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THE HOMOGENIZED BEHAVIOR OF
UNIDIRECTIONAL FIBER-REINFORCED COMPOSITE MATERIALS
IN THE CASE OF DEBONDED FIBERS

YAHYA BERREHILI AND JEAN-JACQUES MARIGO

This paper is devoted to the analysis of the homogenized behavior of unidirec-
tional composite materials once the fibers are debonded from (but still in contact
with) the matrix. This homogenized behavior is built by an asymptotic method in
the framework of the homogenization theory. The main result is that the homog-
enized behavior of the debonded composite is that of a generalized continuous
medium with an enriched kinematics. Indeed, besides the usual macroscopic
displacement field, the macroscopic kinematics contains two other scalar fields.
The former one corresponds to the displacement of the matrix whereas the two
latter ones correspond to the sliding and the rotation of the debonded fibers with
respect to the matrix. Accordingly, new homogenized coefficients and new cou-
pled equilibrium equations appear. This problem is addressed in a linear elastic
three-dimensional setting.

1. Introduction

The use of unidirectional fiber-reinforced composite materials does not cease to
grow in various domains and particularly in the domains of aerospace and aero-
nautics. This is due to their various properties and especially to their interesting
mechanical behavior in terms of their specific effective stiffness in the direction of
the fibers. (Throughout the paper, the word effective is a synonym of homogenized
or macroscopic.) The effective elastic behavior of such composites is now well
known and well modeled by the homogenization theory as long as the fibers are
assumed to be perfectly bonded to the matrix [Léné 1984; Michel et al. 1999;
Sanchez-Palencia 1980; Suquet 1982].

However, since their mechanical performance is considered optimal when the
components remain bonded, it remains to evaluate the loss of performance when
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the fibers are debonded. Of course, if one considers that the elastic behavior is due
to the matrix alone, the specific stiffness drops drastically. But this type of estimate
simply gives a lower bound to the stiffness and one must define more precisely the
effective behavior of completely or partially debonded unidirectional composites.

Many works have been devoted to this task; see for instance [Bouchelaghem et al.
2007; Caporale et al. 2006; Gonzalez and LLorca 2007; Greco 2009; Jendli et al.
2009; Kulkarni et al. 2009; Kushch et al. 2011; Léné and Leguillon 1982; Marigo
et al. 1987; Matou$ and Geubelle 2006; Moraleda et al. 2009; Teng 2010]. In
general, these studies consist in replacing the perfect bond of the interface by some
“cohesive law” or simply in removing the fibers when the debonding is complete.
In any case, the calculation of the new homogenized mechanical coefficients is per-
formed by considering the usual elementary problems set on the unit cell without
reconsidering the general procedure of homogenization. However, when following
the two-scale asymptotic approach, it appears that the argument used to obtain that
the zero-order displacement field does not depend on the microscopic variable is no
longer valid. Therefore, in the zone where the fibers are debonded, the macroscopic
displacement field must be replaced by another “macroscopic” displacement field,
corresponding to the independent displacement of the fibers [Berrehili and Marigo
2010]. Consequently, one must also construct the macroscopic problem which
gives this additional field. That is the purpose of this paper.

Specifically, the paper is organized as follows. The next section is devoted to
the setting of the problem: one considers a composite structure €2, constituted by
a periodic distribution of elastic unidirectional fibers whose direction is e3 and
embedded in an elastic matrix. In a part 2, of €2 the fibers are assumed to be
bonded to the matrix whereas in the complementary part 2; they are assumed to be
debonded but still in contact without friction with the matrix. We then formulate the
elastostatic problem which contains the small parameter € related to the size of the
microstructure and which governs the displacement field #€ and the stress field o°€.
The third section is devoted to the asymptotic analysis, i.e., the behavior of u¢
and o€ when € goes to 0. Following a two-scale approach, we first postulate that u€
and o€ can be expanded in powers of €, the coefficients u’ (x, y) and ¢’ (x, y) of
the expansion being periodic functions of the microscopic coordinates y. We then
obtain a sequence of variational equations in terms of the u’ and the o'. These
equations are sequentially solved to finally obtain the effective behavior of the
composite in its bonded and debonded parts. In the fourth section, we study the
properties of the effective model and, in particular, the properties of the effective
coefficients provided by the solutions of linear elastic problems posed either on
the bonded or on the debonded cell. Then, some examples are treated. We finally
conclude giving some perspectives.

The summation convention on repeated indices is used throughout the paper.
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The set of real numbers, the set of n-dimensional vectors and the set of symmetric
second-order n-dimensional tensors are, respectively, denoted by R, R" and M.
Vectors and second-order tensors are indicated by boldface letters, like # and o
for the displacement field and the stress field. Their components are denoted by
italic letters, like u; and o;;. Fourth-order tensors as well as their components are
indicated by sans-serif letters, like A or A; ;i for the stiffness tensor. Such tensors
are considered as linear maps acting on second-order tensors. The application of
A to ¢ is denoted Ae, with components A;ji;€x;. The inner product between two
vectors or two tensors of the same order is indicated by a dot, like a - b which
stands for a;b; or o - € for o;;¢;;. The symbol ® denotes the tensor product and
®, denotes its symmetric part; i.e., 2e; Qs er = e P ex + e Q ey.

In our frequent use of multiple scaling techniques, we adopt the related nota-
tion. For instance, x = (x1, x3, x3) always denotes a macroscopic coordinate while
y = (y1, y2) represents a microscopic one. Since the fibers are oriented along
the direction ez, we distinguish the longitudinal coordinate x3 from the transversal
coordinates x’ = (x1, x2). Latin indices run from 1 to 3, while Greek indices run
from 1 to 2. When a spatial (scalar, vectorial or tensorial) field depends both on x
and y, the partial derivative with respect to one of the coordinates appears explicitly
as an index: for example, divy, o and &, (v) denote, respectively, the divergence of
the stress tensor field o and the symmetric gradient of the vector field v with respect
to x, while divy o and €, (v) are the corresponding derivatives with respect to y:

. 80,-]- . 80’,'/3
dlvxa(x7Y)=_(X,y)ei, leyO’(x7J’)=_(x,J’)ei7 (1)
9x; Iy
al)j 31),'
ex()x, y)=(—C,y+-—(x,y) |e Qsej, (2
8x,- 8xj

Vg dvg dv3

ey(W)(x, )= -— N+ —xy) )ea®sep+ _—(x,y)ea ®5e3. (3)
dyp Y CAY

On a surface I across which a field f is discontinuous, we denote by [[ /] its jump

discontinuity.

