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STATISTICALLY ISOTROPIC TENSOR RANDOM FIELDS:
CORRELATION STRUCTURES

ANATOLIY MALYARENKO AND MARTIN OSTOJA-STARZEWSKI

Let V be a real finite-dimensional vector space. We introduce some physical
problems that may be described by V-valued homogeneous and isotropic ran-
dom fields on R3. We propose a general method for calculation of expectations
and two-point correlation functions of such fields. Our results are equivalent to
classical results by Robertson, when V = R3, and those by Lomakin, when V is
the space of symmetric second-rank tensors over R*. Our solution involves an
analogue of the classical Clebsch—Gordan coefficients.

1. Introduction

The entire field of continuum physics involves tensor fields. Overwhelmingly, most
of the existing models and theories are deterministic and their stochastic generaliza-
tions necessitate construction of tensor-valued random fields (RF). While the litera-
ture on scalar RFs is vast (for example, [Cressie 1993; Christakos 2005; Marinucci
and Peccati 2011; Leonenko and Sakhno 2012; Porcu et al. 2012]), that on vector
RFs is largely limited to statistical turbulence [Monin and Yaglom 1965], and the
case of higher tensor rank (second, fourth) RFs poses challenges. In this paper we
focus on wide-sense stationary and statistically isotropic RFs of tensors of the first
and second ranks. We present a new method of derivation of representations of
their correlation functions, which in the case of first-rank tensors gives the same
result as in [Robertson 1940], while in the case of second-rank tensors is equivalent
to the result of [Lomakin 1964].

These representations have applications to tensor random fields (TRFs) gov-
erned by the field equations of continuum physics as well as those representing
some spatially inhomogeneous constitutive properties of random media. The for-
mer type of TRFs is used in [Ostoja-Starzewski et al. 2013], where correlation
functions are subject to constraints such as the equilibrium equation or strain-
displacement relation. The basic properties of TRFs of a wide-sense homogeneous
and isotropic kind with generally anisotropic realizations have been determined
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in three continuum physics theories: thermal conduction, classical elasticity, and
micropolar elasticity. The field equations (such as the linear and angular mo-
mentum balances and strain-displacement relations), all in a quasistatic setting,
lead to consequences for the respective dependent fields involved. In effect, these
consequences are restrictions on the admissible forms of the correlation functions
describing the TRFs.

The latter type of TRFs provides models of random media described by the
second-rank TRF. The typical example here is the thermal conductivity tensor and
its mathematical analogies such as the antiplane stiffness tensor. Once the general
representation of this TRF is established and the conditions of positive definiteness
are imposed, one can turn to modeling and simulation of the entire range of statis-
tical constitutive behaviors of all heat-conducting media or, say, elastic materials
subjected to antiplane loading, for example, [Sena et al. 2013].

In particular, let V be a finite-dimensional real Hilbert space with norm | - ||. Let
T (x), x € R3, be a random field taking values in (a subset of) V. Suppose that
E[lIT (x)||*] < oo and that T (x) is mean-square continuous, that is, for any xy € R?
we have

lim E[[|T(x) — T (x0)[|*] =0.
llx—xoll—0
Let E(x) = E[T (x)] be the expectation of the field, and let B(x, y) = E[T (x) ®
T (y)] be the two-point correlation function of the random field 7' (x). The group
R3 acts on itself by translations. Assume that the above functions are invariant
with respect to this action, that is, for all x, y, z € R?,

E(x +z2) = E(x),
B(x+z,y+2z)=B(x,Yy).

It follows that E(x) = E € V is constant, while B(x, y) € V ® V depends only on
the difference x — y.

Let K = SO(3) be the group of rotations in R3, and let (V, y) be an orthogonal
representation of K. Suppose that for all k € K and all x € R® we have

E(kx) =y (k)E(x),

1 -1
B(kx) =y (k)B(x)y (k).

We would like to find a general form for the expectation and two-point correlation
function of such a field.

In Section 2, we consider mathematical preliminaries. We use the book [Adams
1969], in which Adams considers both real and complex representations at the same
time.

In Section 3 we consider two particular cases of the above problem:
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(1) V has dimension 3 and y (k) = k.

(2) V is the space of all second-rank tensors over R3, T(x) takes values in the set
of all symmetric tensors, and the representation is y (k)T = kTk™'.

In the first case, the answer has been known since the classic paper [Robertson
1940]. In Theorem 3.1, we prove that our method of solution gives the same answer.
Our new result is Theorem 3.2. Section 4 concludes. Proofs of our results are
collected in the Appendix.

2. Mathematical preliminaries

Let K be either the field R of real numbers or the field C of complex numbers,
and let K be a topological group with the identity element e. A representation of
the group K over K is a pair (V, y), where V is a finite-dimensional vector space
over [, and y is a continuous homomorphism from K to the group Aut V of the
invertible linear operators in V. In other words, for each k € K and foreach v € V
there is a vector y (k)v € V, and the following conditions hold true:

(1) y(e)v=wvand y (k)(y (k')v) = y (kk')v.
(2) y(k)v is a K-linear function of v.

(3) y(k)v is a continuous function of k£ and v.

Let (V, y) and (W, §) be two representations. A map G : V — W is called a
Kmap if
G(y(k)v) =38(k)(Gv).

A K-linear K-map is called an intertwining operator. The set of all intertwining
operators is a vector space over [K. The representations (V, ) and (W, ) are
called equivalent if the above space contains an invertible operator.

