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GEOMETRIC DEGREE OF NONCONSERVATIVITY

JEAN LERBET, MARWA ALDOWAJI, NOËL CHALLAMEL,
OLEG N. KIRILLOV, FRANÇOIS NICOT AND FÉLIX DARVE

This paper deals with nonconservative mechanical systems subjected to noncon-
servative positional forces leading to nonsymmetric tangential stiffness matrices.
The geometric degree of nonconservativity of such systems is then defined as
the minimal number ` of kinematic constraints necessary to convert the initial
system into a conservative one. Finding this number and describing the set of
corresponding kinematic constraints is reduced to a linear algebra problem. This
index ` of nonconservativity is the half of the rank of the skew-symmetric part
Ka of the stiffness matrix K that is always an even number. The set of constraints
is extracted from the eigenspaces of the symmetric matrix K 2

a . Several examples
including the well-known Ziegler column illustrate the results.

Introduction

This paper is concerned with the statics or dynamics of a discrete or discretized
system 6free. We assume that, after having started with different possible nonlinear
settings, convenient assumptions and approximations lead to a dynamic evolution
governed by the following equation of motion of the free system 6free:

M Ẍ + K (p)X = 0, (1)

where K (p) = Ks(p)+ Ka(p), with Ks(p) = 1
2 (K (p)+ K T (p)) and Ka(p) =

1
2 (K (p)−K T (p)); note that K (p) is generally a nonsymmetric matrix (Ka(p) 6= 0)
because of the nonconservativity of 6free, whereas M is symmetric positive definite.

The paradoxical effects of mechanical systems linearly governed by (1) with a
nonsymmetric stiffness matrix have been known for some time (see for example
[Ziegler 1952; Bolotin 1961]) and have been investigated in depth, especially con-
cerning the so-called destabilizing effect of adding friction in the system (see [Kir-
illov and Verhulst 2010] for recent developments). Bigoni and Noselli [2011] have
illustrated through an experimental device calculations starting from dynamics with
dry friction and coming to equations like (1). Circulatory forces seem to have
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appeared first in the rotor dynamics works of early 1920s. It is generally agreed
that E. L. Nikolai was the first to have found some curious paradoxes induced
by the nonconservative aspect of the loading system. Here, we only investigate
systems without rotating effects which means that circulatory forces are only non-
conservative positional loading. More precisely, by decomposing in the linear case
the stiffness matrix K (p) into a symmetric part and a skew-symmetric part, one
then decomposes nonpotential forces into a potential component and a circulatory
component. Zhuravlev [2007] suggests an extension of this decomposition for the
nonlinear case by using the trick of Poincaré in his theorem about exact and closed
differential forms. This could be a good way to tackle the nonlinear extension of
the present paper.

If p is a loading parameter any norm ‖Ka(p)‖ of the skew-symmetric part Ka(p)
of K (p) is an elementary measure of the nonconservativity of the corresponding
nonpotential forces by any norm on the space of matrices. However, this rough
measure indicates the amplitude of the nonconservativity and masks another more
intrinsic measure of this nonconservativity which is defined in this paper. This is
here defined by a lower semicontinuous function with only finite integer values (for
an increasing load). This function is then locally independent on the load parameter
value, except perhaps for a finite number of singular values {p∗0 < p∗1 < · · ·< p∗r } of
p. Obviously p∗0 = 0 is such a value, because for p = 0 the system is conservative
and Ka(0) = 0. In all the examples except the so-called Bigoni system, the only
value is p = 0. Because it is also linked to a dimension of a linear space, we
then propose to call this number the geometric degree of nonconservativity of the
system (or of the forces).

The genesis of the used approach lies in several papers [Challamel et al. 2009;
2010; Nicot et al. 2011; Lerbet et al. 2012] that investigated the deep rule of the
second-order work criterion proposed in [Hill 1958] for solids in the framework
of nonassociated plasticity, and independently also proposed for instabilities for
systems subjected to nonpotential forces in [Absi and Lerbet 2004]. This criterion
performs especially well for nonconservative systems because, contrary to the di-
vergence criterion, it remains “stable” under the action of additional kinematics
constraints: if this criterion holds for a free system and for a value p of the load
parameter, it still holds for the same value p and for a system subjected to any
family of additional kinematic constraints. This property, contrary to a similar
well-known consequence of the Rayleigh theorems for conservative systems, is
generally no more valid for nonconservative systems. This paradoxical behavior
of the mechanical system, or more precisely of the stability of the investigated equi-
librium configuration of the mechanical system when adding additional kinematic
constraints, is actually a characteristic of nonconservative systems.