2. Statement of the problem

We consider a heterogeneous elastic body whose natural reference configuration
is a bounded open domain Q of R* with a smooth boundary 92. We denote by
(e1, 2, e3) the canonical basis of R and by (x1, x2, x3) the coordinates of a point
x € Q. The body is made of two isotropic linearly elastic materials, called the
fibers and the matrix, whose Lamé coefficients and mass density are, respectively,
(A, mr, pp) and (A, i, pm). The fibers are aligned in the direction e3 and have
a circular cross-section with radius e R. They are periodically distributed in the
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\ o

Figure 1. The composite structure and the two periodic cells.

matrix, ea and eb being the two vectors of the plane (ej, e;) characterizing the
periodicity. The number of fibers is large so that the dimensionless parameter €
characterizing the fineness of the microstructure (for instance, the ratio between
the spatial period and the size of the structure) is small. The domain occupied by
the fibers is Q; that occupied by the matrix is 2, , while the set of all interfaces
between fibers and matrix is €. Accordingly, one has

Q=Q5UI°VUQ; “)

m*

The fibers are perfectly bonded in a part 2. of 2 and debonded in the complemen-
tary part Q;; see Figure 1. Both parts contain a large number of fibers and will
be considered as given and independent of €. Moreover we assume that in 2, the
fibers remain in contact with the matrix but can slip without friction. Accordingly,
denoting by

IF=Q. NI I;=QsNnI°, )

respectively, the bonded and debonded interfaces, the interface conditions in terms
of the displacement and the stress fields read as

[ul=0, [olln=0 on I,

{ g (6)
[ul -n=0, [olln-n=0, onAn=0 onlj.

In (6), n is the outer normal to the fiber at an interface and the brackets denote the
jump of the involved field across the interface. The conditions on I{ mean that
the displacement and the vector stress are continuous; the conditions on I mean
that the normal displacement and the normal stress are continuous while the shear
stress vanishes.

Remark 1. In the above conditions on the interface between the fibers and the
matrix after debonding, we assume that contact always occurs without friction.
This allows us to treat linear elastic problems and then the analysis is simplified.
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It would be easy to follow the same procedure by assuming that the fibers are no
longer in contact with the matrix after debonding. It is more difficult to consider
unilateral frictionless contact conditions where the contact conditions depend on
the sign of the normal stress. That leads to nonlinear (but still elastic) problems
where the superposition principle can no longer be used. Much more difficult is the
case where the contact occurs with friction. Then the effective behavior is no longer
elastic and one must introduce internal variables. All these more elaborated cases
are outside the scope of this didactic paper and will be the subject of future works.

The body is submitted to a specific body force density g (independent of €). The
part I'. of the boundary d€2 is fixed while the complementary part I'y =92\ I'. is
submitted to a surface force density F (independent of €).

We are now in a position to set the problem which governs the response of the
body at equilibrium under the given loading. For a fixed € > 0, the problem consists
in finding a displacement field u€ and a stress field o€, such that:

divo*© g =0 inQ¢,
Equilibrium: Ve Trr8 Y (N
dive“+p,g =0 in Q;,,
€ — )\‘ d' 65 2 € 1 QE ,
Constitutive relations: ? f I,V wot2use’) ?n f ®)
0 =Apdivud+2u,em) in QF,
Compatibility: ~ 2e(u) = Vu®+ V7 u® inQ5UQ;, )
€=0 r
Boundary conditions: " on e (10)
oc‘n=F only,
€ = 0, € = 0 IG )
Interface conditions: "] lo"1n ot o (1T)
[u;,1=0, o‘n=oy,n, [o;]1=0 onlj.

In (8), & is the identity tensor with 6;; =1 wheni = j and §;; =0 when i # j. This
set of equations constitutes a linear boundary value problem which can be written
in a variational form as follows.

Let ‘€€ be the linear space of kinematically admissible displacement fields; i.e.,

C(éé={veHl(Q\Ij;[RR3):[[v]]-n=00n I, v=0o0n FC}, (12)

let f¢ be the continuous linear form associated with the applied forces; i.e.,

fE(v)z/ pfg-vdx—i—/ pmg-vdx+/ F-vdl' forve %, (13)
and let a€ be the bilinear continuous form associated with the elastic energy; i.e.,

a“(u,v) = / Ale(u) - e(v)dx +/ A"e(m)-e(v)dx. (14)
o Qe
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In (14), A/ and A” stand for the fourth-order elasticity tensors of the fibers and
the matrix, respectively; i.e.,

A,];Z; = A fm0ijOrr + 1 fm (Bikdj1 + 8118 k). (15)
Then u€ must satisfy the variational problem
find u€ € €° such that a®(u€, v) = f¢(v) for all v € €, (16)

and o€ is the associated stress field given in terms of the strain field by (8). The
existence and the uniqueness of the solution u€ of (16) is guaranteed provided that
the boundary I'. is such that there does not exist any (nonzero) rigid displacement
which is kinematically admissible. Specifically, let us denote by %€ the set of
displacement fields which are both kinematically admissible and corresponding to
a null strain field; i.e.,

RE={ve€:e(w)=0in Q\ I;}. a7
By standard arguments, we have:

Proposition 1. Under the condition that R¢ = {0} and that the density of forces
g and F are smooth enough, the variational problem (16) admits a unique solu-
tion u®.

The necessary and sufficient condition above for the existence and the unique-
ness of the solution depends in general both on ', and 2,;. However, the existence
of a solution is guaranteed if R = {0}, that is, if no rigid displacements are allowed.
We will assume henceforth that this condition is satisfied.

3. Asymptotic analysis

This section is devoted to the behavior of u€, the unique solution of (16), when ¢
goes to 0. For that we use a formal double-scale asymptotic method like in [Abdel-
moula and Marigo 2000; Allaire 1992; Bensoussan et al. 1978; David et al. 2012;
Marigo and Pideri 2011]. The goal is not to obtain rigorous results of convergence,
but simply to formally construct the “limit” problem.

3.1. The assumed asymptotic expansion of u¢. By virtue of the unidirectional
character of the fibers, one can choose a two-dimensional domain V as the rescaled
periodic cell characterizing the spatial distribution of the fibers; see [Bouchelaghem
et al. 2007; Léné 1984; Marigo and Pideri 2011]. The fiber part and the matrix part
of this cell are, respectively, the open sets Vy and V,, of the (y;, y2) plane, while
the interface is I = dVy N aV,,. Accordingly, one has

V=V;UIUV,. (18)



HOMOGENIZED BEHAVIOR OF DEBONDED COMPOSITE 187

Moreover, the rigidity tensor and the mass density fields can be read as

' Al if
Ay =A(E) with Axy) = ityeVr. (19)
€ A" ifyeV,,
x’ . if y e Vg,
pé(x)=p(—) with p(y) = {”f e (20)
€ pm 1ty € V.