Let (V, y) be a real representation of the group K. Build a complex represen-
tation (V’, y’) as follows. Consider C as a vector space over R. Put V' =C Qg V.
The space V' is a complex vector space, where multiplication by a complex number
z is defined as z(z' ® v) = zz’ ® v. The representation y’ is

Y (R (z®v) =zQy (k).
Defineamap j: V' — V'by j(z®v) =Z®v. Then j is a structural map, that is,
a K-map with
j@=zj@, =1
Conversely, let (V', y’) be a complex representation of K that admits a structural

map j. Then V'’ is a direct sum of two eigenspaces V. and V_ of the map j that
correspond to the eigenvalues +1 and —1. These spaces carry two equivalent real
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representations. Multiplication by i is an invertible intertwining operator between
the above representations.

The direct sum of two representations (V, y) and (W, §) is the representation
(Ve W,y &d), where

y @8k (wdw) = (yk)v) ® (S(k)w).

The tensor product of two representations (V, ) and (W, §) is the representation
(VOW,y®S§), where

Yy ®8(k)(v@w) = (y(k)v) ® B(k)w).

A representation (V, y) with V £ {0} is called reducible if there exists a proper
subspace W of V with y(k)w € W for all w € W and k € K and irreducible
otherwise. If K is a compact group, then any representation (V, y) of K is a direct
sum of irreducible representations. Moreover, the decomposition onto irreducible
representations is unique in the following sense. If m;V; denotes the direct sum
of m; copies of the representation V;, and the representations @ m; V; and @ n; V;
are equivalent, then m; = n; for all i.

Let (V, y) be a complex representation of a compact topological group K. By
[Adams 1969, Proposition 3.16], there exists a K-invariant inner product (-, )
on V. Moreover, if (V, y) admits a structural map j, one can choose the above
inner product in such a way that (jv, jw) = (v, w), and the restriction of the inner
product to either space V. or V_ is again an inner product.

Choose an orthonormal basis ey, ..., e, in V. Then, the complex representation
y takes values in the unitary group U (n) and is called a unitary representation. A
real representation takes values in the orthogonal group O(n) and is called an
orthogonal representation.

Realize R? as the space of traceless Hermitian matrices in C2. Such a matrix
has the form

X0 x1+x_;1
A= . , x_l,xo,xle[R.
X1—X_-11 —X0

The map A — k~! Ak, where k is an element of the group SU(2) of unitary 2 x 2
matrices with unit determinant, is a rotation, that is, an element of the group SO(3).
The matrices k and —k determine the same rotation. Conversely, each rotation in
SO(3) corresponds to a pair of matrices k and —k.

Let (V, y) be an irreducible unitary representation of the group SUQ2). If y (k) =
y (—k), then (V, y) is an irreducible unitary representation of the group SO(3), and
all irreducible unitary representations of SO(3) may be obtained in this way.
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Let

k=<_‘§ f) a,BeC, |al+IBP=1,

be an element of the group SU(2). Let V¢ be the space of homogeneous polyno-
mials of degree 2¢ in two complex variables & and 5. The representation

ve(k) £ (&, n) = f(a& — Bn, BE +an) (2-1)

is irreducible. Conversely, any irreducible representation of the group SU(2) is
equivalent to the representation (2-1).

If £ is an integer, then y,(k) = y¢(—k), and the representation (2-1) is an irre-
ducible representation of the group SO(3). Moreover, put

where f is the polynomial with coefficients which are complex conjugate to those
of f. Then j is a structural map. If we choose an orthonormal basis efn, —L<m<{,
satisfying the condition
-0 ¢
je,=e,, (2-2)
then the restriction (V¢, ve.+) of the representation (V¢ y¢) to the real linear span
Vf of the above basis is an irreducible real representation, and the matrix entries
of the operators y, (k) are real-valued functions on the group SO(3). If the basis
e’ satisfies the condition
;L ¢
je, =—e,, (2-3)
then the restriction (V, ve.—) of the representation V¢, y¢) to the real linear span
V¢ of the above basis is an irreducible real representation, equivalent to ( Ve, Ve+),
and multiplication by i is an orthogonal intertwining operator between two equiv-
alent representations.
The usual orthonormal basis in the space V¢ is as follows:

2+ 1)!

L+m, L—m _
Crmie—mie T (2-4)

flE = <—1>‘+'"\/

The matrix entries of operators y, (k) in this basis are called the Wigner D-functions
and are denoted by Dfnn (k). The basis (2-4) does not satisfy (2-2). Gordienko
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[2002] proposed the basis satisfying (2-2) as follows:

(—i)t!

Bt (&) = —D"flE ) — £ E ),
£LE D 7 (D" fLE ) — L. )]
hi(E, ) = (—i) el (&, n),

(—i)*

RE (5 ) =— —1)" £ L, L E D

LE % (D" £LE n) + £, )]

where m > 1. From now on, we define by U (k) the matrices of the representation
(VL, ye.4) in the Gordienko basis and omit + and — for simplicity of notation.
Note that ihﬁ1 (&, n) is the Gordienko basis of the space V_. Its vectors satisfy
(2-3).

Any rotation k may be performed by three successive rotations:

« rotation ko (1) about the xg-axis through an angle ¢, 0 < v < 2,
« rotation k_;(0) about the x_;-axis through an angle 6, 0 <8 < m, and

« rotation ko(¢) about the xg-axis through an angle ¢, 0 < ¢ < 2.