Thus, extending the above-mentioned works concerning the effects of additional
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constraints on such n-DOF (degree of freedom) nonconservative mechanical sys-
tems [Challamel et al. 2010; Lerbet et al. 2012; 2013], we focus on families of
kinematic constraints that could convert 6free into a conservative system. More
precisely, we address both the problems of the existence of a minimal family (ac-
cording to the number of constraints) of such constraints and that of building the
set of such families. The minimal number of constraints required to convert the
nonconservative system 6free into a conservative system is then a measure of the
nonconservativity of 6free and will be called the geometric degree of nonconserva-
tivity of 6free.

The paper is organized as follows: in Section 1, the mechanical problem is
reduced to a linear algebra problem. In Section 2, the solution is developed leading
to the concept of the geometric degree of nonconservativity of a mechanical system.
In Section 3, several examples illustrate the mathematical results.

1. Modeling of the mechanical problem

Let 6free be a n-DOF discrete mechanical system and suppose, as above, that the
dynamic evolution of 6free is governed by (1). X is the vector of kinematic un-
knowns (X T

= (x1, . . . , xn) ∈M1n(R)), M is the mass matrix (symmetric definite
positive), and K = K (p) is the stiffness matrix. The latter is any square matrix
because of the nonconservativity of 6free. Let p be a (loading) parameter. Suppose
that m (independent) additional kinematic constraints C1, . . . ,Cm are set up on
6free. The linear framework leads us to model each kinematic constraint C j by
a linear relationship

∑n
k=1 α

j
k xk = 0. Thus C j is represented by and identified

with a vector α j
= (α j

1 , . . . , α
j
n ) of Rn (actually it is a linear form on Rn but

by the canonical scalar product we may identify both spaces). The family of m
constraints {α1, . . . , αm

} may be considered as an element of an nm-dimensional
vector space — for instance as an n×m matrix A =

(
α1
· · · αm

)
in Mnm(R), or

more precisely in Gnm(R), the open subset of matrices of Mnm(R) with rank m,
because of the independence of the constraints. If m is fixed (it will have to be
found in a first step), we then have to find the set Cm(6free)⊂ Gnm(R) such that if
A ∈ Cm(6free) then the constrained mechanical system 6cons =6cons(A) becomes
conservative. Thus

AT
=

α1T

...

αmT

=
α

1
1 · · · α

1
n

...
. . .

...

αm
1 · · · α

m
n


(every vector αiT

= (αi
1, . . . , α

i
n) could be normalized αiTαi

= 1).
Let 3 ∈Mm1(R), with 3T

= (λ1 . . . λm), be the Lagrange multiplier attached
to the constraints. The equation of motion of the constrained system 6cons(A) is
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AT X = 0, (2)

M Ẍ + K (p)X + A3= 0, (3)

Let T (A)=Vect{α1, . . . , αm
} and let H(A)= T (A)⊥ be the orthogonal to T (A)

in Rn identified with Mn1(R). Thus dim T (A)= m and dim H(A)= n−m.
Let us choose an orthonormal basis of T (A) (by Gram–Schmidt from (α1, . . . ,

αm), for example) (t1(A), . . . , tm(A)) and another (hm+1(A), . . . , hn(A)) of H(A)
such that b(A)= (t1(A), . . . , tm(A), hm+1(A), . . . , hn(A)) is an orthonormal basis
of Rn and let P = P(A) ∈ On(R) be the orthogonal matrix passing from the
canonical basis of Rn to b(A):

P = P(A)=mat(t1(A), . . . , tm(A), hm+1(A), . . . , hn(A)).

Let Y be defined by X = P(A)Y . The previous system reads:

(P(A)T A)T Y = 0, (4)

PT (A)M P(A)Ÿ + PT (A)K (p)P(A)Y + P(A)T A3= 0, (5)

Considering Mcons(A) (resp. Kcons(A, p)) the square submatrix of PT (A)M P(A)
(resp. PT (A)K (p)P(A)) built by suppressing the first m rows and the first m
columns of PT (A)M P(A) (resp. of PT (A)K (p)P(A)), we get the following equa-
tions of the constrained system without the Lagrange multipliers:

Mcons(A)Ÿcons+ Kcons(A, p)Ycons = 0, (6)

where Y T
cons = (ym+1, . . . , yn) ∈M1 n−m(R).

We are then led to investigate when Kcons(A, p), a (n−m) × (n−m) square
submatrix of PT (A)K (p)P(A), is symmetric. Note that, in the standard case of
structural mechanics, K (p)= Kel− pKext with Kel the symmetric definite-positive
stiffness matrix relative to elastic actions and Kext the nonsymmetric matrix relative
to external actions (circulatory force). Kcons(A, p) reads:

Kcons(A, p)=

hT
m+1(A)K (p)hm+1(A) · · · hT

m+1(A)K (p)hn(A)
...