This allows us to write problem (16) in the equivalent form

find u€ € €¢ suchthat/ Aee(ué)-e(v)dx=/ ,oeg-vdx-i-/ F-vdrl
Q\I¢ Q r

s

forallv e 6. (21)

Following the classical two-scale procedure in homogenization theory of periodic
media [Allaire 1992; Bensoussan et al. 1978], we assume that #¢ can be expanded

as follows:
o %'
u(x) = Ze’u’ (x, —), (22)
€
i=0

where the fields u’ are defined in Q x V and V-periodic (with respect to the mi-
croscopic variable y). As far as their regularity with respect to y is concerned,
one can discriminate according to whether x belongs to 2. or ;. Specifically, if
x € Q,, then u' (x, - ) must be continuous across I, while if x € 4, then uﬁ;(x, )
only must be continuous across I.

Using the chain rule, the strain field admits the expansion

oo / /
c@HE) =Y € (ey<u"“)(x, ’i> +ex<u"><x, i)) (23)
= € €
where &, (v) and €, (v) denote, respectively, the symmetrized gradient of the dis-

placement field v with respect to the macroscopic and microscopic coordinates;
see (2)-(3).

3.2. Equations at various orders. Let us choose a two-scale smooth displacement
field v¢(x) = v(x, x'/€), V-periodic and such that v(x, y) = 0 when x € I, as
an element of €€ and let us insert it into (21) as the test field. After inserting the
asymptotic expansion of #€ into (21) and identifying the terms at the same power
of €, one obtains a sequence of variational problems for the u’, the first three of
which are given below. (One formally replaces simple integrals over 2 by multiple
integrals over 2 x V in the spirit of the double-scale approach [Allaire 1992].)

(1) At order €%

o:/ /Aey(uo)-sy(v)dydx—l-f / Ae,u") - e,(v) dydx. (24)
Q. JV Qq JVN\I
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(2) Atorder e !

0:/ /Asy(uo)-ex(v)dydx—i—f f Aey(u°) - ex(v) dydx
Q. Jv Q4 JV\I

+/ /A(ey(ul)—l—ex(uo))-ey(v)dydx
Q. JV
+ / f Aley ') +e.@?) - ey(v)dydx. (25)
Q4 JV\I
(3) At order €°:
/ f Aley@?)+ex(m'))-e,(v) dydx+ f / Aley @) +ex(m"))-ey(v) dydx
Q. JV Q4 JV\I

[ Ay o) exrdvdx [ [ A @ resu®) ecw dyds
Q. JV QqJVN\I

=//pg-vdydx+//F-vdde. (26)
QJv r,Jv

In (24)—(26), A and p stand for the V-periodic functions of y introduced in
(19) and (20). Moreover, these variational equalities must hold for any smooth
v(x, y) which vanishes when x € I, as a function of x, which is V-periodic in y,
continuous across I when x € 2, and whose normal component v,, is continuous
across I when x € Q.

3.3. The form of u®. By choosing v = u” in (24) (which is licit) and owing to the
positivity of the elasticity tensors A/ and A™, one deduces that

ey(uo) =0 inQ:xV andin Qg x (V\I).

Let us discriminate the case when x € . and that when x € Q.

(1) When x € ., since e(u)(x, y)=0forallyeV, u” must be a rigid displace-
ment with respect to y. Recalling that u°(x, y) € R? and that y = (y1, y»), using
(3) leads to

uo(x, y)=ulx)+w(x)esny forallyeV,

where u(x) € R3 and w(x) € R. (Note that the rotations of axes e; and e, are

automatically eliminated because #° is independent of y3.) But since #° must be
V -periodic, one gets also w(x) = 0. Finally, we have obtained that
forx € Q. : uo(x, y)=u(x) forallyeV. 27

This result is the classical property of the homogenization theory which states that
the leading term of the asymptotic displacement field expansion does not depend
on the microscopic coordinates. However, this property holds true only because
the fiber is perfectly bonded to the matrix, as we will see hereafter.
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(2) When x € 24, one has separately ey @®)(x,-)=01in V; and in V,,. Therefore,

u’(x, y) must be a rigid displacement field with respect to y in the matrix part V,,

and a priori another rigid displacement field in the fiber part V; of the cell V.
Accordingly, u°(x, y) must read as

0 (x. y) = {um(x) +wn(x)esny forally eV,

’ ur(x)+wr(x)esny forallyeVy,

where u,, (x) and u (x) are in R3, w,,(x) and wyr(x) are in R. Since 1 must be

V -periodic, one still gets w,, (x) = 0. Let us write now the continuity of u2 across
I. We can take the center of the (circular) fiber cross-section as the origin of the
(y1, ¥2) plane without loss of generality. Accordingly, n = y/R = cos0e; +sinfe,
for y € I. Therefore, [u’]-n =0 on I reads as

cos O (up(x) —ur(x))- e +sin@(u,(x) —usg(x))-eo=0 forall 6 € [0, 2],

from which one immediately deduces that u s (x) = u,,(x) + 6(x)es. Finally, we
have obtained that

u(x) forall y € V,,,

forxeQy: ul(x,y) = { (28)

u(x)+o(x)es+w(x)esny forall ye Vy.
For future reference, let us denote by R, the set of the V-periodic displacement
fields w such that ey(w) =0in V \ I and [w,]]=0on I;i.e.,

a for y € V,,,

%d={w:w(y)={ aeR3,66R,weR}. (29)

a-+des+wesNy foryeVy,
Thus u®(x, -) € Ry when x € Q. This result differs from the usual property of
the homogenization theory. Indeed, because of the debonding of the fiber from the
matrix, the leading term of the asymptotic displacement field expansion depends
here on the microscopic coordinates. Moreover, two new macroscopic scalar fields
appear in the effective kinematics of the composite. Specifically, the vector field
u represents the macroscopic displacement of the matrix while the scalar fields §
and w represent the longitudinal sliding and the relative rotation of the fibers with
respect to the matrix. We have obtained a generalized continuous medium.
Let us summarize all results obtained in this subsection:
Proposition 2. The first-order displacement u®(x, y) takes two different forms ac-
cording to whether x is in Q. or in Q4. Specifically,
forx € Q. : uo(x, y)=u(x) forallyeV,
iy eV,,
forx e Qq: ul(x,y) = { u(x) forall y € Vi
u(x)+é(x)es+w(x)esny forallyeVy.

Therefore, the effective kinematic behavior in the debonded part of the composite
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body is that of a generalized continuous medium where appear the sliding and the
rotation of the fibers with respect to the matrix.

Remark 2. The macroscopic displacement fields #, § and w can be defined in the
whole domain 2 but § and w must vanish in .. Moreover, those fields have to be
sufficiently smooth in order that the effective elastic energy be finite. Their smooth-
ness will be specified once the effective behavior is obtained. In the same way, the
boundary conditions that #, § and w have to satisfy on ', will be specified later.