The angles v, 6, and ¢ are the Euler angles. The map which maps the product of
the above rotations k(y, 6, ¢) to the point (¥, 8, @) € (0, 27) x (0, w) x (0, 27) is
a chart of the group manifold SO(3), and the domain of this chart is an open dense
subset of SO(3). Moreover, the map which maps the rotation (0, 6, ¢)(0, 1, 0
to the point (6, ¢) € (0, w) x (0, 27) is a chart of the unit sphere S2 centered at the
origin of the space R3. The coordinates of the point k(0, 8, )(0,7,0)T, r > 0, are
the spherical coordinates,

X_1=rsingsinb,
Xg=rcosf,

X] =rcos¢gsiné,

Gordienko [2002] calculated the matrix entries of the matrices U (k). His result
is as follows. If k = k(y, 6, @), then

Ut(k) = U' (ko(@) U (k1 (0) U (ko(y)), (2-5)

by the definition of a representation. Denote the matrix entries of the matrix

U (ko(¢)) by Qg’m’n((p), where —¢ < m, n < {. The nonzero entries are

0.00@) =1, Q0 (@) =cos(me), QG _, .(9) =sin(mg),  (2-6)
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where m = +1, £2, ..., ££. Denote the matrix entries of the matrix U¢(k_;(0))

by Qt 1m n(9). The nonzero entries are

¢ (=D (¢ +n)!
2t (0) = 20(1 — ,ﬂ)nﬂ\/(z —m)!1(€ —m)!(£ +m)!

I__Mn/Zdz—_n Ltm 1 _ L—m
X{(lw) G A=

n/2 d[ n
+(~ 1)"’(1+Z) = ,,[(1+u)‘f—’"(1—u)“m]},

(_1)@ de 254
2001 dpt t=u9)

. (=D 20 4n)! 1 P
o0 ="50 V @—m)! (1—p2)n2 a0

. =D [2(€ 4 m)! 1 =
Q—l,m,O(G) - 2601 (Z—m)! (1 2)m/2 du[ m( K )

where m > 1, n > 1, and where . = cos 6.

Let (V™, yi) and (V?, y,) be two irreducible orthogonal representations of the
group SO(3). Their tensor product (V" ® V?, y,, ® y,) is equivalent to the direct
sum (V|m7p| (&) vlmi‘le DD Verp’ V\m—p| @Vlm—pl—H D ‘@Vm-i—p)- Let G be
the orthogonal intertwining operator between the above equivalent representations.
Then we have

’

le—1,0,0(9) =

2-7)

G(ym (k) @ vp (k) = (Vim—pltk) B Vim—pl+1(K) @ - - - @ Yy p(k)G.  (2-8)

In the usual basis (2-4), this equality takes the form

csf Dy (k) DY (k) = Zug(k)c“

mipj mnpq’

|‘| M=

t=—s

which is [Varshalovich et al. 1975, Equation (5), §4.6]. The matrix entries of the
operator G in the basis (2-4), C ,ifl pj» are called the Clebsch—Gordan coefficients.
In the Gordienko basis, the same equality takes the form

m P

Lli,j1 yrm p t[n,q]
Do D S pUnU () = Z g
i=—m j=—p t=—s

We call the matrix entries of the operator G in the Gordienko basis, gf[[,i;jl],], the
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Godunov—Gordienko coefficients. They were calculated in [Godunov and Gordi-
enko 2004].

It follows in particular that the matrix G transforms the uncoupled basis h;,
lm—p| <s<m+p, —s <t <s, to the coupled basis h"" @ h}:

m+p r
WP k=Y Y ginihl. (2-9)

r=im—p| s=~r
We multiply both sides of (2-8) by G~! from the left and write the result in the
Gordienko basis. We obtain

m+p s N

UnUjky =3 37 3 sinhUn®sgly. @10

s=|lm—p| t==5 {=—s

The same equality in the usual basis is [Varshalovich et al. 1975, Equation (1),
§4.6]. It is called the Clebsch—Gordan expansion.

Lemma 2.1 [Malyarenko 2013]. Let U be an irreducible representation of a topo-
logical group K in a Hilbert space H. Let x € H be a common eigenvector of all
operators U (k), g € K. If U is not trivial, then x = 0.

Lemma 2.2. The second equation in (1-1) may be written in the Gordienko basis
as follows:

B(kx) = (U ®U)(k)B(x). (2-11)

3. The results
Theorem 3.1 [Robertson 1940]. Let T (x) be a V-valued random field on R? satis-
fying (1-1) with U (k) = k. Then
E[T(x)]=0
and there exist two continuous functions Ko, K, : [0, 00) — R with K>(0) = 0 such
that
Bij(x) =68 Ko(llx|) + x;ix; Ka(l|x]).

Let k., x # 0, be the rotation with Euler angles (0, 6, ¢), where 6 and ¢ are
angular spherical coordinates of the point x. We introduce the following notation:
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l](m (x) - 811813;11,
nli,jl n[Z m]
l]em(x) [ Z 8211,1182[1,17 »
n=-2
n[e,m] 2 nli,jlyr2
z]zm(x) |: ij Z &1 1) Unokx) 4 Sem Z &1 1 Uno (ke ):| 1
n=-2 n=—2 (3' )
2
nli,j] p[€ m] q[n plyr2
zjzm(x)— Z Z 8211,1182[1,1] n2 U 70(kx),
n=-2 p—72 q=72
( ) Z Z nli,j] pl€,m] Z qln, P]U (k )
Uem X) = 8211,1182[1,1] 842,21 Yq0 R
n=-2 p=-2 qg=—

Theorem 3.2. Let V be the space of all symmetric second-rank tensors over R>,
let T (x) be a V-valued random field on R® satisfying (1-1) with U (k)T = kTk~".