. . .
...

hT
n (A)K (p)hm+1(A) · · · hT

n (A)K (p)hn(A)

 .
The condition for the constraints defined by A to convert the free nonconserva-

tive system into a conservative one is then

hT
i (A)K (p)h j (A)= hT

i (A)K
T (p)h j (A) for all i, j,

or, in a more geometrical phrasing: for every pair u and v of two orthogonal vectors
of H(A) orthogonal to T (A) = Vect{α1, . . . , αm

}, uT K (p)v = uT K T (p)v. This
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is equivalent to uT Ka(p)v = 0 for every pair u and v of any two vectors of H(A)
with Ka(p) the skew-symmetric part of K (p). This is obviously right for m = n−1
because for any n− 1 independent constraints the submatrix becomes a scalar, the
skew-symmetric part of which is always nil!

Let φa(p) be the linear map whose matrix is in the canonical basis of Rn is
Ka(p). Geometrically, the condition means that for every vector u of H(A),
φa(p)(u) is orthogonal to H(A) or equivalently belongs to T (A):

φa(p)(u) ∈ T (A) for all u ∈ H(A). (7)

The initial mechanical problem has then been modeled into the following original
problem of linear algebra and more precisely of Euclidean spaces: Does there exist
an (n−m)-dimensional subspace of Rn which is sent onto its orthogonal by φa(p)?
We denote by ( · | · ) the scalar product of Rn ((u | v)= uT v with the identification
of Rn with Mn1(R)). In the following section, this problem is solved.

2. Solution of the mathematical modeling

We forget the p-dependency of all the quantities. In the introduction, we already
noted that the loading interval I = [0,+∞[ may be decomposed as {0} ∪ ]0, p∗1] ∪
]p∗1, p∗2] ∪ · · · ∪ ]p

∗
r ,+∞[ with p∗1, . . . , p∗r nonzero singular values of loading.

Forgetting the p-dependency means that p /∈ {0, p∗1, . . . , p∗r }. In the examples
excepted for Bigoni’s system, 0 is the only singular value. The singular problem
is not investigated in this paper.

Let Fa = Im(φa) and Ga = Ker(φa). We know that (as every skew-symmetric
linear map) φa has an even rank, r = 2`, and that its kernel and its image are
orthogonal spaces. Let Ga = Ker(φa). Thus Rn

= Fa
⊥

⊕Ga . We set the following:

Definition. The integer ` is called the geometric degree of nonconservativity of
6free.

As φ2
a is a symmetric linear mapping it is diagonalizable in an orthonormal basis.

Moreover Ga = Ker(φa) = Ker(φ2
a), the nonzero eigenvalues of φ2

a are negative,
and the associated eigenspaces are two-dimensional and mutually orthogonal. Note
these values −µ2

1, . . . ,−µ
2
` and E

−µ2
i
, the associated eigenspaces for i = 1, . . . , `.

Each of these spaces are φa-stable. Because of the φa-stability of each of the spaces
of the decomposition

Rn
= Ga

⊥

⊕ E
−µ2

1

⊥

⊕ . . .
⊥

⊕ E
−µ2

`
,

we deduce (by Cartan’s theorem) the existence of an orthonormal basis b′ of Rn



128 LERBET, ALDOWAJI, CHALLAMEL, KIRILLOV, NICOT AND DARVE

such that the matrix of φa in b′ is

0 · · · · · · 0
...
. . .

...

0 · · ·

0 −µ1

µ1 0
. . .

... 0 −µ`
0 µ` 0


.

Thus

Rn
= Ga

⊥

⊕ E
−µ2

1

⊥

⊕ · · ·
⊥

⊕ E
−µ2

`
= Fa

⊥

⊕Ga = H(A)
⊥

⊕ T (A).

Proposition. Equation (7) holds if and only if m= ` and the family A of constraints
must be built by choosing αi

∈ E
−µ2

i
for i = 1, . . . , `= m, being, however, careful

that the property fails if two constraints are chosen in the same eigenspace E−µ2
i
.

Proof. Suppose first that m = ` = 1
2 rank(φa) and A built as proposed in the

proposition. Let u ∈ H(A). Complete the basis (α1, . . . , αm) by n− 2m vectors
β1, . . . , βn−2m of Ga and the m other vectors (φa(α

1), . . . , φa(α
m)) so that the

family (β1, . . . βn−2m, φa(α
1), . . . , φa(α

m)) is an orthogonal basis of T (A), as may
be easily checked. By definition,

u =
m∑

k=1

ukα
k,

and then
φa(p)(u)=

m∑
k=1

ukφ(α
k) ∈ T (A),

which is exactly (7).
Reciprocally, suppose now m < l or m = l but A is not built as proposed in the

proposition. Thus there is some i ∈ {1, . . . , l} such that any α j belongs to E
−µ2

i
meaning geometrically that T (A)∩E

−µ2
i
={0}. Choose now u 6= 0 in H(A)∩E

−µ2
i
.

