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EFFECTS OF DAMPING ON THE STABILITY
OF THE COMPRESSED NICOLAI BEAM

ANGELO LUONGO, MANUEL FERRETTI AND ALEXANDER P. SEYRANIAN

The Nicolai problem concerning the stability of a quasisymmetric cantilever
beam embedded in a three-dimensional space, under a compressive dead load
and a follower torque, is addressed. The effect of external and internal damp-
ing on stability is investigated. The partial differential equations of motion, ac-
counting for the pretwist contribution, are recast in weak form via the Galerkin
method, and a linear algebraic problem, governing the stability of the rectilin-
ear configuration of the beam, is derived. Perturbation methods are used to
analytically compute the eigenvalues, starting with an unperturbed, undamped,
symmetric, untwisted beam, axially loaded, in both the subcritical and critical
regimes. Accordingly, an asymmetry parameter, the torque, the damping, and
the load increment are taken as perturbation parameters. Maclaurin series are
used for semisimple eigenvalues occurring in subcritical states, and Puiseux
series for the quadruple-zero eigenvalue existing at the Euler point. Based on
the eigenvalue behavior described by the asymptotic expansions, the stability
domains are constructed in the two or three-dimensional space of the bifurcation
parameters. It is found that dynamic bifurcations occur in the subcritical regime,
and dynamic or static bifurcations in the critical regime. It is shown that stability
is governed mostly by the bifurcation of the lowest eigenvalue. In all cases
the Nicolai paradox is recovered, and the beneficial effects of asymmetry and
damping are highlighted.

1. Introduction

The fascinating mechanical problem first formulated by Nicolai [1928] and now
bearing his name consists in determining the critical value of a follower (tangential)
torque acting at the free end of a uniform elastic cantilever beam embedded in a
three-dimensional space, with equal moments of inertia in the two planes. The
Nicolai paradox consists in the fact that the bifurcation value of the torque is zero,
in the sense that a vanishingly small torque is able to cause (dynamic) instability

Communicated by Antonio Carcaterra.
MSC2010: 74H10, 74H55, 74H60.
Keywords: stability of beams, nonconservative system, Nicolai paradox, perturbation methods,

semisimple eigenvalues, quadruple-zero eigenvalue.
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of the beam. Nicolai found this (apparently) surprising result by using a simplified
two-degree of freedom model with lumped mass; he also found that damping is
stabilizing. Subsequently he analyzed the effects of small asymmetries in the two
inertia moments, and found they have a beneficial effect on stability [Nicolai 1929].

The paradox has recently been explained in [Seyranian and Mailybaev 2011],
where it has been shown to be due to the bifurcation of a double semisimple
eigenvalue, which leads to a stability domain with a conic singularity at the origin
of parameter space, where the ideal symmetric system is located. Therefore, an
infinitesimal perturbation of this state can lead the system out of the cone, causing
instability. In the same paper the authors, by referring to a general discrete system,
briefly investigated damping effects, arriving at a justification of the findings of
Nicolai. In their paper, however, although they accounted for the presence of an
axial load, they assumed it as below the Euler critical value.

In [Seyranian et al. 2014], the continuous model was enriched by accounting
for the pretwist generated by the torque in the reference configuration. This effect,
which had been neglected in previous papers, was, however, found to not affect
the stability domain. The authors, by using analytical and numerical methods,
also studied the neighborhood of the Euler point, although they did not address the
(complex) mechanism of bifurcation. Moreover, they did not account for damping.

In this paper we reconsider the problem of Nicolai using a continuous model of
a beam with pretwisting and introducing damping forces. We mainly focus on the
influence of damping on the stability domains of the system. Thus, the problem
of Nicolai is studied in greater depth, with multiple aims, namely: to thoroughly
analyze the effects on stability of external and internal damping acting on the beam;
to study the regimes of subcritical and critical axial loads and their influence on the
critical value of the torque; to investigate the role of eigenvalues higher than the
first in affecting stability; and to explain, by analytical methods, the mechanism of
the bifurcation of the quadruple-zero eigenvalue which occurs at the Euler critical
load. All these aspects are believed to be new; the latter, moreover, could have
value that transcends the issue at hand.

The paper is organized as follows. In Section 2 the equations of motion are re-
called, a Galerkin reduction is carried out, and a linear eigenvalue problem is drawn.
In Section 3 the stability problem for subcritically loaded beams is addressed by per-
forming a perturbation of semisimple eigenvalues. In Section 4 the stability prob-
lem for nearly critically loaded beams is tackled. Here it is shown that a Puiseux
series expansion must be used to analyze bifurcation of the quadruple nonsemisim-
ple eigenvalue. Differences in the algorithms for undamped and damped systems
are also extensively commented upon for this occurrence. In all cases two or three-
dimensional stability domains are constructed and the type of bifurcation (static or
dynamic) occurring at the different branches of the boundaries is commented upon.
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2. Problem formulation

Continuous model. We consider a cantilever beam, of length l
and mass per unit length m, loaded at the free end by a compressive
axial dead load P and a follower torque L (see figure on the right).
The system is assumed to be “nearly symmetric”, in the sense that
its geometric characteristics in the two principal planes are almost
equal. The goal of this analysis is to evaluate the critical value of
the torque at which the beam loses stability, by accounting for
asymmetries, axial load, and damping.