Then E;j(x) = Cé;j, C € R, and there exist five continuous functions Ky, ..., Ks :
[0, 00) = R with K3(0) = K4(0) = K5(0) = 0 such that
5
Bijim(x) = Z M54 ) Ky ([1x1]]). (3-2)

A formula similar to (3-2) has been obtained by Lomakin [1964]. For any fixed
x € R3, the tensor in the left-hand side of (3-2) is a symmetric linear operator
acting in the space of symmetric tensors of the second rank. Following Boehler
et al. [1994], denote the space of all such tensors by 7. Under the action of SO(3),
the space T, decomposes into the following direct sum:

Ti=V'eVvieVvieVvieVv:
where Vi may be considered as the space of completely symmetric traceless tensors
of the i-th rank linearly dependent on x;. Using the general form of such a tensor

given by invariant theory (see, for example, [Spencer 1971]), we obtain the result
of [Lomakin 1964]:

Bjjom(x) = ZLl,gm(xm(nxn),

where (compare with [Boehler et al. 1994, Lemma, pp. 98-99])
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l]fm(x) - 5118Em,

lj(m(x) - 8156]m +51m8]l,
XiXp XiXx X;X¢ XiXm
rjre iXm i J
it (.X')— im ) j[+_ jm+_ il
Lijom [l 12 [l 12 [l 12 [l 12

(3-3)
x,-xj XeXm
L () = =280 + =25
J,
v llx 1 llx 1
xinngm
LY, (x)=—1"—""
em ]I

We prove that Theorem 3.2 is equivalent to the result of [Lomakin 1964]. Indeed,
we have

lﬂm (x) lj@m (x)
1 1
zﬂm(x) 3\/3 tjﬂm(x)+2ﬁ z]@m(x)
lﬂm(x)__ zﬂm(x)'i_ szzm(x)s
2V2 1 3 V2, (3-4)
lﬂm( x)= \/7 ljim( x)— \/ﬁLiZjZm(x)-i_z—\/ﬁL?jZm(x)_ﬁ lﬂm( x),
1 V5
1/(m(x)_ m }jém(x)+2J— tj@m( )_ «/— ijZm(x)
V5o V35 s
— s YU LS, (x).
Zm IJZm(x)+2ﬁ lj[m(x)

It is easy to check that the transition matrix between Lomakin’s functions (3-3)
and the functions (3-1) is invertible. A proof of (3-4) may be found in the Appendix.

Given that T has diagonal and off-diagonal components, there are five special
cases of B;jy, that shed light on the physical meaning of the K,:

(1) E[T;;(0)Ti(x)]|i=j=k=; that is, auto-correlations of diagonal terms
E[711(0)T11(x)] = K1 +2K> +2x7 K3 +4x{ K4 + x K5

and then E[7>,(0)72,(x)] and E[7T33(0)T33(x)] by cyclic permutations 1 —
2 — 3.

(2) E[T;j(0)Tk(x)]li=jk= that is, cross-correlations of diagonal terms
E[T11(0) T (x)] = K1 + (x3 + xD) K3 +x3x{ K

and then E[T,,(0)733(x)] and E[733(0)T11(x)] by cyclic permutations 1 —
2 — 3.
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(3) E[T;j(0)Ti(x)]li=ksj=; that is, auto-correlations of off-diagonal terms
E[T12(0)Ti2(x)] = K2 + (x] + x3) K4 + x{ x5 K5
and then E[7»3(0)723(x)] and E[73;(0)T3;(x)] by cyclic permutations 1 —

2 — 3.
(4) E[T;;(0)Ti(x)]| j#£i=k12j; that is, cross-correlations of off-diagonal terms

E[T12(0)T13(x)] = x2x3 K4 + x7x2x3K s

and then E[773(0)73,(x)] and E[73,(0)T12(x)] by cyclic permutations 1 —
2 — 3.

(5) E[T;j(0)Ty(x)]l;=j=ki+j; that is, cross-correlations of diagonal terms with
off-diagonal terms such as

E[T11(0)T12(x)] = x1x2(K3 +2K4) +x1x3 K5
and
E[T12(0)T13(x)] = x2x3K3 + x7 223 K5

and the others by cyclic permutations 1 — 2 — 3.

In principle, we can determine these five correlations for a specific physical
situation. For example, when T is the antiplane elasticity tensor for a given res-
olution (or mesoscale) [Ostoja-Starzewski 2008], we can use micromechanics or
experiments and then determine the best fits of the K,, (n =1, ..., 5) coefficients.

4. Concluding remarks

Remark 4.1. On the one hand, Lomakin’s functions (3-3) are simpler than func-
tions (3-1). On the other hand, the restrictions of the functions (3-1) to the unit
sphere S% C R? are orthogonal in the space of the square-integrable functions on
S2. Using this property, in a forthcoming paper we will obtain spectral expan-
sions of tensor-valued homogeneous and isotropic random fields similar to those
of Yaglom [1957].