3.4. The elementary cell problems. Inserting (27) and (28) into (25) leads to
0= / / Aley (') +e)) - e,(v) dydx
Q. Jv
+/ f Aey(m') +e(u) + e(Se3) +ex(wes A y)) - €, (v) dydx. (30)
Qs JVA\I

Assuming at this stage that the fields u, § and @ are known, (30) will allow us
to determine u! in terms of the gradient of u, § and w. For that, we have still to
discriminate between the domains €2, and 2.

(1) Let us first choose v such that v(x, y) = ¢(x)w(y) with ¢ € D(Q2,) (the set
of indefinitely differentiable functions with compact support in €2.) and w € ¥,
where %, denotes the Hilbert space of vector fields which are V -periodic and whose
components are in H'(V);ie.,

¥ ={we H'(V; R : wis V-periodic}.

Then (30) becomes: at almost all x € 2. and for all w € ¥,
/VA(y)ey(ul)(x, y)-e(w)(y)dy +e(u)(x) - /V A(y)e(w)(y)dy =0.

Hence, by linearity, u' can read as
forxeQ: ul(x,y)=e@)ix)x’ ) +ixx) forallyeV, (31

where, for i, j € {1, 2, 3}, the vector fields xij are the elements of ¥, solving the
so-called cell problems

/qu,ss(xif)pqg(w),sdw/ Aijrse(w),sdy=0 forallwe .. (32)
\%4 \%4

In (31), u(x) remains undetermined at this stage.

(2) Let us now choose v such that v(x, y) = ¢(x)w(y) with ¢ € D(24) and w € ¥4,
where

Hy = {w € Hl(V\I; [RR3) :w is V-periodic, [w,]] =0 on I}.
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Then (30) becomes: at almost all x € 2; and for all w € 7,
0= [ AGe, W) e ) dy
V\I

+ew)(x)- / A()eW)(y) dy + e(Se3)(x) - / AL e(w)(y) dy
V\I v

+ &(wer) (x) / VA e(w)(y) dy — e(wer)(x) / »A e(w)(y) dy.
14 14
Hence, by linearity, u' can read as

1 ij 38 i dw i =
forxeq: u (x,y)=8(u)ij(x)’§’(y)+a(x)l) W+ —OW ()+ulx, y)
forally e V\I, (33)

where u(x, -) is an element of R, that remains undetermined at this stage, and the
vector fields £/, D' and W', for i, j € {1, 2, 3}, are the elements of ¥ solving the
following new cell problems:

[ A @ pewydrt [ meydy=0. G4
V\I V\I
[ A @) eyt [ A eiay=0. 39
VI 7

f qursg(Wi)pqg(w)rs dy+ | (e3ny) 'quifquS(w)rs dy=0. (36)
V\I Vy

In (34)—(36) equality holds for all we #,.
Let us study each of these cell problems.

o Each x"/ is uniquely determined up to a translation which can be fixed by
imposing that fv x dy=0. Tt corresponds to the microscopic response of the
representative volume element submitted to the macroscopic strain tensor e; Q;e;.
In other words, the x*/ are given by the classical microscopic problems appearing
in the homogenization theory [Allaire 1992; Bensoussan et al. 1978]. By virtue
of the symmetries of the rigidity tensors A/ and A”, one has x”/ = x/' and hence
there exist exactly six independent cell problems. Since the periodicity is two-
dimensional and since the fibers and the matrix are isotropic, all the x/ enjoy
some general properties. For instance,

X;‘ﬁ:)(f:xg?’zo for all o, B {1, 2}.

Additional symmetry properties appear when the cell itself enjoys additional sym-
metries [Léné 1984]. The practical determination of the x/ requires some numer-
ical computation.
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o All preceding comments on the x'/ remain true for the £/ (except that &7/ is
uniquely determined up to an element of %,). Note however that £/ differs (in gen-
eral) from x'/ because of the possibility of a tangential discontinuity of £/ on I. A
consequence of this additional degree of freedom is that the shear stress associated
with £V necessarily vanishes on I while this is not in general the case for x'/.

o The fields D! and D? can be obtained in a closed form. Specifically, one gets
07 y G Vm,

+ an arbitrary element of ®,4. (37)
—Ya€3, YEVy,

for a e{l, 2}: D“(y):{

The verification is straightforward and left to the reader. On the other hand, D3
cannot be obtained in a closed form (except if A r =0) but can be simplified. Indeed,
as for the £/, by virtue of the isotropy of the fibers and the matrix, one gets that
Dg =0 and finally the problem for D? can read as

/ re(D?)gue (W) gp+211e (D) gpe(W)ap dy+ / Ape(w)psdy=0
V\I Vi
forallwe#,;. (38)

It corresponds to the response of the cell when the fiber is submitted to a macro-
scopic longitudinal stretching e3 ®e3 while the matrix is macroscopically unstrained.
That response is not trivial because of the contact between the fiber and the matrix.
This contact implies the existence of a normal stress o, at the interface I which
induces a deformation of the matrix.

o All the fields W' can be obtained in a closed form. Let us first show that
W3 eR,. (39)

Indeed, the integral over V¢ in (36) for i =3 vanishes as proved below:

w3
(93Ay)-eﬂA§ﬁk,8(w)kz dy =/ Mf(e3/\)’)‘eﬁa_ dy
14 Vi G

:_/ ur(esneg)-egws dy+/uf(e3Ay)-nw3 ds
Ve 1
=0.

The last equality above is due to the fact that n=y/R on I. Inserting this property
and taking w = W3 in (36) for i =3 leads to

/ Ae(W3)-e(W3)dy=0.
V\I

Therefore e(W?3) =0 which is the desired result. Since the undetermined element
of R4 does not play any role, one can consider that W> =0. Note that this property
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holds true because the fiber has a circular section and is isotropic.
Let us now verify that W' and W? are given by

0, YeVu,

—Ya€3Ny, yEVy,

Let us first remark that [W*]]-n =0 on I because (e3Ay)-rn=0. Hence W* € %,.
Let us now calculate the strain field e(W?) for a € {1, 2}:

forae{l,2}: W¥(y)= { + an arbitrary element of R,. (40)

2e(WY) pg=—(e3ny)-€,80q—(e37Yy)-€,8,, forall p,gefl,2,3}.

Therefore, one gets A;qrss(W“) rg=—(e3Ny)-¢, qurs, from which one easily de-
duces that (36) is satisfied for i =«.

3.5. The form of ¢°. The form of the leading term o' of the stress field is obtained
via the constitutive relations (8) and the strain expansion (23). Specifically, one gets

o (x, ) =AY (e @) (x, y)+ey ') (x, y)). (41)

Let us discriminate once more between the domains €2, and €2, to obtain the stress
field ¢© in terms of the generalized strain fields e(u), V3, Vw and of the micro-
scopic strain fields associated with the solutions of the cell problems.

