of the

Neumann problem in the domain with this peak stays discrete. See Remark 5.1.
A criterion ([Nazarov 2009]) for having essential spectrum in the Neumann prob-

lem for elliptic systems of second order differential equations with a polynomial
property is derived in [Nazarov 1999]. In particular it shows that the continuous
spectrum of an elastic body with α ≥ 1 for the peak (3) is nonempty (see [Nazarov
2008; Bakharev and Nazarov 2009]). This phenomenon of generating wave pro-
cesses in a finite volume, is known experimentally and used in the engineering
practice to construct wave dampers, “black holes”, for elastic oscillations (see
[Mironov 1988; Krylov and Tilman 2004], etc.).

In this paper we study the spectra of boundary value problems for the Kirch-
hoff model of a thin elastic plate described by the biharmonic operator 12. The
boundary conditions that we consider model the three mechanically most reason-
able cases, namely where the lateral sides of the peak are supplied with one of
the following three types of the boundary conditions: clamped edge (Dirichlet),
traction-free edge (Neumann) and hinged edge (Mixed). In all these cases the
spectrum of the problem in a bounded domain with the peak as in (3) is discrete.
We derive sufficient conditions for the spectrum to be discrete for the boundary
value problem on an unbounded domain with a peak as in (1).

If a sufficient number of Dirichlet conditions are imposed on the lateral sides
of the peak (the cases D–N, M–M, D–M, and D–D; see formulas (5)–(7) and
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(11), (12)), then the proof that the spectrum is discrete becomes rather simple
(Theorem 5). Indeed, it suffices to apply the weighted Friedrich’s inequality (13)
and to take into account the decay of the quantity H(y) as y→+∞.

Our main interest concerns the cases M–N and N–N. By applying weighted
inequalities of Hardy type (Lemmas 7 and 8) we obtain a sufficient condition for the
case N–N to have discrete spectrum (Proposition 4). Indeed, as shown in [Adams
and Fournier 2003], the second condition in (2) implies a criterion for the compact
embedding H m(�)⊂ L2(�) for all m (we just need m = 2). One can also use that
approach (Theorem 12) for the case M–N. This approach differs from the one used
in [Adams and Fournier 2003; Evans and Harris 1987]. The different argument
allows to obtain a condition for having discrete spectrum if one of the peak’s edges
is traction-free and the other one is hinged (the case N–M; see Theorem 13).

The obtained results essentially differ from each other: under the conditions (11)
and also under (12) any decay of H is enough, the case M–N needs a power decay
rate with the exponent α > 1, while the case N–N needs a superexponential decay
rate. See Remark 12.1 and 13.1.

2. The Kirchhoff plate model

Assumption 1. Let � be a domain in the plane R2 with a smooth (of class C∞)
boundary 0 such that, for some R > 0 and some monotone decreasing function
H : [R,∞)→ R+ with limt→∞ H(t)= 0,

(1) {(x1, x2) ∈�; x1 > R} = {(x1, x2); x1 > R and |x2|< H(x1)} and

(2) {(x1, x2) ∈�; x1 < R} is bounded.

We regard � as the projection of a thin isotropic homogeneous plate and apply
the Kirchhoff theory (see [Mikhlin 1970, §30], [Nazarov 2002, Chapter 7], and so
on). So we arrive at the fourth-order differential equation

12u(x)= λu(x), x ∈�, (4)

which describes transverse oscillations of the plate. Here, u(x) is the plate de-
flection, and λ a spectral parameter proportional to the square of the oscillation
frequency.