Remark 4.2. The spherical harmonics Y, (60, ) are proportional to the Wigner
D-functions by [Varshalovich et al. 1975, Equation (37), §5.2]:

2041
Yen (0. 9) = (=1)" [ <= D",,0(0.6. ).
The matrix entries U éo (ky) are proportional to the zonal, sectorial, and tesseral

harmonics defined by [Varshalovich et al. 1975, Equation (14), §5.1].
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Remark 4.3. The matrix entries U ;O(kx), the Godunov—Gordienko coefficients,
and (3-4) were calculated and proved by hand. Afterwards, they were checked
using MATLAB and Symbolic Math Toolbox™ [Mathworks 2013]. The problem
of an algebraic proof of the second and fourth equations in (3-4) remains open.

Appendix: Proofs

Proof of Lemma 2.2. The two-point correlation function B(x) is a linear operator
in V. It is known that the space of linear operators in V is isomorphic to the tensor
product V* ® V, where V* is the set of all R-linear maps v* : V — R. We need to
prove that for any S € V* ® V the following equality holds true:

U(k)SU (k) = (U ®U)(k)S.

Note that the set of tensors satisfying the above equality form a linear space. There-
fore, it is enough to prove this equality for tensors of the form v* ® v, where v € V
and v* € V*. The linear operator v* ® v acts on V by

@'RQvw=v(w)v, wevV.
For this operator,
WU Rv* @ U™ (k)w = U®v* U™ (w)v = U KR)v") W)U (k)v
= U & v @ Ukv)w=UU)Kk) (v Q@v)w.
By linearity, this equality follows for any S € V*® V. U

Proof of Theorem 3.1. The first equation in (1-1) may be written in the Gordienko
basis as

U'(K)E=E.

The representation U is irreducible. By Lemma 2.1, E = 0.

We cannot apply Lemma 2.1 to (2-11), because the representation U' ® U'!
acting in V! ® V! is reducible.

By definition, a tensor field B(x) is a function on R3 with values in the linear
space of real-valued bilinear forms on V1Ix V! The component B;;(x) is the value
of the bilinear form B(x) at the point (hl.l, h}) evixvh

B;j(x) = B(x; h!, h}).
The last equality may be rewritten as
Bij(x) = B(x; h; @ h}),

where the right-hand side is the value of the linear form B(x) at the point hil Qh j €
V! ® V. In other words, tensor products simplify multilinear forms to linear ones.
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Using (2-9) withm = p=1,n=1, and g = j, we obtain

2 m
B =Bkl ol =B(x; Y Y glinr)
=0 {=—
L m m (A1)
.
=2 2 gulinBGs D).
m=0 =—m

Let B, (x) € V"™ be the vector field with components B(x; h}'), —m < £ < m.
For this field, we have

B, (kx) =U"(k)B,,(x), keSOQ). (A2)

By Lemma 2.1, B,,(0) = 0 for m > 1, while By(0) may take any real value.

Let SO(2) be the subgroup of rotations around x( axis. The restriction of the
representation U™ to SO(2) is the direct sum of the trivial representation WO of
SO(2) acting in the one-dimensional space spanned by the vector k' and of the
irreducible representations

cos(fp) sin(Lyp)

14 _
Wie) = (— sin(£p) cos(£p)

). veso.
acting in the two-dimensional spaces spanned by the vectors k)’ and h™,, 1 < <m.
If x =, ||x], 0’ # 0, then kx = x, k € SO(2), and

(B(x; B”)), B(x; €)' = W (@) (B(x; b)), B(x; hy)', 1<C<m.

By Lemma 2.1, B(x; k”,) = B(x; h}}) =0, if 1 < £ < m, while B(x; hy) is an
arbitrary continuous real-valued function with B(0; ki) = 0 for m > 1. In what

follows, we denote this function by B, (||x||).
By (A.2),

B(x; hy') = Uyy(ky) Bu (IX1)- (A.3)
Substitute (A.3) into (A.1). We obtain

2 m
Bi(x) =" > g Uthke) Bu(llx ).

m=0 {=—m

In other words, B;;(x) is the sum of three matrix-valued functions

2
Bij(x) = Z B (x),
m=0
with .
m Lli,j m
BI(xX) =) g Ui (ke) Bu(lx ).

{=—m
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Let m = 0. Then
Ugo (k) =1, (A4)

the matrix entry of the 1 x 1 identity matrix. To calculate the Godunov—-Gordienko
coefficients gg[[’l”jl]], use the following property [Godunov and Gordienko 2004]:

[n1,n2] N+Ni+N, | 2N+1 [n,n2]
ganlAlhr,?Vz] =(=D : 2,/ mganl[nN?jzvz], (A.5)

with N=n=0, Ny=N,=1,n; =i, and n, = j. We have

Ol j1 _ i[0,/]
Gty =V 1/381101-

The coefficients in the right-hand side can be calculated using (2-9):
1
0 1 i[0,j]11
ho® k= gighi-

i=—1

The left-hand side is clearly equal to hi Therefore, gll[[?)ﬂ = dij,
o, j
gon 1 = v/1/381), (A.6)

and the first matrix is
B} (x) = /1/35;; Bo(llx|)).
Let m = 1. Using (2-5)—(2-7), we obtain

Ul(,0) cosg 0 sing 0 sin ¢ sin 6
Uh,0) |= 0 1 0 cosf | = cost® |,
Uly(p.6) —sing 0 cosg/ \sin6 cos ¢ sin 6

or
Xg
Ugghs) = —.
,
The Godunov—Gordienko coefficients gﬂ’ljl]] are calculated by [Godunov and
Gordienko 2004, Formulae (1.26)—(1.29)]. The nonzero coefficients are

—1[1,0] __ Oo[—1,11 __ 1[0,—1] __

Sl =81 =8y =v1/2,

—1[0,1] __ O[1,=1] __ _1[—1,0] __

i,y = 8Ly =8,y =V 1/2.
The second matrix becomes

0 —x1 xo
x1 0 —x_1 | Bi(lxID.
—X0 X—-1 0

‘ ~

5
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This matrix is not symmetric but skew-symmetric. The matrix B;;(x) is symmetric
if and only if B(||x||) =0.
The matrix entries U ézo (kx) can be calculated using (2-5)—(2-7) as

«/§x_1x1 \/§x_1xo 3x2 1
Uzzo(kx) = T2 Uzlo(kx) = 2 Ugo(kx) = 2—;2) — 5
V3xox; V32, —x?)
Uly(ke) = =5, Uk ler) = 1.