Thus (u, φa(u)) is an orthogonal basis of E
−µ2

i
, meaning that φa(u)(6= 0) ∈ E

−µ2
i
,

implying φa(u) /∈ T (A). �

Thus, coming back to the mechanical problem, a free nonconservative mechani-
cal system 6free can be made conservative by means of m constraints if and only if
Ka(p) has rank 2m and the matrix A is formed by by m vectors α1, . . . , αm , each
αi being chosen in the eigenspace E

−µ2
i

of Ka(p)2; and Cm(6)= {A ∈Mnm(R) |

coli (A) ∈ E
−µ2

i
\ {0}} (with obvious notations) is an open 2m-dimensional cone of

Mnm(R).
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As stated previously, any constrained conservative system is still a conservative
system. Thus if there are k ≥m constraints, and m of the k constraints are chosen as
above, the constrained system is still conservative. If rank(Ka(p))= 2m, then m is
the minimum number of constraints needed to convert the system into a conserva-
tive one. The nonconservativity of the free system 6free is then characterized by two
measures of nonconservativity. The first is the norm of the skew-symmetric part
Ka(p), which indicates the amplitude of the nonconservativity, while the second is
the rank 2` of Ka(p), which acts as a geometric measure of the nonconservativity
or a sort of dimension (`) of the nonconservativity. This is the reason for the
above definition of the geometric degree of nonconservativity of 6free. Moreover
we may localize this nonconservativity because we may build families of ` vectors
(or constraints) allowing us to convert the initial nonconservative system into a
conservative one. Note also that the proof is constructive because it builds the kine-
matic constraints A converting the system 6free into a conservative one (6cons(A)).
There are 2m different independent systems A of constraints converting the non-
conservative 6free into a conservative 6cons(A). This result may be considered
as a sort of dual to the result about the destabilizing effect of adding kinematic
constraints in nonconservative systems (see again [Challamel et al. 2009; 2010;
Nicot et al. 2011; Lerbet et al. 2012]): by adding a suitable constraint in a suitable
eigenspace of Ks , one can destabilize a stable nonconservative system. Here, by
choosing appropriate constraints in suitable eigenspaces of K 2

a , one can convert a
nonconservative system into a conservative one. In the following section, several
examples issued from different mechanical systems illustrate these results.

3. Examples

In this section, we propose a collection of examples consisting in variations on the
paradigmatic Ziegler column. The degree of freedom (parameter n) and the nature
of the follower force (partial or complete follower force parameter γ ) may change.
In the most general case, the system 6 consists of n bars O A1, A1 A2, . . . , An−1 An

with O A1 = A1 A2 = · · · = An−1 An = h linked with n elastic springs with the same
stiffness k. EP is the follower nonconservative load acting on An . Adopting a
dimensionless format, we use p = ‖ EP‖h/k as a loading parameter. To investigate
how the algebraic method is performing, we conduct the complete calculation only
for the three-DOF Ziegler column.

In Section 3.1, we investigate the pure Ziegler system and we notice that the
geometric degree of nonconservativity is one for any number of rigid bars, meaning
for any degree of freedom. Increasing the number of bars or the degree of freedom
does not change its geometric degree of nonconservativity: from the geometric
point of view, the Ziegler system is weakly nonconservative. In Section 3.2, we
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investigate what we call the multiple-DOF Bigoni system, because it involves de-
vice like that of [Bigoni and Noselli 2011] at each joint. This system appears as
a generalization of the n-DOF Ziegler column where the load parameter is itself
distributed on the system and may vary on each joint. It also may be considered as
a discretized Leipholz column [Leipholz 1987]. In this case, the geometric degree
of nonconservativity increases with the number of bars and the degree of freedom.
Calculations are made only for n = 2 and n = 4. From a geometric point of view,
the Bigoni system is essentially more strongly nonconservative than the Ziegler
system.

3.1. Ziegler systems.

3.1.1. Two-DOF Ziegler column with complete follower force. The geometric stiff-
ness matrix is

Kext =

(
1 −1
0 0

)
.

Its skew-symmetric part is

Ka,ext =

(
0 − 1

2
1
2 0

)
.

The square of Ka,ext is

K 2
a,ext =−

1
4

(
1 0
0 1

)
,

where µ2
1 = −

1
4 , K 2

a,ext is spheric, and Eµ1(φ
2
a,ext) = R2. Then α is any vector in

R2. Obviously any constraint converts the free system into a conservative one as a
one-DOF (elastic) system is always conservative because any continuous function
has a primitive.

3.1.2. Two-DOF Ziegler column with partial follower force. The geometric stiff-
ness matrix is

Kext =

(
1 −γ
0 1−γ

)
.

Its skew-symmetric part is

Ka,ext =

 0 −γ
2

γ

2
0

 .
The square of Ka,ext is

K 2
a,ext =−

γ 2

4

(
1 0
0 1

)
.