(1) For x € Q.. By virtue of (27) and (31), one gets

o’(x, ») =AY (e@)(x)+e@);;(x)e(x ) (y)), (42)

which is the usual expression of the stress distribution given by the homogenization
theory. Of course, all cell problems give a contribution to that stress distribution.

(2) For x € Q4. By virtue of (28) and (33), one gets, for all ye V\I,

y a8 , 3 .
o"(x,y)=Ay) (e (@) (x)+e);; (x)e(E” )(y))+£(x)S’(y)+a—j(x)T (y), (43)
with
. A" (D! if yeV,,
S;S (y) _ { ; pqrsg.( )pq (J’) ; 1 ye (44)
Apgrs€(D") pg (¥)+A3;,, ifyeVy
. A e(WH) o () ifyeV,,
T ()= { P . (43)
Apgrse W) pg (1) +A;,,(e3ny)-eq if yeVy.

Moreover, (37) gives $* =0 and (40) gives T* =0 for o € {1, 2}. In other words
the cell problems associated with d6/dx, or with dw/dx, induce no stress. Since
W3 vanishes, T reads as

0 if yeV,,

T3 (y)= { . (46)
2ur(—yes®e1+yesQger) if yeVy.
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Note that this stress distribution corresponds to that given by a torsion of a cylinder
with a circular cross-section. The only nonzero component is the orthoradial one
039 which is proportional to r, the distance to the axis. Moreover, there is no
interaction with the matrix.

On the other hand, S cannot be obtained in a closed form, but can be simplified
by using (38):

53 (y>={ Ity (D)W + UneapDIG) i yeVu
BT g (148, (DD () us +21 e (DD () i yE V],

3 _ )‘mgyy(D3)(Y) if yeV,,
S33(y)_{)‘f(1+8yy(D3)(J’))+2Mf if ye vy, (43)

and S 33 =01in VyUV,,. As it was already noted, there is an interaction between
the fiber and the matrix because of the contact assumption.
Finally, 6%(x, - ) can read in V\T as

i, 08 d
a°<x,y>=A<y>(e<u>(x)+s<u>i,-(x)e(&’f)<y>)+a—x3<x>s3<y>+8—)2<x>T3<y>, (49)

which includes the contribution of the longitudinal stretching and the torsion of the
fibers.

3.6. The macroscopic problem. To obtain the problem which gives the macro-

scopic fields u, § and w, we choose a displacement field v in (26) of the same type

as u®, i.e., such that & y(v) =0. Specifically, one sets

* { u*(x) in (R2:xV)U(Qq %X Vi),
vi(x, y)= . (50)
u*(x)+86*(x)es+w*(x)esny in Qg xVy

and inserts such a v* into (26). Then the terms in €, (W?)+ex(uh) disappear be-
cause €, (v) =0. By virtue of (41), (26) becomes

/ / o0(x.y)-e () (x) dydx

QJV
+ f / 00(x.3)-(e(5%e3) (1) +e (@ esneq) (¥) ya) dydx

Qqd Vs

szp(y)g(x)-u*(x)ddef / pr(83(x)8* (x)+(e3ny)-g(x)w* (x)) dydx
QJV QqJ Vy

+/ /F(x)-u*(x)dydr+//(F3(x)5*(x)+(e3Ay)-F(x)w*(x))dydr. (51)
sV L Jvy

Let us denote by (@) the mean value of ¢ over the cell V:

1 1
=— dy, = ,y)dy, 52
(@) |V|/V</>(y) vy, (p)(x) |V|/V¢(x y)dy (52)
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and by (¢)s (respectively, (¢),,) the mean value over the whole cell V of the field ¢
only defined in or restricted to V¢ (respectively, V,); i.e.,

1
@) o) dy, () () = — / o(x.y)dy.  (53)
iy,

Vv,

Recalling that the center of the fiber is taken as the origin of the y-coordinates, one
has [, v, Y dy=0. Accordingly, after easy calculations, (51) can read as

f(oo)-e(u*)dx+/ ((6%)-e@*)+ (0 ) res-V5* +(y,0°) - e(w*es ney)) dx
Q. Qq

:/ (p)g-u*dx—i—/ ((,o)g-u*+prfg38*)dx+/ (F-u*+VyF38%)dr’, (54)
Q. Q4 Iy

where V; denotes the volume fraction of the fibers; i.e.,
_ ¥l

v

Remark 3. Let us note that w* does not appear in the right-hand side of (54). This
is due to the assumption made on the applied forces, specifically that both the

specific bulk forces g and the surface forces F do not depend on y, and on the
choice of the center of the fiber as the origin of the y coordinates.

Vu=1-V;.

Let us examine each term of the left-hand side of (54).
e For x € Q,, by virtue of (42), (69)(x) reads as
(0°)(x) =Ae (u) (x), (55)

where A° denotes the (classical) homogenized stiffness tensor of the (perfectly
bonded) composite; i.e.,

Ak = (Aijir +Aijpge (X pg) = (Aijur — Ae(x ) - (x")). (56)

The last equality above is obtained by using (32) with w= x*. It allows us to
check that A° has the major symmetry A7, =Ay,.

» For x € Qg4, by virtue of (49), (69)(x) reads as
(%) (x) =Ade(u)(x>+<s3>ﬁ(x)+<T3>a—‘”(x), (57)
3)63 8)63

where A? denotes the homogenized stiffness tensor of the debonded composite;
1.e.,
Aokt = (Aijer+Aijpge E) pg) = (Aijis —Ae (§7) - (€M)). (58)

The last equality above is obtained by using (34) with w=£* and implies that
A=Al for all i, j, k, 1. The tensor A? will be compared to the tensor A® in
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the next section. Then, using (46) and the fact that (y), =0, one gets (T 3y=0and
finally

0 d 3, 08
(07)(x)=A"(u)(x)+(S )a—x3(x)- (59
e For x € Qy4, using (49), the component i of (ao)feg (x) reads as

xl 3, 09 3. dw
(09 () = (AL +AL, e & )rs>f€(u)kl(x)+(S3i>f8_x3(x)+(T3i)fa_x3(x)-

Let us first show that
(AL AL 8 E 1), = (ST 803. (60)
Considering (35) with w =& gives
(Ae(D') (")) +(AL, (&), =
Considering (34) with k[ instead of ij and setting w= D' give
(Ae(D)-e(E) +(Auirse(D)rs) =0
Therefore Af

3irs
(AL AL E s = (Auarse (D)) +(AL ) = (S,

where the last equality is a direct consequence of the definition (44) of §'. Since
$% =0, one gets (60).
Recalling now that S 3a =0and (T 3)f =(T3)=0, one finally obtains