To calculate the Godunov—Gordienko coefficients gﬁﬁ”’i]], use (A.5) with N = 2,
Ni=N,=1,n=¥{,n;=i,and np = j. We have
£li, j1 it ;1
& = V33817
The coefficients g’l[éJl]] are calculated by [Godunov and Gordienko 2004, Formu-

lae (1.30)—(1.34)]. The nonzero Godunov—Gordienko coefficients are
—2[-1,1] —2[1,-1

] 2[1,1]
8or1,11 =81,y = 821,11 TV 1/2,
o[—1,—11 _ o[L,1] _
& =& =—Vv1/6,
—1[=1,0] _ —1[0,—1] __ _1[0,1] __ _I[1,0] _ 2[—1,—1] _
S =& =8 =&y =8&n1 =v1/2
0[0,0]
811 = V2/3.
In(2-10)putk=j=0,m=p=1,n=1i, and g = j. We have
2 s K
1 1 t[i, j] £10,0]
Uio(K)U o (k) = Z Z Z gs[l,l]UtSe(k)gs[l,l]-
s=0 t=—5 {=—s5

Using the above-calculated values of the matrix entries and Godunov—Gordienko
coefficients, we may rewrite this formula as

2
7 =303 P 8ot Uio(ks)
or )
i j1 172 V3 r?
Z 8o Uiotkx) = —(xjxj — —51'1). (A7)
t=—2 Var? 3
We introduce the following notation:
Ko(llx1) Lp (lx1D Lp (%D, Ka(llxl) V3 By([lx1)
ollix]l) = —=bolllxX||) — —=Db2Ux|}), BK2(X|) = —=—D2(||X]])-
V3 V6 V2r?

The theorem is proved. Note that the space V° consists of tensors proportional to
the Kronecker delta, V! consists of skew-symmetric tensors, and V2 consists of
symmetric traceless tensors. (]
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Proof of Theorem 3.2. Use Lemma 2.2 to write the representation U as U =
U'® U'. The first equation in (1-1) takes the form

Ekx)=U'@ U Y(k)E(x).
or
E=U'QUYKE, keSO®).

In other words, E lies in the subspace of V where the trivial representation is
realized, or

E[T;j(x)]=Cs;;, CeR.
The second equation in (1-1) takes the form
Blkx)=U'®@U'®@U' ® U") (k) B(x).
We write B(x) as a bilinear form on pairs of tensors, VieVvhx (vigvh:
B/ (x)=B(x:hj @h}. hy®h,),).
Note that the tensor field B/ (x) is symmetric in the following sense:
B (x) = B (x).

Recall that V! @ V! = VO @ V! @ V2. Rewrite B(x) as a bilinear form on
Ve vievh) x (Ve VvieVv?):

2 n 2 q
eme o _ o . Plijl ritm]
BT = B<x’ DI gqﬂ’”hg)
n=0 p=—n q=0r=—q

In fact, B(x) is a bilinear form on pairs of symmetric tensors, which is to say, on
(V0@ V2 x (VO V?2):

n q
i _ . pli,jl rle,m]
B = (xS 3 el Y eiin)
ne{0,2} p=—n qe{0,2} r=—¢q
n q
_ plijl _rltml poe.. pn
= Z Z 8n(1 118q11 1) BCes By, B
(n,q)€{0,2}x{0,2} p=—n r=—q

n q
_ pli,jl_r[t,m] .
= Yo D &mins Bkl @ k)
(n.9)€{0.2}x10,2} p=—n r=—q
n q n+q K
_ il rleml pf . 1n.q
- XY Y atne(s X X alhom).
(n,9)€{0,2}x{0,2} p=—n r=—q s=|n—q| t=—s

The possible values for s are 0 <s < 4. Let A, be the set of all pairs (n, q) €
{0, 2} x {0, 2} such that V¥ C V" ® V4. We have
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Ao=1{(0,0),(2,2)}, A1=A3=A4={2,2)}, A2=({(0,2),(2,0), (2, 2)},
and A
Bij@m(x) — Z B;je’n(x)’

s=0
where

n q s
ij e _ p[t J1_rlt,m] t[n,q] .
B/ = ) ) S N8 D Esmip BO: 1} (n, @),
(n,q)€eAs pP=—n r=—q t=—s

and where the pairs (n, g) € Ay, enumerate copies of the vector k7. By (A.3),

B(x; h;(n, q)) = Ujo(ks) Bsn,g) (llx 1D,

where B(,,4)([lx]) are continuous real-valued functions with B, 4)(0) = 0 for
s > 1. We obtain
B;J@m(x) — Z C:qul;m(x)
(n,q)eA;
where
n q K
il pli,jl rlé,m] tlp.rl
Ciutmxy= > > ehinignit D & Usoke) Bgu.gy (11D
p=—nr=—q t=—s
We calculate the functions C,l.,j;sm (x).
Let (n, q) = (0, 0) € Ag. The corresponding term is