The following sets of boundary conditions have a clear physical interpretation
(see [Mikhlin 1970, §30], [Gazzola et al. 2010, §1.1], and so on):

(D): Dirichlet for a clamped edge:

u(x)= ∂nu(x)= 0, x ∈ 0D. (5)
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(N): Neumann for a traction-free edge:{
∂n1u(x)− (1− ν)(∂s~(x)∂su(x)− ∂2

s ∂nu(x))= 0,

1u(x)− (1− ν)(∂2
s u(x)+ ~(x)∂nu(x))= 0,

x ∈ 0N . (6)

(M): Mixed for a hinged edge:

u =1u(x)− (1− ν)~(x)∂nu(x)= 0, x ∈ 0M . (7)

Here, ∂n and ∂s stand for the normal and tangential derivatives, ~(x) is the signed
curvature of the contour 0 at the point x ∈ 0 positive for convex boundary parts,
and ν ∈ [0, 1/2) is the Poisson ratio. Finally, 0D, 0N , and 0M are the unions of
finite families of open curves and 0 = 0D ∪0N ∪0M , two of which may be empty.
In what follows it is convenient to use the notation y = x1 and z = x2.

The general properties of the spectra depend on which of the boundary condi-
tions (5)–(7) are imposed on the upper (+) and lower (−) sides,

6±R = {x : y > R, z =±H(y)},

of the peak. Let us give a precise statement. We define a symmetric bilinear form
on H 2(�) by

a(u, u)=
∫
�

(∣∣∣∣∂2u
∂x2

1

∣∣∣∣2+ ∣∣∣∣∂2u
i
∂x2

2

∣∣∣∣2+ 2(1− ν)
∣∣∣∣ ∂2u
∂x1∂x2

∣∣∣∣2+ 2ν
∂2u
∂x2

1

∂2u
∂x2

2

)
dx (8)

and a(u, v) = 1
4a(u + v, u + v)− 1

4a(u − v, u − v). Then 1
2a(u, u) is the elastic

energy stored in the plate. Since one directly verifies that

a(u, u)≥ (1− ν)
2∑

j,k=1

∫
�

∣∣∣∣ ∂2u
∂x j∂xk

∣∣∣∣2 dx, (9)

the bilinear form a( · , · ) is nonnegative.

Definition 2. Let H be the subspace of functions u ∈ H 2(�), satisfying the condi-
tions (5) on 0D and u = 0 on 0M in the sense of traces.

By [Birman and Solomyak 1980, §10.1] H is a Hilbert space with scalar product
a( · , · )+ ( · , · )�, where ( · , · )� is the standard scalar product in the Lebesgue
space L2(�). Moreover, Theorem 2 of [Birman and Solomyak 1980, §10.1] im-
plies that there exists a unique (unbounded) self-adjoint operator A : D(A) ⊂
L2(�)→ L2(�) with D(A)⊂ D(A1/2)= H such that

(Au, v)� = a(u, v) for all v ∈ H. (10)
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Note that the eventually remaining boundary conditions in (5)–(7) appear in D(A)⊂
H 4(�) as intrinsic natural boundary conditions from (9)–(8), see again [Mikhlin
1970, §30], [Gazzola et al. 2010, §1.1] etc.

Definition 3. By the spectrum for (4)–(7) we will mean σ(A) with A defined in
(10).

Since a is nonnegative, the spectrum σ(A) belongs to [0,∞).

As a direct consequence of known results we may state the following.

Proposition 4. If (2) holds, then the spectrum of the Equation (4), with either of
the above boundary condition on the sides of the peak, is discrete.

Proof. By [Birman and Solomyak 1980, §10.1 Theorem 5] the spectrum is discrete
if and only if the embedding H ↪→ L2(�) is compact. By [Adams and Fournier
2003; Evans and Harris 1987] one knows that H 2(�) ↪→ L2(�) is compact when-
ever (2) holds true and H⊂ H 2(�). �

3. Simple cases: D–N, M–M, D–M and D–D,

Theorem 5. Suppose � is as in Assumption 1 and suppose that the boundary con-
ditions for problem (4), as given in (5)-(7) contain one of the cases (11) or (12).
Then the spectrum is discrete.