8(§kl)rs (Agirse(DY),s) and hence

)
(0°)re3(x)=(8%)-e(m)(x)e3+(S33) oxs ——(x)es. (61)

e The last term in the left-hand side of (54) can also read as
(7a0)f ()-8 (" es new) (X) =((e37 1) -€q0y), (x) ( ).
Using (49), one gets
((esny)-eq00) () =((e3ny)-€4 (A AL, 8 E)rs)) o @ri (x)
+<(e AY)-e S3-) E(x)—i—((e AY)-e T3-) 8—a)(x)

Let us calculate the three effective coefficients appearing in the right side.
We first show that ((eg AY)-eg (Af;lkl 1A/ 8(§kl)rs)>f =0. First,

qirs
((93/\Y)'qu§ik1>f = (33/\<y>f)'qu£ik1 =0.
Then, recalling that W3 =0 and using (36) with i =3 and w =& give

((e3n3)-e4AL;, 86 ")), =0
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and hence the desired result.
Next we show that ((e3Ay)-e, S;l. ) =0. By virtue of (44), one has

((83/\_)7) "€y S;i)f :((e3/\y) "€q ( q133+A(J;trsg(D3)”))
Therefore, one can follow the same procedure as for the first coefficient. First,
<(e3AY)'qu5i33>f =0.
Then, using (36) with i =3 and w= D> give

(€3 y) €AY 8 (D)), =

and hence the desired result.

For the third effective coefficient, a direct calculation using (46) gives ((ez3AY)-
eq T, =(/2) s R*Sis.

Therefore, one finally obtains
TR 0w

V] E(x)&s (62)

Inserting (55), (59), (61) and (62) into (54), the variational equation (54) finally
reads as

((e3n)-€40;) (x)=

R*us dw do*
/ A%(u)-e(u*)dx—k/ TE R IDTD gk
Q o, 2|VI| 0x30x3

+f (A"() @*)+(S’ (()a—‘w+ﬁ(*>)+s w0 85*)d
o, e(u)-e(u ( )-euax3 8x3su (33)a Py X

=/ (p)g-u* dx—i—/ prfgg,(S*dx—i-/ (F-u*+VyF38%)dT. (63)
Q Qd Fs

The equality (63) must hold for all (#*, §*, »*) such that the associated displace-
ment field v* given by (50) is admissible. These admissibility conditions will be
specified in the next subsection.

Proposition 3. The macroscopic displacement fields (u,$, w) are a stationary
point of the following potential energy P°:
POu*, 5, w*)

e o« . T dw™* dw*
= ~Aec(u*)-e(u™)dx+ dx
Qe 2 Qu 2 3X3 BX3

2 0x3 0x3

+/ (éAde(u y-e(u)+X e(u* )85* LS 88*)dx
Qq

—/(p)g-u*dx—/ prfg38*dx—/ (F-u™+VpF38*)dl’, (64)
Q Qd Fs



198 YAHYA BERREHILI AND JEAN-JACQUES MARIGO

where the effective stiffness tensors A¢ and A?, the effective stress tensor % and
the effective rigidity coefficients K and T are obtained by solving the different cell
problems. Specifically, A€ is given by (56), A? by (58), X =(S%) and K = (533)f,
where % is given by (47)~(48) and T =7 R* 1 /(2| V).

Proof. 1t suffices to remark that (63) is equivalent to

d
%Q’O(u—i-hu*, 8+hs*, w+hw*)|,_,=0.

Hence, ?° can be seen as the effective potential energy of the composite body. [J

4. Discussion and examples
4.1. Properties of the effective coefficients.

Proposition 4. The effective rigidity tensor A° of the perfectly bonded composite
satisfies the minimization problem

fore*eM?, Ae*.e*= min €°(w), (65)

weH,

where
€ (w)=(A(e"+e(w))-(e"+&(w))).

The effective rigidity tensor A%, the effective tensor X and the effective rigidity
coefficient K of the debonded composite satisfy the minimization problem

for &* eM? and d* €RR, Ade*-e*+2d*)3-e*+l(d*2:mi?1€; ¢l(w),  (66)
wedty
where

¢ (w)=(A"(e*+e(w))-(e*+e(w)))
+HAS (" +d*es@e3+e(w)) (" +d es@e3 +e(w))). .

Therefore, there exist two positive constants o >0 and oz >0 such that, for all
e*e Mf and all d* € R,

Ae*.e* > e* 6%, Ale* e*+2d* T -e*+ Kd*>>ay(e*-e*+d*).  (67)
Moreover, A¢ and A are well ordered in the sense that
Ae*-e*>Ale*.e* forall e* M.

Proof. Let us prove the property of minimization for the debonded composite, the
proof being similar for the perfectly bonded composite. Let w* be a minimizer
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of €? over ¥,; w* is unique up to an element of R, and satisfies the variational
equation

(A’"(s*—l—s(w*))-s(w))m+(Af(s*+d*e3®e3 —|—e(w*))'e(w)>f=0
for all we #,;. (68)

By linearity and using (34)—(35), one deduces that w (y)—e U(y)+d*D3(y).
Moreover, using (68) with w=w* yields

€l (w")=(A"e* " —A"e(w*) & (W),
+HA (e +d es@e3)-(e* +d e3@e) —A e(w™)-e(w”)),
= (Ae* " —Ae(w")-(W*)) +2V AL, efid* +V Alyyd*™
= (Aiju—Ae(EV)-e (€ ))ef e +2(V ALy, — (A (67)-e(D?)) )&} d*
+(VfA3333_<A€(D3)'€(D3)>)d*2~
Using (34) with w=D?, (35) with D’ =w = D> and (58), one gets
€l(w) =Ale" " 12V AL, A+ (Ayue (D)) d (Al sy + ALy e (D)), d ™

Then it suffices to use (44) with i =3 to obtain that VfA33lJ+( ,]kls(D Vel) =
(S3.) =i and (Adyyy+ALe(D?))y = (S3;); =K. This yields (66).