(I)J()f)m( )= 3ij5em30(0,0)(||x||) = Miljem(x)Kl(”x”)s

by (A.4) and (A.6) with K (||x ) = Boo,0)(I1x ).
Let (n, q) = (2, 2) € Ag. The corresponding term is

ljém rli,j] s[é m] O[r,s] 770
Cyp () = Z Z 82[1 11821.1] o2, Z]Uoo(kx)BO(z,Z)(”xH)-
r=—2 s=-2
The Godunov—Gordlenko coefficients 82{1 ]1]] and g%'ﬁ] are calculated by (A.6),

while the coefﬁ01ents go[2 41 are calculated using (A.5) withn =N =0,n; =r,

ny=s, Ny =Ny=2and (2 9):
Ofr,
O[[Z s2]] = \/782[0 2] = 1/58,s.

Therefore, we obtain

j ¢ l,
Ciho' () =+/1/5 Zggﬁfﬂ]gg{lﬁ"Bo<zz><||x||>— M3, ) Ka(x 1)
r=—2

with K> (||x|)) = Bo@.2)(1x1])-
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Let (n,q) =(2,2) € A;. The corresponding term is

ulm pli,j1 rlt,m] slp,rlyr1
221 (x) = Z Z 8o11,1182[1,1] Z 8112,2] Uso(kx)Bl(Z,Z)(”x”)-
p=—2 s=—2 s=—1

The Godunov—Gordienko coefficients gl[p "1 are calculated by [Godunov and Gor-
dienko 2004, Formulae (1.26)—(1.29)]. The nonzero elements of the Godunov—

. . -1
Gordienko matrix Gl[2 y) are

Sipa =—/3/10, gt =g = —V/1/10,
gipal =/3/10, gy T =g = /1710,
and those of the matrix G(l)[2,2] are
Sibar’ = V275 diza ==V1/10,
Q3= g = i

Finally, the nonzero elements of the Godunov—Gordienko matrix Gl_[é y) are

1[0,—1 111,— 112,-1

gl[[2 2] ]—V3/10’ 81{2 2] . 81{2,2] = 1/10,
1[-1,0] _ 1[-2,1] 1-1,21 _

82 < 3/10, 81,21 =812 T 1/10.

We see that the Godunov—Gordienko matrices gi[z,z]’ —1 <s <1, are skew-
symmetric. We have B2 (||x]) = 0 by the same reasons as B;(|x|) = 0 in
the proof of Theorem 3.1.

Let (n,q) = (0, 2) € A,. The corresponding term is

2 2
il o[, [£,m] [0, p]
Cin @) =g Y &5t > g5l SUZ (k) Baooy (1 ).
p=—72 s=—2
Using (A.6), we obtain

2 2
14 £, 0,r
Cony" () = /1738 Y bl > oS0 UZ (k) Baooy (1 1)
p=—2 s=—2

Clearly g;{g’f]] = 4. Therefore,

it
Coby" (x) = /1/38;; Z 85[1 f]ﬂUzo(k )B20,2) (Il x])).
p=-2

Let (n,q) = (2,0) € A,. The corresponding term is

Ufm 0[¢,m] pli,jl t[p 0]
Cip" (%) = go[1'1] Z gl Y gapoiUso ) Baa,y (1 ).
p=—2 s=—2
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Using (A.6), we obtain

2 2
ije i,j ,0
Crog" ) = /17380 > il Y ghib ol U (k) Ba.oy (I ).
p=—2 s=—2

Clearly g;g”g]] = 8. Therefore,

2
Cin" () = /1/380m Y i 11U (ke) Ba.oy (11D
p=—72

We see that the tensor field B¢ (x) is symmetric if and only if B2 ([lx]]) =
B2,0)(Jlx|]). Denote their common value by K3(||x||) and put
1

Céj@m (x) _ ﬁ

(Ciha" () + Cop" (x)).

We obtain

Cy" (x) = M3, ) K3 (llx 1)

Let (n,q) = (2,2) € A,. The corresponding term is

2 2 2
ijem _ pli,j1 _r[€,m] slp,rly 2
Cihy' ()= > > ehiilanit] Y &b Udke) Baa. 2y (llx 1)
p=—2r=-2 s=—2

= My, (0 Ks(llx]),

with K4(|lx]]) = Ba,2) (1x]])-
To calculate Godunov—Gordienko coefficients g;{g zrj] we use generating func-

tion from [Godunov and Gordienko 2004, Formula (2.6)]. The nonzero coefficients
are:

—200,—2] _  —2[-2,0] __ O[-2,—2] __ 0[2.2] _ 22,01 _ 2[02] _

&2 =82 =82 =8 =822 =8&pa=—V2/T
—201,—11 _  —2[—1,11 _ —1[1,=2] _ _—1[-2,1] _ _1[—1,-2] _ 1[-2,—1] __ _1[2,1]

8221 T 82221 T 82221 T 821221 T 82221 T 821221 T 82122

= &b = Ha) = —V3/14,
S =80 =802 = 8ha) = S22 = 22 =V 1/14
S = =gy =314
82122 =V2/7.
Let (n, g) = (2, 2) € A3. The corresponding term is