Our conclusions are similar to those above.
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3.1.3. Three-DOF Ziegler column with complete follower force. The geometric
stiffness matrix is

Kext =

1 0 −1
0 1 −1
0 0 0

 .
Its skew-symmetric part is

Ka,ext =
1
2

0 0 −1
0 0 −1
1 1 0

 .
Obviously rank(Ka,ext)= 2. The square of Ka,ext is:

K 2
a,ext =−

1
4

1 1 0
1 1 0
0 0 2

 .
Calculations give −µ2

1 =−
1
2 and

E
−

1
2
(K 2

a,ext)= Vec

α =
0

0
1

 , Ka,extα =
1
2

−1
−1

0

,
leading to two generic constraints converting the system into a conservative one:
θ3 = 0 and θ1+ θ2 = 0. In practice, any linear combination of these two constraints
lies in the corresponding plane and may be chosen as a possible constraint convert-
ing the system into a conservative one. We now propose to check for this case the
results coming from our algebraic method with respect to the direct approach to
the problem.

The virtual power of the follower force reads:

P∗(P)= Q1θ
∗

1 + Q2θ
∗

2 + Q3θ
∗

3 = Ph(sin(θ3− θ1)θ
∗

1 + sin(θ3− θ2)θ
∗

2 ). (8)

The complete nonlinear condition in order to have a conservative system is that
there is a function θ= (θ1, θ2, θ3) 7→U (θ1, θ2, θ3)=U (θ) such that Qk=−∂U/∂θk ,
which is here obviously impossible without an additional constraint: that the free
system is nonconservative!

Suppose now the system is subjected to a kinematic constraint φ(θ)= 0, which
leads to the following condition on the virtual parameters:

∂φ

∂θ1
θ∗1 +

∂φ

∂θ2
θ∗2 +

∂φ

∂θ3
θ∗3 = 0. (9)

Supposing the problem is resolvable with respect to the variable θ3, meaning that
∂φ/∂θ3 6= 0, we deduce from the implicit functions theorem that (locally in the
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neighborhood of θ = 0), θ3 = θ3(θ1, θ2) meaning that, to first order,

θ3 = θ3(θ1, θ2)≈
∂θ3

∂θ1

∣∣∣∣
θ=0
θ1+

∂θ3

∂θ2

∣∣∣∣
θ=0
θ2 = c1θ1+ c2θ2. (10)

Thus, to first order, the expansion reads: Q1 = Q1(θ1, θ2)≈ Ph((c1−1)θ1+ c2θ2)

and Q2 = Q2(θ1, θ2)≈ Ph((c1θ1+ (c2− 1)θ2). The condition of conservativity of
the loading then reads c1 = c2 = c. The kinematic relation is θ3 = c(θ1+ θ2) and
the quadratic potential is

U (θ)≈−Ph
(c−1

2
(θ2

1 + θ
2
2 )+ cθ1θ2

)
. (11)

For c = 0, we find the first generic kinematic constraint θ3 = 0, and for c 6= 0 it is,
as expected, a linear combination of both generic constraints.

Suppose now that the problem is not resolvable with respect to the variable θ3,
meaning that ∂φ/∂θ3 = 0. We then deduce that, linearly, the relation only concerns
θ1 and θ2 and reads linearly as

∂φ

∂θ1

∣∣∣∣
θ=0

θ1+
∂φ

∂θ2

∣∣∣∣
θ=0

θ2 = a1θ1+ a2θ2 ≈ 0, (12)

and that a1θ
∗

1 + a2θ
∗

2 = 0. Resolving these relations, for example, with respect to
the variable θ1 (θ1 =−bθ2 =−(a2/a1)θ2 and reporting this relation in (8) shows
that P∗(P) = Q2θ

∗

2 with Q2 = Q2(θ2, θ3) ≈ Ph(−b(θ3 − bθ2) + (θ3 − θ2)) ≈

Ph((b2
− 1)θ2+ (1− b)θ3). The condition of integrability then reads b = 1, the

kinematic relation is θ1+ θ2 = 0, and the potential is nil up to order two. Then we
will come back precisely to the second generic kinematic constraint. To sum up,
the direct calculations lead to both generic constraints obtained from our algebraic
method.

3.1.4. Three-DOF Ziegler column with partial follower force. The geometric stiff-
ness matrix is

Kext =

1 0 −γ
0 1 −γ
0 0 1− γ

 .
Its skew-symmetric part is

Ka,ext =
1
2γ

0 0 −1
0 0 −1
1 1 0

 .
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Obviously rank(Ka,ext)= 2. The square of Ka,ext is

K 2
a,ext =−

1
4
γ 2

1 1 0
1 1 0
0 0 2

 .
Calculations give −µ2

1 =−γ
2/2 and

E−γ 2/2(K
2
a,ext)= Vec

α =
0

0
1

 , Ka,extα =
γ

2

−1
−1

0


leading to the same two generic constraints as previously which convert the system
into a conservative one: θ3 = 0 and θ1+ θ2 = 0.