We now prove the positivity of €¢(w*). First, €/ (w*) >0 by definition and by
the positivity of A” and A/. We show that equality holds if and only if €* =0 and
d*=0. By the expression of €% (w*), equality holds if and only if

—e* for all ye 'V,

%
ey = {—e*—d*e3®e3 forall ye V;.
But since e(w*)33=0, one gets £3;=d*=0. Accordingly, e(w*)(y)=—¢&* for
all ye V\ 1. But, since w* is V-periodic, one finally gets €*=0. Therefore the
quadratic form A?e*.e*+2d*X -e*+ K d*? is definite positive on M? x R.
To prove that A¢ and A are well ordered, let us take d* =0. Then, by virtue of
the minimization properties, one gets

Ac * o¥ in (A * (o* ’
e*-e 5}21;{}6( (e*+e(w))-(e*+e(w)))
Ae*.e*= min (A(e*+e(w))- (e* +e(w))).
we%d
Since #,.C 9,, one obtains the desired inequality Ae*-&* > Adg*.e* for all &*
in M2. O

4.2. The relevant functional framework of the effective model. Let us discuss
here what are the relevant functional spaces so that the effective problem coming
from the asymptotic analysis is well posed. The natural framework is the set of
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all functions with finite energy #°. Specifically, #* must belong to H'(Q, R?)
while §* and w* must belong to H LI(SZd), where

) dg
H} (Q4)= {(p:g():O in Q., g€ L*(Qy), P eLz(Qd)}.

Accordingly, one can define as usual the trace of u* on the boundary of € (and
more generally on any sufficiently smooth surface included in €2). Therefore, the
Dirichlet boundary condition #*=0 on I'; has a sense. But this is not the case
for the elements of H Ll(Qd). Indeed, since one only controls its first derivative
with respect to x3, one can define the trace of such an element ¢ on surfaces of
the type x3 =constant but not necessarily on surfaces with arbitrary orientations.
Accordingly, the definition of the boundary conditions on I'. and the continuity
conditions at the interface between 2. and €2; need more developed arguments
which are outside the scope of the present paper. As far as the linear part of the po-
tential energy is concerned, the work done by the external forces is finite provided
that the density g and F are sufficiently smooth. For the work of the specific forces,
it suffices that g be in L?(; R?) in order that both integrals over  and Q, be
finite. The question is more delicate for F. It is sufficient that F be in L*(I'y; R?)
in order that f|. F-u*dl <+o0. But, the term [, \,, F38*dT" makes sense only
on the part of the boundary where either F3 =0 or 6* is defined. Accordingly, we
will assume that the following hypothesis holds:

Hypothesis 1. The given density of forces is such that g e L?(Q2; R*) and F e
LZ(FS; [R{3). Moreover, on the part I';N9d<2,, F3=0.

Finally, introducing the set of all kinematically admissible displacement fields
€ ={@* 5, ") e H (% R)x H} (Q)*:u*=00nT,.}, (69)
the effective problem can be formulated as follows:
find (u, 8, ) €€” which minimizes #° over €°. (70)
We are now in the position to establish the final result.

Proposition 5. Let R0 be the subset of €° made of all displacement fields with
null elastic energy:

96* _ o™
0x3 o 0x3

%Oz{(u*,é*,a)*)e(@o:s(u*)zﬂinQ, =0in Qd}.

Then, if R°={(0, 0, 0)} and if the given forces g and F satisfy Hypothesis 1, prob-
lem (70) admits a unique solution.
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Proof. Uniqueness is guaranteed by virtue of the assumption on %° and of the
positivity of the elastic energy. The existence is due to the smoothness assumption
on the loading and to the positivity property (67) which ensures the coercivity. [J

Remark 4. The relative rotation of the fiber w* is not coupled with the macroscopic
displacement field #* and the sliding of the fiber §* in the elastic energy. Since w*
does not appear in the work of the given external forces, one immediately obtains
that the solution is such that dw/dx3=0 in 2; and hence there does not exist a
fiber torsional energy. But this property will no longer hold true if one changes
some assumptions on the composite behavior or on the loading.

The solution (u, §) of the effective problem satisfies the following set of local
equilibrium equations in Qg :

div(Ade(u)—l—ﬁZ)—i-(p)g:O,
aX3
(71)

9 8
K—+X. 1% =0.
ax3( ax%+ e(u))+ P83

These equations must be understood in the sense of distributions when the loading
is not sufficiently smooth. The first one is a vectorial equation while the second one
is scalar. Both are second-order partial differential equations and they are coupled
by the term which involves the effective internal stress tensor X.

4.3. Case of a regular hexagonal cell. Let L be a characteristic length of the
body, 0=3"142L, a="tle, b:E(el+\/§e2)/2 and Vy be the disk of center 0
and radius R <£/2. Thus V is a regular hexagon centered at 0 with area L?; see
Figure 2. Since the material is isotropic, we can use the results of [Léné 1984] to
obtain that A° and A? are positive transversely isotropic fourth-order tensors with
axis e3. Therefore, A¢ and A? are such that, for all & € M?,

A‘e-e= A2832*3 +)b25338aa +)b$"8§a +2M§"8aﬁ8aﬁ +2M2830{83a, (72)
Ale-e =AY e3 409 33800+ A%, + 210 e0pap+2U0 £30E30, (73)

& @

Figure 2. The case when the cell is a regular hexagon (left:
bonded; right: debonded).
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where the ten moduli satisfy the following inequalities:
AG= A7 >0, pug=pf>0, uj=pg>0,
ASOS+us) > 052 ALOE+udy >l
In the same manner, X is transversely isotropic and hence can read
Y=or(e1Qe1+erQe)toLe3Res. (74)
Let us compare the longitudinal shear moduli 1 and u‘,{ They are given, respec-
tively, by the two antiplane minimization cell problems

ns= min (u(Vo+e)) - (Vo+ter)),
peH) (V)

pi= min (u(Vo+er)-(Vote)). (75)
peH(V\I)

The minimizers are the nonzero components X313 and 5313 of x'* and £'3. They
satisfy
0=(u(Vxi’+e))-Vo) forall peH,(V),

0=(1(V&; +e1)-Vo) forall pe Hy(V\D), (76)

where # stands for periodic. It is easy to check that 5313( y)=—y1 (plus an arbitrary
constant) in V. Therefore
WL = (un(VE +€1)- (Vs> +e))n= min (un(Vo+e)-(Vo+e))n.
QEH (Vin)
In other words, the longitudinal shear modulus of the debonded composite is as if
there were a hole instead of a fiber. Accordingly, § and ;fi satisfy the following
bounds: |
0<pf <Viuttm < - <UL <Vibtm+Vrits,
i g
the last two inequalities corresponding to the classical Voigt and Reuss bounds.
In the particular case where the Poisson ratios of the fibers and the matrix equal 0,
then Ar=A,,=0. Moreover uy=Es and u,=E,, E; and E,, denoting the
Young moduli of the fibers and the matrix. In this case, one easily deduces from
(32), (34) and (35) that
X3 =EB=Dp3=0.

Therefore, one gets
AS =AY =V, E,+ViE;, A=2¢=0, or=0, o=K=V/E,.