x

y

z

P

L

The equations of motion for the elastic beam, modeled ac-
cording to the Euler–Bernoulli hypotheses, were derived in [Bolotin 1963]; in
[Seyranian et al. 2014] the effect of the pretwist induced by the torque was in-
cluded in the analysis. In this paper we consider a further improved model by
accounting for internal and external dampings. The relevant equations of motion
(see Appendix C for derivation) are

mü+E Iyu I V
+L

(
1−2 E

G
Ix+ Iy

J

)
v′′′+Pu′′−2P L

G J
v′+ξ u̇+ηIy u̇ I V

=0,

mv̈+E Ixv
I V
−L

(
1−2 E

G
Ix+ Iy

J

)
u′′′+Pv′′+2P L

G J
u′+ξ v̇+ηIx v̇

I V
=0,

(1)

with the boundary conditions

u(0)= u′(0)= 0, E Iyu′′(l)+ ηIy u̇′′(l)− 2L
E Iy

G J
v′(l)= 0,

v(0)= v′(0)= 0, E Ixv
′′(l)+ ηIx v̇

′′(l)+ 2L
E Ix

G J
u′(l)= 0,

−E Iyu′′′(l)− ηIy u̇′′′(l)− P
(

u′(l)− L
G J

v(l)
)
= 0,

−E Ixv
′′′(l)− ηIx v̇

′′′(l)− P
(
v′(l)+ L

G J
u(l)

)
= 0.

(2)

Here u(z, t) and v(z, t) are the transverse displacements of the centroid at the
abscissa z and time t , along the principal x and y axes, respectively; E is the
Young modulus of the material; Ix and Iy are the principal inertia moments of the
cross-section and J is its torsional inertia moment; ξ and η are the external damping
and viscosity coefficients, respectively; a dash denotes differentiation with respect
to z; and a dot denotes differentiation with respect to t . When the damping coeffi-
cients are set to zero, the equations studied in [Seyranian et al. 2014] are recovered.
These equations govern the small oscillations of the pretwisted beam around the
rectilinear configuration.



4 ANGELO LUONGO, MANUEL FERRETTI AND ALEXANDER P. SEYRANIAN

The following nondimensional quantities are introduced:

z̃ := z
l
, ũ := u

l
, ṽ :=

v

l
, β := 2 E

G
Ix + Iy

J
, γ := 2 E

G
I0

J
,

L̃ := Ll
E I0

, P̃ := Pl2

E I0
, Ĩy :=

Iy

I0
, Ĩx :=

Ix

I0
, m̃ := m

m0
,

t̃ := t

√
E I0

m0l4 , ξ̃ := ξ

√
l4

m0 E I0
, η̃ := η

√
I0

m0l4 E
,

(3)

where I0 and m0 are an inertia moment and mass per unit length, respectively, taken
as characteristics of a “close” ideal symmetric system, from which the actual sys-
tem can be generated via a small perturbation (see Appendix A). With definitions
(3), the equations of motion transform into

mü+ Iyu I V
+ L(1−β)v′′′+ Pu′′− P Lγ v′+ ξ u̇+ ηIy u̇ I V

= 0,

mv̈+ Ixv
I V
− L(1−β)u′′′+ Pv′′+ P Lγ u′+ ξ v̇+ ηIx v̇

I V
= 0,

(4)

and the boundary conditions into

u(0)= u′(0)= 0, Iyu′′(1)+ ηIy u̇′′(1)− γ L Iyv
′(1)= 0,

v(0)= v′(0)= 0, Ixv
′′(1)+ ηIx v̇

′′(1)+ γ L Ix u′(1)= 0,

−Iyu′′′(1)− ηIy u̇′′′(1)− P
(
u′(1)− 1

2 Lγ v(1)
)
= 0,

−Ixv
′′′(1)− ηIx v̇

′′′(1)− P
(
v′(1)+ 1

2 Lγ u(1)
)
= 0,

(5)

where the tilde has been suppressed for notational convenience.

Discrete model. A weak form of the problem (4), (5) is derived according to the
weighted residuals (or extended Galerkin [Leipholz 1974; Zienkiewicz et al. 2005])
method. The unknown displacement fields are expressed as linear combinations of
2N unknown time-dependent amplitudes, x := (xi (t))T and y := (yi (t))T , and N
known space-dependent trial functions φ := (φi (z))T , namely

u(z, t)= φT x,

v(z, t)= φT y,
(6)

where φi (0) = φ′i (0) = 0 satisfy the geometrical boundary conditions; however,
they are not required to satisfy the mechanical boundary conditions [Leipholz 1974;
Zienkiewicz et al. 2005].

By substituting (6) into the field equations (4) and boundary conditions (5), resid-
uals in the domain and at the free end z = 1 are found, which are required to be
orthogonal to the trial function itself:
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N∑
i=1

{∫ 1

0
φ j [mφi ẍi + Iyφ

I V
i xi + L(1−β)φ′′′i yi + Pφ′′i xi − P Lγφ′i yi

+ ξφi ẋi + ηIyφ
I V
i ẋi ] dz+φ′j [Iyφ

′′

i xi + ηIyφ
′′

i ẋi − γ L Iyφ
′

i yi ]z=1

+φ j

[
−Iyφ

′′′

i xi − ηIyφ
′′′

i ẋi − Pφ′i xi +
P Lγ

2
φi yi

]
z=1

}
= 0,

N∑
i=1

{∫ 1

0
φ j [mφi ÿi + Ixφ

I V
i yi − L(1−β)φ′′′i xi + Pφ′′i yi + P Lγφ′i xi

+ ξφi ẏi + ηIxφ
I V
i ẏi ] dz+φ′j [Ixφ

′′

i yi + ηIxφ
′′

i ẏi + γ L Ixφ
′

i xi ]z=1

+φ j

[
−Ixφ

′′′

i yi − ηIxφ
′′′

i ẏi − Pφ′i yi −
P Lγ

2
φi xi

]
z=1

}
= 0,

(7)

where j = 1, 2, . . . , N . After integration by parts and accounting for the geometric
boundary conditions, all terms at the boundaries disappear. From these, a set of
2N ordinary differential equations is derived:

Mq̈+Cq̇+ (K + H)q = 0, (8)

where q := (x, y)T is a 2N column vector of the unknown amplitudes, and M is
the mass, C the damping, K the stiffness, and H the circulatory matrices, all of
dimension 2N × 2N , defined by

C :=
[
ξm+ηIy kE 0

0 ξm+ηIx kE

]
, M :=m

[
m 0
0 m

]
,

K :=
[

Iy kE+PkG 0
0 Ix kE+PkG

]
, Hu :=

[
0 h1

−h1 0

]
,

Ht :=

[
0 −βh1−Pγ h2−γ Iy h3

βh1+Pγ h2+γ Ix h3 0

]
, H :=L(Hu+Ht).

(9)

In these equations, the following N × N submatrices appear, which depend on the
trial functions only:

m =
∫ 1

0
φφT dz, kE =

∫ 1

0
φ′′φ′′T dz,

kG =−

∫ 1

0
φ′φ′T dz, h1 =

∫ 1

0
φφ′′′T dz,

h2 =

∫ 1

0
φφ′T dz− 1

2
φφT

∣∣
z=1, h3 = φ

′φ′T
∣∣
z=1,

(10)

where the indices E and G refer to the elastic and geometric parts of the stiffness
matrix and the indices u and t refer to the untwisted and twisted beams, that is, to
the torsionally rigid or torsionally elastic beams. Notice that the coupling between
the x and y variables is exclusively due to the torque.
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In the numerical simulations to be performed ahead, we will take as trial func-
tions the (mutually orthogonal) eigenfunctions of the free undamped oscillations
of the unprestressed planar cantilever (see Appendix B). Due to their orthogonality
properties and normalization, it follows that m = I and kE = diag(ω2

i ), where ωi

are the (nondimensional) natural frequencies; in contrast, kG and hi , i = 1, . . . , 3,
are full matrices. Moreover, while M, C , and K are symmetric matrices, H is not
symmetric nor antisymmetric. Finally, the damping submatrices are linear combi-
nations of the mass and elastic stiffness submatrices, as in the Rayleigh model of
damping.

The algebraic eigenvalue problem. Substitution of q(t)= weλt in (8) and premul-
tiplication by M−1 leads to the algebraic eigenvalue problem

(A+ λD+ λ2 I)w = 0, (11)

in which A := M−1(K + H) and D := M−1C . The trivial equilibrium is (asymp-
totically) stable if Re λ < 0 for all λ, and is unstable if Re λ > 0 for at least one λ.

When the system is undamped (that is, D = 0), the eigenvalue problem is more
conveniently recast in the standard form:

(A−µI)w = 0, (12)

where µ := −λ2. The trivial equilibrium is stable if all µ are real and positive (that
is, λ is purely imaginary), and it is unstable if at least one µ is negative or complex
(entailing that one root λ has a positive real part).

3. Stability analysis for subcritically compressed beams

The perturbed eigenvalue problem. We address the stability problem for the case
in which the (nondimensional) axial load P is lower than the (nondimensional)
Eulerian critical load PE := π

2/4. We assume that the cross-section is nearly
symmetric, affected by a small asymmetry parameter α; both the internal, η, and
external, ξ , damping coefficients are small; and the follower torque, L , is also
small. Accordingly, we introduce the following parameter rescaling:

(α, L , ξ, η)→ ε(α, L , ξ, η), (13)

where 0 < ε � 1 is a perturbation parameter (artificially introduced, and to be
reabsorbed at the end of the procedure). The (nondimensional) geometric charac-
teristics and the mass per unit length (with a proper choice of I0 and m0 appearing
in (3)), after series expansion, read (see Appendix A for an example)Ix

Iy

m

=
1

1
1

+ εα
Ix1

Iy1

m1

+ O(ε2); (14)
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moreover, β = β0+ O(ε) and γ = γ0+ O(ε), with β0 = 2γ0. Consequently, the
matrices in (11) can also be expressed in series form as

A= A0+ εA1+ O(ε2), D = εD1+ O(ε2), (15)

where

A0 =

[
kE+PkG 0

0 kE+PkG

]
,

A1 = A1u+A1t ,

A1u =

[
α(Iy1−m1)kE−αm1 PkG Lh1

−Lh1 α(Ix1−m1)kE−αm1 PkG

]
A1t =

[
0 −L(β0h1+Pγ0h2+γ0h3)

L(β0h1+ Pγ0h2+γ0h3) 0

]
,

D1 =

[
ξm+ηkE 0

0 ξm+ηkE

]
.

(16)

The eigenvalue problem (11), therefore, appears as a perturbation of the prob-
lem relevant to the symmetric, undamped, subcritically prestressed beam, with
no torque, namely:

[A0+ λ
2 I + ε(A1+ λD1)+ · · · ]w = 0, (17)

where A1 accounts for (first-order) asymmetry and torque, while D1 accounts for
damping.

Perturbation analysis.