3.1.5. An n-DOF Ziegler column with complete follower force (γ = 1). The stiff-
ness matrix is

K (p)=



2−p −1 0 0 · · · 0 p
−1 2−p −1 0 · · · 0 p
0 −1 2−p −1 · · · 0 p
...

...
...

...
. . .

...
...

0 0 0 0 · · · 2−p −1+p
0 0 0 0 · · · −1 1


.

Its skew-symmetric part is

Ka(p)=
p
2



0 0 0 0 · · · 0 1
0 0 0 0 · · · 0 1
0 0 0 0 · · · 0 1
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1
−1 −1 −1 −1 · · · −1 0


.

Obviously rank(Ka(p))= 2. The square of Ka(p) is

K 2
a (p)=−

p2

4



1 1 1 1 · · · 1 0
1 1 1 1 · · · 1 0
1 1 1 1 · · · 1 0
...
...
...
...
. . .

...
...

1 1 1 1 · · · 1 0
0 0 0 0 · · · 0 n−1


= p2 K̃ 2

a .
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Figure 1. An n-DOF Ziegler column with complete follower
force: the case θ1 + · · · + θn−1 = 0 (left) and the case θn = 0
(right).

Calculations give −µ2
1 =−(n− 1)/4 and

E−(n−1)/4(K̃ 2
a )= Vec


α =



0
0
0
...

0
1

, K̃ 2
aα =

1
2



−1
−1
−1
...

−1
0




leading to two generic constraints converting the system into a conservative one:
θ1+ · · ·+ θn−1 = 0, meaning that the motion of An−1 is constrained to remain on
the axis OY (Figure 1, left), and θn = 0 (Figure 1, right).

3.2. The Bigoni system or discretized Leipholz column. We now turn to the n-
DOF Bigoni system [Bigoni and Noselli 2011], which can also be regarded as an
n-DOF Leipholz column [1987]. The system 6 consists of n bars O A1, A1 A2,
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. . . , An−1 An , with O A1 = A1 A2 = · · · = An−1 An = h linked with n elastic springs
with the same stiffness k. Adopting the same device at the end of each bar of
6 leads to a family of follower forces EP1, . . . , EPn (see Figure 2, left). The pure
follower forces EP1, EP2, . . . , EPn are applied at the ends of O A1, A1 A2, . . . , An−1 An ,
respectively. Adopting a dimensionless format, we use pi = ‖ EPi‖h/k, for i =
1, . . . , n, as loading parameters. The stiffness matrix is K (p)= K (p1, p2, . . . , pn):

K (p)=



2−
n∑

i=2

pi −1+p2 p3 p4 p5 · · · pn−1 pn

−1 2−
n∑

i=3

pi −1+p3 p4 p5 · · · pn−1 pn

0 −1 2−
n∑

i=4

pi −1+p4 p5 · · · pn−1 pn

0 0 −1 2−
n∑

i=5

pi −1+p5 · · · pn−1 pn

...
...

...
...

...
. . .

...
...

0 0 0 0 0 · · · −1+pn−1 pn

0 0 0 0 0 · · · 2−pn −1+pn

0 0 0 0 0 · · · −1 1



.

Its skew-symmetric part is

Ka(p)=
1
2



0 p2 p3 p4 p5 · · · pn−1 pn

−p2 0 p3 p4 p5 · · · pn−1 pn

−p3 −p3 0 p4 p5 · · · pn−1 pn

−p4 −p4 −p4 0 p5 · · · pn−1 pn
...

...
...

...
...

. . .
...

...

−pn−1 −pn−1 −pn−1 −pn−1 −pn−1 · · · 0 pn

−pn −pn −pn −pn −pn · · · −pn 0


and

rank(Ka(p))=

{
n if n even,

n− 1 if n odd,

thus

`=

{
n/2 if n even,

(n− 1)/2 if n odd.

For n = 2, calculations give

Ka
2
=−

1
4

p2
2

(
1 0
0 1

)
, −µ2

1 =−
1
4

p2
2.
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Figure 2. Bigoni systems with n DOF (left) and two DOF (right).

K 2
a is spherical, E

−µ2
1
(K 2

a ) = R2, and α is then any vector in R2. The geometric
degree of nonconservativity is equal to 1 and the constraint is a linear combination
of the two generic constraints θ1 = 0 and θ2 = 0: this is any linear constraint! (See
Figure 2, right.)