Remark 5.1. By a similar reasoning, we may conclude that in the bounded do-
main ω, with the peak as in (3), Equation (4) has discrete spectrum for any set of
conditions (5)–(7) on the arc ∂ω \ O. This fact follows from the inequality (see
[Nazarov and Taskinen 2008]):∥∥|x |−1 u; L2(ω)

∥∥2
≤ c

(
‖∇u; L2(ω)‖

2
+‖u; L2(ω \$R)‖

2) .
Proof. By assumption the boundary conditions provide at least one of the following
two groups of relations:

u = 0 on 6+R ∪6
−

R ; (11)

u = ∂nu = 0 on 6+R or on 6−R . (12)

In both cases (11) and (12) the following version of Friedrich’s inequality is valid:

∫
ϒ(y)

∣∣∣∣∂2u
∂z2 (y, z)

∣∣∣∣2 dz ≥
c

H(y)4

∫
ϒ(y)
|u(y, z)|2 dz. (13)

Therefore,

a(u, u)≥ c
∫
�

H(y)−4
|u(x)|2 dx . (14)



238 FEDOR L. BAKHAREV, SERGEY A. NAZAROV AND GUIDO H. SWEERS

The embedding operator γ : H→ L2(�) can be represented as the sum γ0+ γρ ,
where ρ ≥ R is large and positive, γ0 = γ − γρ , and γρ contains the operator of
multiplication by the characteristic function of 5ρ . The operator γ0 is compact,
and the norm of γρ , in view of (14), does not exceed c max

{
H(x1)

−2
; x1 ≥ ρ

}
.

Since the function H decays, this quantity goes to zero when ρ→+∞, i.e., the
operator γ can be approximated by compact operators in the operator norm. Thus
γ is compact and the result is proved. �

4. Auxiliary inequalities

First of all we prove some one-dimensional weighted inequalities, two of which
are of Hardy type involving a weight function h as follows.

Assumption 6. Let h be a positive weight function of class C2 on [0,+∞) such
that

•

∫
∞

0
h(s) ds <∞ and

• for some large T , we have h′(t) < 0 and h′′(t) > 0 for t ∈ (T,∞).

Throughout this section h is supposed to satisfy this assumption.

Lemma 7. If U is differentiable for y ≥ R and U (R)= 0, then∫
+∞

R
h(y) |U (y)|2 dy ≤

∫
+∞

R
Fh(y)

∣∣∂yU (y)
∣∣2 dy,

where

Fh(y)=
4

h(y)

(∫
+∞

y
h(τ ) dτ

)2

.

Proof. Using the Cauchy–Bunyakovsky–Schwarz inequality, we have∫
+∞

R
h(y) |U (y)|2 dy

= 2
∫
+∞

R
h(y)

∫ y

R
∂tU (t)U (t) dt dy

≤ 2
∫
+∞

R

∫
+∞

t
h(y)

∣∣∂tU (t)U (t)
∣∣ dy dt

≤ 2
(∫

+∞

R
h(t)|U (t)|2 dt

)1/2 (∫ +∞
R

h(t)−1
(∫

+∞

t
h(y) dy

)2

|∂tU (t)|2 dt
)1/2

,

and the result follows through division by a common factor. �
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Lemma 8. If U is differentiable for y ≥ R and U (R)= 0, then∫
+∞

R
h(y)

∣∣∂yU (y)
∣∣2 dy ≥

∫
+∞

R
Gh(y) |U (y)|2 dy,

where

Gh,R(y)=
1

4h(y)

(∫ y

R
h(τ )−1 dτ

)−2

.

Proof. For functions v with v(0)= 0 the Hardy inequality tells us that∫
+∞

0
t−2
|v(t)|2 dt ≤ 4

∫
+∞

0
|∂tv(t)|2 dt.