2 2 3
ijem _ rli,jl s[€,m] tlr,s] 773
Cyry (x) = Z Z 8o11.,1182[1,1] Z 83[2,2]Uz()(kx)B3(2,2)(||x||)-
r=—2 s=-2 t=-3
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The nonzero elements of the Godunov—Gordienko matrix g;é 5 are

—3[-1,-2] _ —3[2,1] _ —3[-2,—1]1 _  —3[1.2] _
8312, =8pa = —1/2, &py =8pa =1/2,

those of the matrix g{é )y are

—2[2,0] —2[0,2]
83122 =V 1/2, 83122 =V 1/2,

those of the matrix gg[é y) are

—1[0,1] —1[1,0]
8221 = ~V1/5, &2 =V 1/5,

—1[-1,-2] _ —1[1,2] __ —1[=2,-11 _ _—1[2,1] _
832,21 =832 = 3/20, 8312.2] =gpny = 3/20,

those of the matrix gg[z )y are
o[t,—1] _ o-1,11 _ /572
&2 = V25 &pa =V2/5
0[—-2,2] _ 0[2,—2] _
8o =—V1/10, g3, =v1/10,
those of the matrix g;[z y) are
1[-1,0] _ 100,11 _
83221 =V 1/5, 832,21 = V 1/5,
=211 _ _1-1,21 _ /2770 11,-2] _ _12,~111 _ /2750
802 =8&p2 = V3/20, &payT =8&py = v3/20,
and those of the matrix g%[z 5 are
202,01 _ /15 200,-221 _ /774
$p2 = V12, &Gpy T =vI1/2
Finally, the nonzero elements of the Godunov—Gordienko matrix 83[2 ) are

31,21 _ 3[1,-2] _ 32,11 _ 3[2,—11 _
832,21 T 832,21 T —-1/2, 832,21 T 832,21 T 1/2.

We see that the Godunov—Gordienko matrices g%[z 2 —3 <t < 3, are skew-
symmetric. We have By22)(||x||) = 0 by the same reasons as before.
Let (n,q) = (2, 2) € A4. The corresponding term is

2 2 4
ijtm _ rli,jl _s[€,m] tlr,s] y74
Coy ()= Z Z 8211,1182(1.1] Z 8a12.21Ur0(kx) Ba2,2) (Il 1)
r=-—2 s=-2 t=—4

= M5, () Ks(llx )

with Ks(||x ) = Bac,2)(I1x ).
The nonzero elements of the Godunov—Gordienko matrices gf[g )y are

—4[-2,2] _ —4[2,-2] __ _4[2,2] _ 4-2,-2]
84[2*2] - g4[272] - g4[2,2] - _\/m’ 84[2’2] = \/m,
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those of the matrices gjf[g y) are

—3[=2,1] 301,21 -3[-12] _  —3[2,—1] 31,21 _ 3[2,1]
84221 T 8421 T 84221 T 84p2) T 842,21 T 84221 T =-1/2,
3[=2,—-1] 3[—1,-2] _
84221 T 8ap2 T 1/2,

those of the matrices gjﬁ% y) are

=111 =2[1,-11 _ 2L /oA
8421 T 8] = 8apa = —V2/7,

—2[—2,0] _ —2[0,-2] __ _2[0.2] _ 21201 _ /3714

8402 T 8apza | T 8apy) = 8apy) = V3/14,

2[—1,—1]
8ap2  =V2/7,
and those of the matrices gf[é y) are

1[=1,2] ~12,—1]
842,21 T 8412,2) _1/(2‘/_)

~1[=2.1] 1[1,-2] 1[=2,—1] 1[=1,-2] 1[1,2] 112,1]
84221 T 8ap2) T 84221 T 8ap2) = 842 = 8ap2 = 1/(2\/7)’

—1[~1,0 —1[0,—1] 1[0,1] 1[1,0]
84[2 2] - g4[2 2] - g4[2 2] — 84[2 21 = \/ﬁ

Finally, the nonzero elements of the Godunov—Gordienko matrix 82[2 5] are

0[—1,—11 _ _O[1,1] _
842 = 8apz = —V8/35,
0-2,-21 _ 0221 _ /{77n
8ap2) = 8apy =V 1/70,
000] /70.
8ap2.2) = 6/ 0

Proof of (3-4). The first equation is obvious. The second and fourth equations may
be checked by brute force, using the values of the matrix entries and Godunov—
Gordienko coefficients calculated above. To prove the third equation, substitute
(A.7) into (3-1). For the fifth equation, puti = j =0 and m = p =2 in (2-10). We
have

U2 (ke U2y (k) = Z Z Z 85 Usw kgl

=0 v=—t w=—t

Using the matrix entries calculated above and the Godunov—Gordienko coefficients,
we may rewrite this formula as

2
1
Uy (k) Uy (k) = <855 +/2/7 ) 8555 Ui hx) L 3V2 Z g U (k).

t=—2 t— —4
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Move all terms but the last from the right-hand side to the left-hand side, and
substitute the result into the fifth line in (3-1). We obtain

2

V3 2 [i,j1_plé,m]
1/(m( x) = 7 Z Z ;’[i”]l]gé’[l”f} (Urzo(kx)Uszo(kx)_%SnP
2
VAT Y sl ).

t=-2

Using (A.7) and (3-1), we get

35
lﬂm( )_%( z]Zm( ) tj@m(x)-'_ Ltﬂm(x))

V7 ﬁ
_v t]Zm( )_ l]Em(x)

We finish the proof by using the second and fourth equations. O
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