The damped case. The eigenvalue problem (17) is solved by a perturbation method.
Due to the symmetry of the unperturbed mechanical system, the eigenvalue λ0 is
a semisimple eigenvalue for the matrix A0, that is, two independent eigenvectors
are associated with any eigenvalue, each representing a mode of oscillation in the
(x, z)-plane or the (y, z)-plane. Such an eigenvalue and its associated eigenvectors
admit Maclaurin series expansion [Seyranian and Mailybaev 2003]:

λ= λ0+ ελ1+ · · · , w = w0+ εw1+ · · · . (18)

By introducing (18) in the eigenvalue problem (17) and separately equating to zero
terms with the same powers of ε, the following perturbation equations are obtained:

ε0
: (A0+ λ

2
0 I)w0 = 0,

ε1
: (A0+ λ

2
0 I)w1 =−(A1+ λ0 D1+ 2λ0λ1 I)w0.

(19)
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Since A0 is symmetric and positive definite, its eigenvalues λ0 are pairs of
complex conjugate purely imaginary numbers, that is, ±iωk , k = 1, 2, . . . , N .
The associated eigenvectors are real, and right and left eigenvectors coincide. We
take λ0 =+iωk , and denote by u1 and u2 the associated eigenvectors, which are
mutually orthogonal and normalized, that is, uT

i u j = δi j . Hence, the ε0-order
perturbation equation admits the general solution

w0 = U a, (20)

where U = (u1, u2) is a 2N ×2 modal matrix and a= (a1, a2)
T is a column vector

listing two unknown amplitudes. Note that, at this order, any linear combination
of u1 and u2 is an eigenvector, the indeterminacy being resolved only at the next
order.

With (20), the ε-order equation reads

(A0+ λ
2
0 I)w1 =−(A1+ λ0 D1+ 2λ0λ1 I)U a. (21)

This is a nonhomogeneous problem in which the linear operator A0+ λ
2
0 I is sin-

gular. In order to solve it, the right-hand member must be orthogonal to the kernel
of the adjoint operator (the compatibility condition). Since this space is spanned
by the rows of U T , the compatibility reads

( Â1+ λ0 D̂1+ 2λ0λ1 I)a = 0, (22)
where

Â1 := U T A1U and D̂1 := U T D1U (23)

are 2× 2 matrices representing the restrictions of A1 and D1 to the plane spanned
by the columns of U ; moreover, U T U = I has been used, which follows from the
orthonormalization properties of the eigenvectors. A remarkable result is that the
matrix Â1 does not depend on the pretwist, since the restriction of the matrix A1t

to the plane of the eigenvectors is zero (see Appendix D for details). Therefore, to
first order, stability is unaffected by the pretwist.

Equation (22) is an eigenvalue problem in the λ1 unknown. The relevant char-
acteristic equation is

λ2
1+ I1λ1+ I2 = 0, (24)

where

I1 :=
1

2λ0
tr( Â1+ λ0 D̂1) and I2 :=

1
4λ2

0
det( Â1+ λ0 D̂1) (25)

are linear and quadratic invariants, respectively, which are complex numbers. From
(24) two (generally distinct) roots, λ±1 := (−I1±

√

I 2
1 − 4I2)/2, are drawn, which

cause the splitting (or bifurcation) of the double semisimple eigenvalue iωk into

λ± = iωk + ελ
±

1 . (26)
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Each eigenvalue λ±1 is associated with a (distinct) eigenvector a±; therefore w± =
U a±+ O(ε), so that the indeterminacy of the eigenvectors is resolved at this order.

The undamped case. To tackle the undamped system one would most easily start
from the standard form (12) of the eigenvalue problem. However, the same results
can be derived from the general damped case, by letting D̂1 = 0 in (22). Since
µ := −λ2, or, in series form, µ0 + εµ1 + · · · = −(λ

2
0 + 2ελ0λ1 + · · · ), we have

µ0 =−λ
2
0 and µ1 := −2λ0λ1. Therefore, (22) becomes

( Â1−µ1 I)a = 0, (27)

which has the advantage of having real coefficients. The relevant characteristic
equation,

µ2
1− (tr Â1)µ1+ det Â1 = 0, (28)

provides the roots µ±1 :=
(
tr Â1±

√
tr2 Â1− 4 det Â1

)
/2; hence

µ± = ω2
k + εµ

±

1 . (29)

Stability domains. We look for the stability domains of the trivial equilibrium in
the plane of the bifurcation parameters α and L , for fixed axial load P and damping
ξ and η, taken as auxiliary parameters. We separately address the undamped and
damped cases.

Undamped system. As we said earlier, the equilibrium is stable when µ > 0; since,
in (29), εµ±1 is a small correction of ω2

k , this happens when µ±1 is real, irrespective
of its sign, that is, when the discriminant of the second-degree (28) is positive.
Since

tr2 Â1− 4 det Â1 = α
2c2
α − L2c2

L , (30)

where cα and cL are numerical coefficients, the stability condition reads

L2
≤

(
cα
cL

)2

α2. (31)

This equation expresses the Nicolai paradox: when the asymmetry parameter α is
zero (an ideal system), then an evanescent torque makes the equilibrium unstable;
when, instead, a small asymmetry exists (α 6= 0), a small threshold Lc exists, pro-
portional to α, which has to be reached by L to make the system unstable. Note
that the stable domain depends on the order number k of the eigenvalue λ0 = iωk

which bifurcates. Therefore, we have to analyze all the eigenvalues in order to
determine which of them prevails in triggering instability.