For n = 4, calculations give

−µ2
1 =−

3
8 p2

4 −
1
4 p2

3 −
1
8 p2

2 +
1
8 a, −µ2

2 =−
3
8 p2

4 −
1
4 p2

3 −
1
8 p2

2 −
1
8 a,

where a =
√

9p4
4 + 12p2

3 p2
4 + 2p2

4 p2
2 + 4p4

3 + 4p2
3 p2

2 + p4
2 , and

E
−µ2

1
(K 2

a )= Vec
{
α1 =

[
[2(−p2

3 p2
4a+ 2p3 p2 p2

4a− p2
4 p2

2a+ p3 p3
2a

+ p3
3 p2a− p2

4 p4
2 + 3p3 p3

2 p2
4 + 5p3

3 p2 p2
4 + 2p3 p2 p4

4 + p2
3 p2

2 p2
4 + p4

4 p2
2

+ 7p4
4 p2

3 + 6p6
4 + 2p2

4 p4
3 − 2p4

4a+ 2p5
3 p2+ 3p3

3 p3
2 + p3 p5

2)],

[−(2p3
3 p2+ 5p3 p2 p2

4 + p3 p3
2 + 3p2

4 p2
2 + p3 p2a+ 3p4

4

+ 2p2
3 p2

4 − p2
4a)(−p2

4 + p2
2 + a)], [(−3p4

4 − 2p2
3 p2

4 + 2p2
4 p2

2

+ p2
4a+ 2p2

3 p2
2 + p4

2 + p2
2a)(−p4

2
+ p2

2
+ a)], [0]

]}
, (13)
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E
−µ2

2
(K 2

a )= Vec
{
α2 =

[
[2p4(p3

3a+ p3
2a+ p2

3 p2a+ p3 p2
2a

+ 2p2
4 p2a+ 2p2

4 p3a+ p3 p4
2 + 2p4

4 p2+ 3p2
4 p3

2 + 3p2
3 p3

2 − 7p3
3 p2

4

− 6p3 p4
4 − 2p5

3 − p2
4 p2

2 p3+ 5p2
4 p2

3 p2− p2
2 p3

3 + 2p4
3 p2+ p5

2)],

[−p4(2p2
3 p2+ 5p2

4 p2+ p3
2 − 3p3 p2

2 + p2a− 3p2
4 p3− 2p3

3

+ p3a)(−p2
4 + p2

2 + a)], [0], [(−3p4
4 − 2p2

3 p2
4

+ 2p2
4 p2

2 + p2
4a+ 2p2

3 p2
2 + p4

2 + p2
2a)(−p2

4 + p2
2 + a)]

]}
. (14)

For pi =
c
ih

, we have

−µ2
1 =

c2

1152h2

(
−95+

√
7729

)
,

−µ2
2 =

c2

1152h2

(
−95−

√
7729

)
,

a = 1
144

√
7729c2

h2 ,

so

E
−µ2

1
(K 2

a )= Vec


α1 =

c6

h6


35
6

√
7729+137

27+
√

7729

−
1

24

(
281−

√
7729

)
1
8

(
57+
√

7729
)

0

, Kaα1


,

E
−µ2

2
(K 2

a )= Vec

α2 =
c6

h6


35
3

√
7729+37

27+
√

7729

−
1

12

(
1−
√

7729
)

0
1
8

(
57+
√

7729
)

, Kaα2

.
In this example, the geometric degree of nonconservativity is equal to 2: two ad-
ditional kinematic constraints φ1(θ1, . . . , θ4)= 0 and φ2(θ1, . . . , θ4)= 0 are then
necessary to convert the system into a conservative one, each constraint φi being
chosen in E

−µ2
i
(K 2

a ) for i = 1, 2. For example,

φ1(θ1, . . . , θ4)=
35
6

√
7729+137

27+
√

7729
θ1−

1
24

(
281−

√
7729

)
θ2+

1
8

(
57+
√

7729
)
θ3,

φ2(θ1, . . . , θ4)=
35
6

√
7729+137

27+
√

7729
θ1−

1
12

(
1−
√

7729
)
θ2+

1
8

(
57+
√

7729
)
θ4.

Conclusion

In this paper, we investigate nonconservative systems, meaning here elastic systems
with a nonsymmetric stiffness matrix. We associate with each mechanical system
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a minimal number ` of additional kinematic constraints allowing this system to be
converted into a conservative one. As this integer measure of the nonconservativity
of the mechanical system is linked with the dimension of a vector space, it is called
the geometric degree of nonconservativity of the system. Computations of this
integer and of the corresponding additional kinematic constraints are constructive
and several examples illustrate the results. The extension to the nonlinear case will
be developed in a forthcoming paper.
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tencial~nu� i cirkul�rnu� komponenty”, Dokl. Phys. 414:5 (2007), 622–624. Translated
as “Decomposition of nonlinear generalized forces into potential and circulatory components” in
Doklady Physics 52:6 (2007), 339–341.

[Ziegler 1952] H. Ziegler, “Die Stabilitätskriterien der Elastomechanik”, Ing. Arch. 20 (1952), 49–
56.