Let us remark that A and A? are not strictly well ordered because AS = A¢.
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4.4. Example. Let us finish this section by an example of application. We consider
a cylinder Q=S x (0, L) whose cross-section § is an open connected bounded sub-
set of R? and whose axis ez corresponds to the vertical. This cylinder, submitted to
the uniform gravity g = —ges, is fixed on its section S x {L} and free on all other
boundaries S x {0} and 95 x (0, L). It is made of a unidirectional composite, the
fibers of which are periodically distributed according to a regular hexagonal lattice
with axis e3. The Poisson ratios of the fibers and the matrix are equal to 0. Accord-
ingly, we are in the situation described at the end of the previous subsection; i.e.,

Ae-g=(E)eiy+ 1582, +2U5 eapap+21L5 30830
Ale.e= (E)8§3 +)\%sia +2;,L(71~8al38a5 +2M‘£83a83a,
Y=E;VsesQe;, K=E;Vy.

Moreover, we assume that the fibers are debonded in the part Q2;,= S5 x (0, £) and
still bonded in the complementary part Q2. =S x (¢, L) where 0 <{ < L. Accord-
ingly, the work of the gravity reads as

fO(u*, §%) =—/ (p)gu3 dx—/ prVygstdx,
§x(0,L) §x(0,0)
and the conditions of admissibility for the displacement fields are

u e H'(Sx(0,L);R%), (8% w*)eH(Sx(0, £))%,
u*=0on Sx{L}, & =w"=0o0nSx{L}.

Therefore %= (0, 0, 0), we are in the situation of Proposition 5 and the effective
problem admits a unique solution. Let us search for the solution under the form

ux)=u(xz)e;, d&x)=46(x3), wkx)=0 withu(L)=0, §)=0.
Then, the effective stress reads as
Ace(u)(x) =A% (u)(x)=(E)u' (x3)e3® e,

where the prime denotes the derivative with respect to x3. Inserting this form
into (63), the variational effective problem becomes

/ / 8u§ £ / / 88* *
0= (E)u +E;Vy6 =+(p)guz+E V(6 +u’) +prVrgd™)dx
$x(0,0) ’ 0x3 ‘ 0x3

out
+/ (<E>u’ : +<p>gu§) dx, 7D
Sx(¢,L) 0x3

and the equality must hold for all admissible (u*, §*). Taking first (u*, 6*) of the
same form as the expected solution, i.e., u*(x) =v(x3)e3 and §*(x) =¢(x3), we
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obtain the following one-dimensional variational problem for (u, §):
¢
0=/ ((EY+E V&)W +(p)gu+Ef V(8 +u)o'+0sVige) dxs
0 L
+[ (B +pg) s
¢

where the equality must hold for all ve H 1(0, L) such that v(L)=0 and all p €
H'(0, £) such that ¢(£) =0. By standard arguments of calculus of variations, we
find that ¥ and § are the unique solution of the following boundary value problem:

m&w:{ﬁﬁi?ﬁZZW& in (6. L) (Eyd'={p)g;  (78)
u'(0)=8(0)=0; 8(¢)=0, [ull(¢)=0, (79)
(EY[u' (&) =E;Vs8'(€—); u(L)=0.
After some calculations, we eventually find
/ g—ng, O<x3<t, or om\g. 4
u'(x3)= (0) u(L)=0, 8(x3):(F—E—)§(x3—E ). (80)
mg}@, L<x3<L, f m

Conversely, the reader could verify that (77) is satisfied for any admissible (z*, §*)
with (u, §) given by (80). Therefore, we have found the unique solution of the
effective problem. Using (42) and (49), we can see the influence of the debonding
on the repartition of the stresses inside the composite:

E; .
E<P>gx3e3®e3 in Vg,
in $x(0,€): o%%x,y)=1 81)
ﬂ( ygx3e3®e3 in'V,
(E) plgx3e3xes mo
0V
inSx(6,L): o, y)={Pr8¥e3®es Yy (82)
Pmgx3ezRe; in V.

5. Conclusion and perspectives

We have shown that the effective behavior of a unidirectional composite material
in the case where the fibers are debonded but still in contact with the matrix is
formally similar to a generalized continuous medium whose kinematics contain not
only the usual macroscopic displacement fields but also two scalar fields of internal
variables describing the sliding and the rotation of the fibers. The two-scale proce-
dure based on asymptotic expansions allowed us to formulate the effective problem
giving the response of a composite body submitted to a mechanical loading. This
problem can be formulated as the minimization of the effective potential energy of
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the composite body. This effective potential energy, difference of the effective elas-
tic energy and the effective work of the applied forces, contains effective stiffness
coefficients which are obtained by solving 12 elementary cell problems. Five of
them can be solved in a closed form, the remaining seven requiring in general nu-
merical computations. None of the problems are standard problems of the homog-
enization theory. Finally, the effective global problem leads to a system of coupled
partial differential equations of second order which involve the kinematical fields.

The procedure was developed here in the particular case where the fibers and the
matrix are linearly elastic isotropic materials with the assumption that the fibers
remain in contact without friction with the matrix. We claim that it is possible to
extend this work by removing some assumptions and enlarging the setting. For
example, a first extension should be to consider prestresses in the composite and
hence to develop the procedure in the case of an affine stress-strain relation. An-
other natural extension could be to consider more general and more realistic contact
conditions between matrix and fibers: unilateral contact without friction or cohe-
sive forces [Charlotte et al. 2006], for instance. The difficulty would be to solve
nonlinear cell problems, and in such cases the effective behavior would no longer
be described by a finite number of coefficients. An interesting mathematical chal-
lenge is to give a rigorous proof, by I"-convergence for instance, that the effective
behavior is really the one proposed here. It is a real issue because, as we have
shown, the additional kinematical fields are less regular than the classical one. The
consequences are that convergence could probably be proved only if the external
forces satisfy certain smoothness conditions, and that the additional field should
not satisfy arbitrary boundary conditions.

But the most interesting challenge is to introduce a law for the debonding evo-
lution. Indeed, we have considered here that the domain where the fibers are
debonded is given. But of course the real question is to find how this domain
evolves with the loading. If we consider a Griffith-like assumption and suppose
that debonding corresponds to an increase of the surface energy proportional to the
new surface created [Bourdin et al. 2008], then the problem of debonding evolu-
tion will consist in finding when and how the potential energy is transformed into
surface energy [Bilteryst and Marigo 2003]. If one adopts the global minimization
principle proposed in [Francfort and Marigo 1993], then major mathematical diffi-
culties will occur. Indeed, in the simplest case where the behavior of the material
is described by two stiffness tensors, the damaged and the undamaged ones, it
was shown in [Francfort and Marigo 1993] that the minimization energy problem
does not admit classical solutions but must be relaxed to consider fine mixtures
of damaged and undamaged material. In the present case the same phenomenon
should probably also occur, but, because of the additional kinematical fields, its
mathematical treatment should be much more difficult.
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