Figure 1 reports the numerical results for the elliptical cross-section. Figure 1a
shows the stable domain (the shaded zone) relevant to the lower eigenvalue (k = 1),
when the axial load is zero, by comparing asymptotic (thick lines) and numerical
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(thin lines) results, the latter deriving from the exact solution of the algebraic eigen-
value problem. The domain is found to be independent of the number N of trial
functions used, since, due to the fact the elastic stiffness matrix is diagonal, the
eigenvectors u1 and u2 are canonical vectors. The angular coefficient of the bound-
ary lines is equal, in its absolute value, to 3.26. In the figure, a sketch on the com-
plex plane of the four λ-eigenvalues involved (that is, the double ±iω1 eigenvalues)
and their “velocities” is also given. It is seen that in the stable zone the eigenvalues
are purely imaginary and distinct; on the boundary of the region they coalesce in
pairs on the imaginary axis; and out of the stable zone, they separate in two pairs of
stable and unstable eigenvalues. Therefore, in crossing the boundaries, a dynamic
bifurcation takes place. The boundaries are a codimension-1 geometrical locus
on which the degeneracy of the eigenvalues, existing in the symmetrical unloaded
system, persists. The origin of the parameter plane is therefore a codimension-2
bifurcation point.
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L L 2345
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Figure 1. Stability domain S in the (α, L)-plane for the un-
damped system subcritically loaded: (a) k = 1, P = 0 (thick line:
asymptotic results; thin line: numerical results); (b) k = 1, P = 0
(solid line) and P = PE/2 (dashed line), with N = 5 trial functions;
(c) higher eigenvalue domains (k = 1, . . . , 5, N = 5) when P =
PE/2.
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Figure 1b compares the domains relevant to the lower eigenvalue when P is 0
and PE/2, showing a moderate reduction produced by the axial load (the angular
coefficient reduces from 3.26 to 2.81). When P 6= 0, the domain depends on the
discretization adopted. It was found that when N = 5 (that is, when the system is
reduced to ten degrees of freedom) a numerical convergence is reached; this num-
ber of trial functions will be therefore adopted ahead. Finally, Figure 1c compares
the stability domains relevant to the higher eigenvalues (k = 1, . . . , 5). It is found
that the domains of higher modes include the domains of the lower modes (that is,
when the lowest eigenvalue bifurcates, the higher ones are still on the imaginary
axis, so that just the first mode is significant for stability).

Damped system. When the system is damped, its eigenvalues are given by (26),
and the analysis, with major difficulties, must be carried out on complex quantities.
The trivial equilibrium is asymptotically stable when Re λ± < 0, that is, when
Re λ±1 < 0. In order for (24) to admit roots with real parts less than zero, the
following conditions must be satisfied (the Bilharz theorem; see [Seyranian and
Mailybaev 2003, p. 15]):

Re I1 > 0, (Im I2)
2
−Re I1 Im I1 Im I2− (Re I1)

2 Re I2 < 0. (32)

Condition (32)1 is always satisfied when the damping coefficients are positive;
(32)2 instead gives the following (asymptotic) stability condition:

L2 <

(
cα
cL

)2

α2
+

(
cξ
cL
ξ +

cη
cL
η

)2

, (33)

where the c’s are numerical coefficients. It turns out that damping, both external
and internal, as well asymmetries, has a stabilizing effect on the equilibrium. If ξ =
η = 0, then the result relevant to the undamped system is recovered. The numerical
values of the c-coefficients are reported in Table 1 for the elliptical section and
selected values of the compressive dead load P , when N = 5.

Figure 2 shows the stability domain for a damped system, as compared with
Figure 1 for the corresponding undamped system. As already noted in [Seyranian
and Mailybaev 2011], it appears (see Figure 2a) that damping destroys the Nicolai
paradox, since a nonzero torque is needed to trigger instability at α = 0. The
figure also illustrates the mechanism of bifurcation. Inside the stability domain

cα/cL cξ/cL cη/cL

P = 0 3.26 0.93 11.47
P = 1

2 PE 2.81 0.57 7.12

Table 1. Numerical coefficients in (33) when k = 1.
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Figure 2. Stability domain S in the (α, L)-plane for the damped
system (ξ = 0.01, η= 0.004): (a) k = 1, P = 0 (thick line: asymp-
totic results; thin line: numerical results); (b) k = 1, P = 0 (solid
line) and P = PE/2 (dashed line), with N = 5 trial functions; (c)
higher eigenvalue domains (k = 1, . . . , 3, N = 5) when P = PE/2.

the eigenvalues are complex in the left half-plane. By approaching the boundary
moving parallel to the L-axis, the eigenvalues approach each other by keeping their
real parts constant; then, after the collision, they move in opposite directions by
varying their real parts, up to crossing the imaginary axis. As for the undamped
system, the effect of the axial load is weak (see Figure 2b), and the higher modes
are ineffective in determining stability. However, under very particular choices of
the parameters, stability can be governed by the second mode, which is consistent
with results found in [Seyranian and Mailybaev 2011].