We make the change t 7→ y ∈ [R,+∞) where t =
∫ y

R h(τ )−1 dτ , and set U (y)=
v(t). Then ∂tv(t)= h(y)∂yU (y) leads to the desired estimate. �

Corollary 9. If the function U is twice differentiable for y ≥ R and U (R) =
U ′(R)= 0, then∫

+∞

R
h(t)

∣∣∂2
t U (t)

∣∣2 dt ≥Wh(R)
∫
+∞

R
h(t) |U (t)|2 dt (15)

is valid with

Wh(R) := inf
t∈[R,+∞)

Gh,R(t)
Fh(t)

= inf
t∈[R,+∞)

1
16

(∫ t

R
h(τ )−1 dτ

)−2 (∫ ∞
t

h(τ ) dτ
)−2

. (16)

Lemma 10. We have

inf
t∈[R,+∞)

Gh3,R(t)
h(t)h′(t)2

≥ 1. (17)

Suppose moreover that

lim
t→+∞

∂t(log h(t))=−∞. (18)

Then
Wh(R)→+∞ and Wh3(R)→+∞ for R→∞.

Proof. Since −h′(τ )≥−h′(t) > 0 for τ < t , we find

Gh3,R(t)
h(t)h′(t)2

=
1

4h′(t)2h(t)4

(∫ t

R
h(τ )−3 dτ

)−2

≥
1

4h(t)4

(
−

∫ t

R
h′(τ )h(τ )−3 dτ

)−2

=
1

4h(t)4

(
1

2h(t)2
−

1
2h(R)2

)−2

≥ 1.
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Since (18) equals h′(t)/h(t)→−∞ for t→∞, we find that for t→∞ both

h(t)
(∫

∞

t
h(τ ) dτ

)−1

→∞ and
1

h(t)

(∫ t

R

1
h(τ )

dτ
)−1

→∞.

Hence
Gh,R(t)

Fh(t)
→∞ as t→∞,

and since the quotient also goes to infinity for t ↓ R, it has a minimum in some
tR ∈ (R,∞). Calculating

(
Gh,R(t)/Fh(t)

)′
= 0 we find

1
h(t)

∫
∞

t
h(τ ) dτ − h(t)

∫ t

R
h(τ )−1 dτ = 0.

Hence

inf
t∈[R,∞)

(∫ t

R
h(τ )−1 dτ

∫
∞

t
h(τ ) dτ

)−1

= h(tR)
2
(∫

∞

tR

h(τ ) dτ
)−2

,

which goes to infinity for R→∞ since tR > R. The claim for Wh(R) follows.
The same argument holds true for Wh3(R). �

5. Estimates for a traction-free boundary

We assume that the Neumann boundary conditions (6) are imposed at the both sides
of the peak (1). Let us describe for ρ→+∞ the behavior of the multiplier K (ρ)
in the inequality

K (ρ)
∫
5ρ

|u(y, z)|2 dy ≤ ‖u; H 2(�)‖2 , u ∈ H 2(�). (19)

If K (ρ) increases unboundedly as ρ→+∞ then, as above, Theorem 10.1.5 of
[Birman and Solomyak 1980] ensures that the spectrum of the equation (4)–(7)
stays discrete even in the case both sides of the peak are supplied with the traction-
free boundary conditions (N) and, moreover, for any other boundary conditions
from the list (5)–(7).

Proposition 11. Suppose that Assumption 6 is satisfied for h = H and that

lim
t→∞

∂t
(
log H(t)

)
=−∞.

Then for ρ sufficiently large (19) holds true with

K (ρ)= c min{H−4(ρ),WH (ρ),WH3(ρ)}. (20)
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Proof. It is sufficient to check the inequality (19) for smooth functions which vanish
for y < ρ. We use the representation

u(x)= u(y, z)= u0(y)+ zu1(y)+ u⊥(y, z)

where, for y > ρ, the component u⊥ is subject to the orthogonality conditions∫
ϒ(y)

u⊥(y, z) dz = 0,∫
ϒ(y)

∂zu⊥(y, z) dz = u⊥(y, H(y))− u⊥(y,−H(y))= 0.
(21)

Let us process the integrals on the right-hand side of∫
5ρ

|∇
2
x u(x)|2 dx = I1+ 4I2+ I3, (22)

where

I1 :=

∫
5ρ

|∂2
z u(x)|2dx, I2 :=

∫
5ρ

|∂y∂zu(x)|2dx, I3 :=

∫
5ρ

|∂2
y u(x)|2dx .