Received 9 Nov 2012. Revised 15 Apr 2013. Accepted 25 May 2013.

http://dx.doi.org/10.1016/S0093-6413(03)00045-4
http://dx.doi.org/10.1016/j.jmps.2011.05.007
http://dx.doi.org/10.1016/j.jmps.2011.05.007
http://dx.doi.org/10.1080/19648189.2009.9693112
http://dx.doi.org/10.1080/19648189.2009.9693112
http://dx.doi.org/10.1016/j.engstruct.2010.05.027
http://dx.doi.org/10.1016/j.engstruct.2010.05.027
http://dx.doi.org/10.1016/0022-5096(58)90029-2
http://dx.doi.org/10.1002/zamm.200900315
http://dx.doi.org/10.1002/zamm.200900315
http://dx.doi.org/10.1002/zamm.201100055
http://dx.doi.org/10.1002/zamm.201100055
http://dx.doi.org/10.1016/j.ijsolstr.2012.09.014
http://dx.doi.org/10.1016/j.ijsolstr.2012.09.014
http://dx.doi.org/10.1002/nag.959
http://dx.doi.org/10.1002/nag.959
http://dx.doi.org/10.1134/S1028335807060122
http://dx.doi.org/10.1007/BF00536796


GEOMETRIC DEGREE OF NONCONSERVATIVITY 139

JEAN LERBET: jean.lerbet@ibisc.univ-evry.fr
Informatique Biologie Intégrative Systèmes Complexes, Université d’Evry-Val-d’Essonne,
UFR Sciences & Technologies, 40, Rue du Pelvoux, CE 1455 Courcouronnes, 91020 Evry cedex,
France

MARWA ALDOWAJI: marwadoh@yahoo.com
Informatique Biologie Intégrative Systèmes Complexes, Université d’Evry-Val-d’Essonne,
UFR Sciences & Technologies, 40, Rue du Pelvoux, CE 1455 Courcouronnes, 91020 Evry cedex,
France

NOËL CHALLAMEL: noel.challamel@univ-ubs.fr
Laboratoire d’Ingénierie des Matériaux de Bretagne, Université de Bretagne Sud,
Rue de saint Maudé, BP 92116, 56321 Lorient cedex, France

OLEG N. KIRILLOV: o.kirillov@hzdr.de
Department of Magnetohydrodynamics, Institute of Fluid Dynamics, Helmholtz-Zentrum
Dresden-Rossendorf, Bautzner Landstraße 400, P.O. Box 510119, 01314 Dresden, Germany

FRANÇOIS NICOT: Francois.Nicot@irstea.fr
Geomechanics Group, Irstea, Domaine Universitaire BP 76, 38402 Saint Martin d’Hères cedex,
France

FÉLIX DARVE: felix.darve@3sr-grenoble.fr
Laboratoire Sols Solides Structures, UJF-INPG-CNRS, BP 53, 38041 Grenoble cedex 9, France

MM ∩
msp

mailto:jean.lerbet@ibisc.univ-evry.fr
mailto:marwadoh@yahoo.com
mailto:noel.challamel@univ-ubs.fr
mailto:o.kirillov@hzdr.de
mailto:Francois.Nicot@irstea.fr
mailto:felix.darve@3sr-grenoble.fr
http://www.univaq.it
http://memocs.univaq.it/
http://msp.org


MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS
msp.org/memocs

EDITORIAL BOARD
ANTONIO CARCATERRA Università di Roma “La Sapienza”, Italia

ERIC A. CARLEN Rutgers University, USA
FRANCESCO DELL’ISOLA (CO-CHAIR) Università di Roma “La Sapienza”, Italia

RAFFAELE ESPOSITO (TREASURER) Università dell’Aquila, Italia
ALBERT FANNJIANG University of California at Davis, USA

GILLES A. FRANCFORT (CO-CHAIR) Université Paris-Nord, France
PIERANGELO MARCATI Università dell’Aquila, Italy

JEAN-JACQUES MARIGO École Polytechnique, France
PETER A. MARKOWICH DAMTP Cambridge, UK, and University of Vienna, Austria

MARTIN OSTOJA-STARZEWSKI (CHAIR MANAGING EDITOR) Univ. of Illinois at Urbana-Champaign, USA
PIERRE SEPPECHER Université du Sud Toulon-Var, France

DAVID J. STEIGMANN University of California at Berkeley, USA
PAUL STEINMANN Universität Erlangen-Nürnberg, Germany

PIERRE M. SUQUET LMA CNRS Marseille, France

MANAGING EDITORS
MICOL AMAR Università di Roma “La Sapienza”, Italia

CORRADO LATTANZIO Università dell’Aquila, Italy
ANGELA MADEO Université de Lyon–INSA (Institut National des Sciences Appliquées), France

MARTIN OSTOJA-STARZEWSKI (CHAIR MANAGING EDITOR) Univ. of Illinois at Urbana-Champaign, USA

ADVISORY BOARD
ADNAN AKAY Carnegie Mellon University, USA, and Bilkent University, Turkey

HOLM ALTENBACH Otto-von-Guericke-Universität Magdeburg, Germany
MICOL AMAR Università di Roma “La Sapienza”, Italia
HARM ASKES University of Sheffield, UK
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