4. Stability analysis for critically compressed beams

We address now the stability problem of the beam when the axial load is close to
the Eulerian critical load. Accordingly, since the codimension of the problem is
higher, we introduce a third bifurcation parameter δP := P − PE , and look for a
stability domain in the three-dimensional (α, L , δP) parameter space.
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Perturbation analysis for semisimple eigenvalues. Guided by the results obtained
for the subcritically loaded beam, we introduce the rescaling

(α, L , δP, ξ, η)→ ε(α, L , δP, ξ, η), (34)

in which all the quantities are ordered at the same level. Accordingly, the matri-
ces A and D admit series expansions as in (15), but with new meanings for the
coefficients:

A0 =

[
kE+PE kG 0

0 kE+PE kG

]
,

A1 = A1u+A1t ,

A1u =

[
α(Iy1−m1)kE+(δP−αm1 PE)kG Lh1

−Lh1 α(Ix1−m1)kE+(δP−αm1 PE)kG

]

A1t =

[
0 −L(β0h1+PEγ0h2+γ0h3)

L(β0h1+PEγ0h2+γ0h3) 0

]
,

D1 =

[
ξm+ηkE 0

0 ξm+ηkE

]
.

(35)

Here A0 is evaluated at the Eulerian bifurcation point, A1 accounts for the (first-
order) asymmetry, torque, pretwist, and axial load increment, and D1 describes
the damping. The eigenvalue problem formally appears as in (17), with matrices
updated. By assuming the series expansions (18) for the eigenvalues and eigen-
vectors, the perturbation (19) is still obtained. The generating problem (19)1, how-
ever, now admits a multiplicity-four zero eigenvalue, in addition to nonzero, purely
imaginary, double eigenvalues; therefore λ0 = 0,±iω2, . . . ,±iωN . Here the zero
eigenvalue can be thought of as produced by the coalescence of two vanishingly
small double eigenvalues ω1 = ±iε, when ε→ 0. Since only two eigenvectors
are associated with the zero eigenvalue, this latter is nonsemisimple (or defective),
while the nonzero eigenvalues are semisimple. Therefore:

(1) When we take λ0 = iωk , with k = 2, . . . , N , we recover the results of the
previous section, that is, (26) for the damped case and (29) for the undamped
case.

(2) When we take λ0 = 0, the ε-order perturbation equation (19)2 becomes

(A0+ λ
2
0 I)w1 =−A1w0, (36)

that is, it does not contain the first-order eigenvalue sensitivity λ1. As a
consequence, since A1w0 is generally out of the range of the operator, the
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compatibility condition cannot be satisfied and the equation cannot be solved!
This means that the series expansion (18) lacks the ability to describe the split-
ting mechanism of the nonsemisimple eigenvalue, similarly to what happens
for coalescent eigenvalues of more general nonconservative systems [Luongo
et al. 2000; Seyranian and Mailybaev 2003].

This drawback does not manifest itself when the system is undamped, and the
standard form (12) of the eigenvalue problem is used. As a matter of fact, the
relevant perturbation equations read

ε0
: (A0−µ0 I)w0 = 0,

ε1
: (A0−µ0 I)w1 =−(A1−µ1 I)w0.

(37)

Now, compatibility for the ε-order equation can be written either for µ0 6= 0 or
µ0 = 0. The reason for this different behavior lies in the fact that µ0 = 0 is
a semisimple (not defective!) root for the characteristic equation det(A0) = 0.
Moreover, since µ = µ0 + εµ1 + · · · = −λ

2, when µ0 = 0 then λ = O(ε1/2) so
that a Puiseux series of the type λ = ε1/2λ1/2 + · · · must be used, instead of a
Maclaurin series. Note that, in (37), µ1 assumes a different meaning, according
to the value of λ0; it is µ1 := −2λ0λ1 when λ0 6= 0, but it is µ1 := −λ

2
1/2 when

λ0 = 0!
Summarizing: in the undamped case, (29) describes the eigenvalue sensitivities,

both for zero and nonzero eigenvalues; in the damped case, (26) describes the
sensitivities of the nonzero eigenvalues only. To complete the analysis, we have
therefore still to analyze perturbations of the quadruple zero in the damped case.

Perturbation analysis for nonsemisimple zero-eigenvalues. We tackle the prob-
lem of finding the sensitivities of the nonsemisimple quadruple zero eigenvalue by
using a Puiseux series of order ε1/2, that is,

λ= ε1/2λ1/2+ ελ1+ · · · , w = w0+ ε
1/2w1/2+ εw1+ · · · . (38)

This problem is similar to the perturbation of a Jordan block of order 2, admitting
just one eigenvector [Luongo 1993; Seyranian and Mailybaev 2003].

To ensure that the damping and bifurcation parameters appear at the same level
in the perturbation scheme, we use a different ordering for them, namely

(α, L , δP)→ ε(α, L , δP), (ξ, η)→ ε1/2(ξ, η). (39)

Accordingly,
A= A0+ εA1+ O(ε2),

D = ε1/2 D1/2+ O(ε3/2),
(40)
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where A0 and A1 are defined in (35)1 and (35)2, and D1/2 coincides with D1 in
(35)5.

The following perturbation equations are found:

ε0
: A0w0 = 0,

ε1/2
: A0w1/2 = 0,

ε1
: A0w1 =−(A1+ λ

2
1/2 I + λ1/2 D1/2)w0.