Since I1 =
∫
+∞

ρ

∫
ϒ(y) |∂

2
z u⊥(y, z)|2 dz dy and since, by the orthogonality condi-

tions in (21), inequality (13) holds here also, we find that

I1 ≥ c
∫
5ρ

H(y)−4 ∣∣u⊥(x)∣∣2 dx . (23)

For the last term in (22) we have

I3 =

∫
5ρ

∣∣∂2
y u0(y)+ z∂2

y u1(y)+ ∂2
y u⊥(y, z)

∣∣2 dx ≥ J1+ J2+ 2J3+ 2J4, (24)

where

J1 = g
∫
5ρ

|∂2
y u0(y)|2dx, J3 = g

∫
5ρ

∂2
y u0(y)∂2

y u⊥(y, z) dx,

J2 = g
∫
5ρ

|z∂2
y u1(y)|2dx, J4 = g

∫
5ρ

z∂2
y u1(y)∂2

y u⊥(y, z) dx .

We readily notice that according to the inequality (15) the estimates

J1 ≥WH (ρ)

∫
+∞

ρ

2H(y) |u0(y)|2 dy =WH (ρ)

∫
5ρ

|u0(y)|2 dx (25)



242 FEDOR L. BAKHAREV, SERGEY A. NAZAROV AND GUIDO H. SWEERS

and

J2 =
2
3

∫
+∞

ρ

H 3(y)|∂2
y u1(y)|2 dy ≥ 2

3
WH3(ρ)

∫
+∞

ρ

H 3(y)|u1(y)|2 dy

=WH3(ρ)

∫
5ρ

|zu1(y)|2 dx (26)

are fulfilled. For our purpose we need WH (ρ)→+∞ and WH3(ρ)→+∞ for
ρ→∞ and this we will assume.

Besides, by the Cauchy–Bunyakovsky–Schwarz inequality, we have

|J3| ≤ J 1/2
1

(∫
+∞

ρ

1
2H(y)

(∫
ϒ(y)

∂2
y u⊥(y, z) dz

)2

dy
)1/2

.

We now deal with the inner integral in z in the last expression. To this end, we
take into account the orthogonality conditions (21) and the trace inequality. We
differentiate the first equality in (21) twice with respect to y and obtain∑
±

(
2∂yu⊥(y,±H(y))∂y H(y)+u⊥(y,±H(y))∂2

y H(y)±∂zu⊥(y,±H(y))(∂yH(y))2
)

+

∫
ϒ(y)

∂2
y u⊥(y, z) dz = 0.

Thus,(∫
ϒ(y)

∂2
yu⊥(y, z) dz

)2

≤ c
∑
±

(∣∣∂zu⊥(y,±H(y))
∣∣2 |∂y H(y)|4+

∣∣u⊥(y,±H(y))
∣∣2 |∂2

y H(y)|2

+
∣∣∂yu⊥(y,±H(y))

∣∣2 |∂y H(y)|2
)
.

For the first two terms between the brackets we use the trace inequality∣∣∂zu⊥(y,±H(y))
∣∣2 |H(y)|2+∣∣u⊥(y,±H(y))

∣∣2≤c |H(y)|3
∫
ϒ(y)

∣∣∂2
z u⊥(y, z)

∣∣2dz.

For the third term, we write down the chain of inequalities∣∣∂yu⊥(y,±H(y))
∣∣2

≤ cH(y)
∫
ϒ(y)

∣∣∂y∂zu⊥(y, z)
∣∣2 dz+ c|H(y)|−2

(∫
ϒ(y)

∂yu⊥(y, z) dz
)2

≤ cH(y)
∫
ϒ(y)

∣∣∂y∂zu⊥(y, z)
∣∣2 dz

+ 2c
(
∂y H(y)

H(y)

)2 (∣∣u⊥(y, H(y))
∣∣2+ ∣∣u⊥(y,−H(y))

∣∣2).
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As a result, we find that∣∣∣∣∫
ϒ(y)
∂2

y u⊥(y,z)dz
∣∣∣∣2≤c

(
|∂y H(y)|4 H(y)+|∂2

y H(y)|2|H(y)|3
)∫
ϒ(y)

∣∣∂2
z u⊥(y,z)

∣∣2dz

+ c |∂y H(y)|2 |H(y)|
∫
ϒ(y)

∣∣∂y∂zu⊥(y, z)
∣∣2 dz.