(41)

The solution to the ε0-equation is still expressed by w0 = U a, in which U =
(u1, u2) collects the real eigenvectors associated with the zero-eigenvalue. Then,
the ε1/2-order equation admits a similar solution w1/2 = U b, with b as arbitrary
constants, which, however, are inessential to our (truncated) analysis. Finally, the
ε1-order equation calls for the following compatibility condition to be satisfied:

( Â1+ λ1/2 D̂1/2+ λ
2
1/2 I)a = 0, (42)

where

Â1 := U T A1U, D̂1/2 := U T D1/2U . (43)

Like in the subcritical analysis the matrix Â1 does not depend on the pretwist,
which therefore does not influence the stability, even close to the Eulerian load.
Equation (42) is an eigenvalue problem in nonstandard form, whose characteristic
equation reads

λ4
1/2+ J1λ

3
1/2+ J2λ

2
1/2+ J3λ1/2+ J4 = 0, (44)

the invariants of which are real and assume the following expressions:

J1 := tr D̂1/2, J2 := tr Â1+ det D̂1/2,

J3 := det( Â1+ D̂1/2)− det Â1− det D̂1/2, J4 := det Â1.
(45)

The fourth-degree equation (44) generally admits four roots λ(i)1/2, i = 1, . . . , 4.
They describe the bifurcation of the quadruple zero-eigenvalue in four distinct roots
λ(i) = ε1/2λ

(i)
1/2+ O(ε). To each of them, a distinct eigenvector a(i) is associated,

so that four distinct eigenvectors w(i) = U a(i)+ O(ε1/2) are found.
When damping vanishes ( D̂1/2 = 0), then J1 = J3 = 0, and (44) reduces to

λ4
1/2+ (tr Â1)λ

2
1/2+ det Â1 = 0, (46)

which is identical to (28), once µ1 =−λ
2
1/2 is accounted for, as discussed before.

Therefore, the present algorithm, tailored to damped systems, also works for un-
damped systems.
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Stability domains. In evaluating the stability domains, we have to distinguish bi-
furcations of the lower zero-eigenvalue, governed by (28) or (44) (holding in the
undamped and damped cases, respectively), and bifurcations of the higher nonzero
eigenvalues, governed by (28) or (24). We will focus our attention on the zero-
eigenvalue, and then check the behavior of higher eigenvalues.

Undamped system. Stability requires that µ be real and positive. Since µ= µ0+

εµ±1 + · · · , when µ0 = 0, µ±1 itself must be real and positive (unlike the P < PE

case, in which it only was required to be real). This occurrence is satisfied when

tr2 Â1− 4 det Â1 > 0, tr Â1 > 0, det Â1 > 0. (47)

When these inequalities are written out in terms of bifurcation parameters, they
assume the form

cαα2
+ cL L2 > 0,

bαα+ bδδP > 0,

dL L2
+ dαα2

+ dαδαδP + dδδP2 > 0,

(48)

where the b, c, and d are numerical coefficients. For the elliptical cross-section,
with N = 5, these assume the values shown in Table 2. When the inequalities
are replaced by equalities, we obtain the equations of, in order: a pair of planes
parallel to the δP-axis (and containing the origin), a plane parallel to the L-axis
(ditto); and a cone (with vertex at the origin). The four surfaces bound the three-
dimensional domain shown in Figure 3 from different views, where contour plots
P = const. are drawn to facilitate the reading of the image. The equilibrium is stable
in the volume subtended by the portion of conical surface represented in the picture.
This figure also contains a sketch of the four nearly zero λ-eigenvalues involved
in the bifurcation, represented on an α = const. plane. On the vertical planes
two complex conjugate eigenvalues cross the imaginary axes, so that a dynamic
bifurcation occurs; on the cone surface, a zero eigenvalue crosses the axis, so
that a static bifurcation takes place; at the two straight lines, intersections of the
vertical planes and the cone, the four eigenvalues are coincident at the origin, so
that the lines select a codimension-2 family of degenerate systems around which
static and dynamic bifurcations are expected to exist. The origin of parameter
space is therefore a codimension-3 bifurcation point. The figure also illustrates the
mechanisms of bifurcations along three different paths. Along path I (L increasing),

cα cL bα bδ dL dα dαδ dδ
6.24 −1 4.94 −1 0.053 1 −0.54 0.055

Table 2. Numerical coefficients in (48).
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Figure 3. Stability domain in (α, L , δP)-space for the undamped
system critically loaded: (a)–(c) different views, and (d) sketches
of the four nearly zero eigenvalues on the α = 0.1 plane.

the eigenvalue behavior is identical to that previously illustrated for the subcritical
regime. Along path II (δP increasing), when the conical surface is crossed, two
zero eigenvalues occur, splitting in opposite real eigenvalues, while the remaining
two eigenvalues are purely imaginary; a successive static bifurcation occurs at
the upper branch. Path III illustrates how the velocities of the quadruple zero
eigenvalue depend on the region entered by the variation of the parameters.

As a general comment on the effect of the axial load on stability, we observe
that, when α > 0 (that is, when the beam is stiffened by asymmetries), overcritical
states P > PE can be visited, except for L = 0, for which the static bifurcation
always occurs at P = PE in the plane of minimum stiffness. When α < 0 (that
is, when the beam is weakened by asymmetries) instead, the static bifurcation
occurs at a subcritical value P > PE . As a main result, the axial load is ineffective
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on the critical torque, which only depends on the asymmetry α, thus confirming
the weak dependence we found in the subcritical field (recall Figure 1b). The
reverse, however, is not true! Indeed, for a given α, a moderately small torque
has a beneficial effect on the stability, since it increases the maximum axial load
bearable by the beam.

When higher eigenvalues were studied, it was found that the relevant stability
domains include that relevant to the first zero-eigenvalue. Therefore stability is
only governed by this latter.