The final inequality for the integral J3 takes the form

|J3| ≤ c1(ρ)J
1/2
1 I 1/2

1 + c2(ρ)J
1/2
1 K 1/2

1 (27)

where K1 =
∥∥∂2

yzu⊥; L2(5ρ)
∥∥2 and

c1(ρ)= c sup
y∈[ρ,+∞)

(
|∂y H(y)|2+ |∂2

y H(y)||H(y)|
)
,

c2(ρ)= c sup
y∈[ρ,+∞)

|∂y H(y)|.

Both suprema tend to 0 for ρ→+∞. A similar argument shows that

|J4| ≤ c1(ρ)J
1/2
2 I 1/2

1 + c2(ρ)J
1/2
2 K 1/2

1 . (28)

It remains to process the second term in (22), that is,

I2 =

∫
5ρ

∣∣z∂yu1(y)+ ∂y∂zu⊥(y, z)
∣∣2 dx

=

∫
5ρ

∣∣∂y∂zu⊥(y, z)
∣∣2 dx +

∫
5ρ

∣∣∂yu1(y)
∣∣2 dx + 2

∫
5ρ

∂yu1(y)∂y∂zu⊥(y, z) dx .

=

K1

=
:

K2

=
:

2K3

So it follows that

K1 = I2− K2− 2K3 ≤ I2+ 2 |K3| . (29)

We continue by estimating the integral K3:

|K3| =

∣∣∣∣∫ +∞
ρ

∂yu1(y)
∫
ϒ(y)

∂y∂zu⊥(y, z) dz dy
∣∣∣∣

≤

( +∞∫
ρ

G H3,ρ(y)|∂yu1(y)|2 dy
)1

2
( +∞∫
ρ

G H3,ρ(y)
−1
∣∣∣∣∫
ϒ(y)

∂y∂zu⊥(y, z) dz
∣∣∣∣2dy

)1
2

≤ cJ 1/2
2

(∫
+∞

ρ

G H3,ρ(y)
−1
∣∣∣∣∫
ϒ(y)

∂y∂zu⊥(y, z) dz
∣∣∣∣2 dy

)1/2

.
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Differentiating the second formula (21) with respect to y yields∫
ϒ(y)

∂y∂zu⊥(y, z) dz+
∑
±

∂zu⊥(y,±H(y))∂y H(y)= 0.

By the trace inequality we find that∣∣∣∣∫
ϒ(y)

∂y∂zu⊥(y, z) dz
∣∣∣∣2 = (∑

±

∂zu⊥(y,±H(y))
)2

|∂y H(y)|2

≤ c|H(y)||∂y H(y)|2
∫
ϒ(y)
|∂2

z u⊥(y, z)|2 dz.

Thus, from the relation (18), which implies (17), we get

|K3|≤c sup
y∈[ρ,+∞)

{
|G H3,ρ(y)|

−1/2
|∂y H(y)||H(y)|1/2

}
J 1/2

2 I 1/2
1 ≤cJ 1/2

2 I 1/2
1 . (30)

We find by combining (29) and (30) that

K1 ≤ I2+ cJ 1/2
2 I 1/2

1

and so (27) and (28) yield, respectively,

|J3| ≤ c1(ρ)J
1/2
1 I 1/2

1 + c2(ρ)J
1/2
1

(
I2+ cJ 1/2

2 I 1/2
1

)1/2
, (31)

|J4| ≤ c1(ρ)J
1/2
2 I 1/2

1 + c2(ρ)J
1/2
2

(
I2+ cJ 1/2

2 I 1/2
1

)1/2
. (32)

Using first (22) and (24), next (31) and (32) for ρ large enough, and finally (23),
(25) and (26) we conclude that indeed∥∥∇2

x u; L2(5ρ)
∥∥2
= I1+ 4I2+ I3

≥ I1+ 4I2+ J1+ J2+ 2J3+ 2J4

≥
1
2(I1+ 4I2+ J1+ J2)≥

1
2(I1+ J1+ J2)

≥ c min{H−4(ρ),WH (ρ),WH3(ρ)}
∥∥u; L2(5ρ)

∥∥2
,

whenever ρ is large enough. �

6. Traction-free boundaries: N–N

Theorem 12. Suppose that H satisfies Assumption 6 with h = H and that

lim
t→∞

∂t (log H(t))=−∞. (33)

Then the embedding H 2(�) ↪→ L2(�) is compact and the spectrum of the problem
(4) with the Neumann boundary conditions (6) on both sides of the peak is discrete.
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Proof. By Proposition 11, K (ρ) can be estimated as in (20). Assumption 6 implies
that Lemma 10 holds true and hence K (ρ)→+∞ for ρ→+∞. One concludes
as in the proof of Theorem 5 through an approximation by compact operators. �

Remark 12.1. Note that the functions H(y)= y−α and H(y)= exp(−αy), α > 0,
do not satisfy the requirement in (2) or (33). The functions H(y)= exp(−y1+α)

with α > 0 however do.

7. An incomplete Dirichlet condition: M–N

In this section the boundary conditions only contain a single stable condition

u(x)= 0, x ∈6+ρ (or x ∈6−ρ ). (34)

Theorem 13. Suppose that lim
y→∞

H(y)−3G H (y) = +∞. Then the problem in (4)

with the boundary condition as in (34) has discrete spectrum.

Remark 13.1. The functions H(y) = y−1−α with α > 0 meet the condition in
Theorem 13.

Proof. By (34), Friedrich’s inequality holds on the section ϒ(y) and, consequently,∥∥A ∂zu; L2(5ρ)
∥∥2
≥ c

∥∥A H−2u; L2(5ρ)
∥∥2

for every positive weight function y 7→ A(y). The function v = ∂zu can be rep-
resented as the sum v(x) = v0(y)+ v⊥(x) where, for y > ρ, the component v⊥

satisfies the first condition in (21). Therefore,∫
5ρ

|∇
2
x u(x)|2 dx

≥

∫
5ρ

|∇xv(x)|2 dx

≥

∫
+∞

ρ

2H(y)|∂yv0(y)|2 dy+
∫
5ρ

|∂zv
⊥(y, z)|2 dx + 2

∫
5ρ

∂yv0(y)∂yv
⊥(y, z) dx

=: I4+ I5+ 2I6.

Setting Z H (y)= H(y)−1G H (y), we get

I4 ≥

∫
+∞

ρ

2G H (y)|v0(y)|2dy ≥
∫
+∞

ρ

2Z H (y)H(y)|v0(y)|2dy

= ‖Z Hv0; L2(5ρ)‖
2.

Friedrich’s inequality implies

I5 = ‖∂zv
⊥
; L2(5ρ)‖ ≥ c‖H−2v⊥; L2(5ρ)‖

2.
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Furthermore,

I6 =

∫
5ρ

∂yv0(y)∂yv
⊥(y, z) dx ≤ I 1/2

5

(∫
+∞

ρ

1
2H(y)

∣∣∣∣ ∫
ϒ(y)

∂yv
⊥(y, z) dz

∣∣∣∣2)1/2

≤ I 1/2
5

(∫
+∞

ρ

1
2H(y)

∣∣v⊥(y, H(y))∂y H(y)− v⊥(y,−H(y))∂y H(y)
∣∣2)1/2

.

Thus I6 ≤ c|∂y H(ρ)|I 1/2
5 I 1/2

6 holds and hence∥∥∇2
x u; L2(5ρ)

∥∥2
≥ c

∥∥min{H−4
; H−3G H }u; L2(5ρ)

∥∥2
.

Compactness and hence the discrete spectrum follow from the assumption on H .
�
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