Damped system. The damped system is asymptotically stable when its eigenvalues
have negative real parts. Since the zero eigenvalue bifurcates into four eigenvalues
λ = ε1/2λ

(i)
1/2 + · · · , we have to require that all of them move to the left part of

the complex plane. This is ensured by the conditions stated by the Routh–Hurwitz
criterion, when applied to the real-coefficient fourth-degree equation (44), namely

Ji > 0, i = 1, . . . , 4,

J1 J2− J3 > 0, J1 J2 J3− J 2
3 − J 2

1 J4 > 0.
(49)

Since the damping coefficients are positive, only three out of six conditions are
meaningful, and they turn out to be of the following form:

cαα+ cδδP > 0,

bL L2
+ bαα2

+ bαδαδP + bδδP2 > 0,

dL L2
+ dαα(dξξ + dηη)2+ dααα2

+ dδδP(dξξ + dηη)2 > 0,

(50)

where the b, c, and d’s are numerical coefficients. Their values are reported in
Table 3 for an elliptical cross-section and N = 5. The relevant stability domain
is shown in Figure 4 from different views. By comparing these with Figure 3, it
is seen that damping has a smoothing effect close to the vertical axis, as already
noticed in the subcritical regime (see Figure 2); moreover, the cone is unaffected
by damping. Figure 4 also shows the eigenvalues at the boundaries of the domain,
and the different mechanisms of bifurcation. Dynamic and static bifurcations still
occur at the lateral surface of the domain and at the cone, respectively, as for
the undamped case; however, the coalescence on the imaginary axis, peculiar to
circulatory systems, is now destroyed. Similarly, the two intersection lines for the
origin are loci of double (no longer quadruple) zero eigenvalues. Analysis of higher
eigenvalues confirms that they are not relevant in determining stability.

cα cδ bL bα bαδ bδ dL dα dαα dδ dξ dη
4.94 −1 0.053 1 −0.54 0.055 −1 0.93 6.24 −0.19 1 13.42

Table 3. Numerical coefficients in (50).
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Figure 4. Stability domain in (α, L , δP)-space for a damped sys-
tem critically loaded (ξ = 0.01, η= 0.005): (a)–(c) different views,
and (d) sketches of the four nearly zero eigenvalues on the α= 0.01
plane.

Comparison between asymptotic and numerical results for the algebraic eigen-
value problem is performed in Figure 5 for some L = const. cross-sections of the
three-dimensional solid domains in Figures 3 and 4. Excellent agreement is found
in the regions considered.

5. Conclusions

The Nicolai problem of the stability of a quasisymmetric cantilever beam in three
dimensions, loaded by a compressive dead load and a follower torque, has been
considered. Attention has been focused on the effects of damping, of both external
and internal types, and on the axial load, both lower than or close to the Eulerian
critical value. The problem has first been formulated in a strong form, by account-
ing for the pretwist produced by the torque when the beam is rectilinear, and then
recast in a weak form via the Galerkin method, by using the planar eigenmodes of
the stress-free beam as trial functions.
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Figure 5. Comparison between asymptotic (thick lines) and nu-
merical (thin lines) stability regions for a critically loaded system:
(a) undamped system, L = 0; (b) undamped system, L = 0.03;
(c) damped system (ξ = 0.01, η = 0.005), L = 0; (d) damped
system (ξ = 0.01, η = 0.005), L = 0.03.

The eigenvalue problem, governing the motion around the rectilinear configu-
ration, has been derived, both in nonstandard form (for damped systems) and in
standard form (for undamped systems). Perturbation methods have been used to
solve it, and are able to analytically describe the dependence of the eigenvalues on
the bifurcation parameters. An ideally undamped symmetric system, consisting of
a beam with equal geometrical characteristics in the two principal planes of inertia,
axially loaded but free of torque, has been considered as the generator system
for the perturbation process. The unperturbed eigenvalues, due to the symmetry,
are double semisimple purely imaginary eigenvalues associated with two indepen-
dent eigenvectors, each describing an oscillation mode in a different inertial plane.
An exception, however occurs at the Eulerian load, where two semisimple eigen-
values coalesce at zero, thus giving rise to a quadruple non-semisimple root, at
which only two eigenvectors are associated (the buckling modes in the two planes).
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Accordingly, while semisimple eigenvalues can be tackled by standard perturbation
methods, entailing the use of Taylor series, the nonsemisimple zero eigenvalue calls
for the use of Puiseux series. In undamped systems, however, the overdegeneracy
of the quadruple eigenvalue does not entail any drawbacks, if the eigenvalue prob-
lem is stated in standard form, since here it still appears as semisimple.

Stability domains have been built up both for subcritically loaded beams, in
the two-dimensional (asymmetry and torque) parameter plane, and for critically
loaded beams in the three-dimensional (asymmetry-torque-load) parameter space.
The following main results have been drawn.

The stability domains are governed mostly by bifurcations of the lowest eigenvalue
of the ideal system, purely imaginary or zero. Therefore, although higher eigenval-
ues can bifurcate into unstable eigenvalues, this happens in regions of parameters
which are already unstable, due to bifurcation of the lowest eigenvalue. However,
special systems have been detected in a narrow region of the damping parameters
plane in which the second mode is leading.

In the subcritical range, the stability domain of the undamped system is a portion
of the plane bounded by two straight lines passing through the origin and including
the asymmetry axis. Therefore, if the system is symmetric, an evanescent torque
causes instability (the Nicolai paradox); however, finite small asymmetries entail
a finite (but small) threshold of the torque, which increases with the asymmetry.
The straight lines are loci of systems admitting a double semisimple eigenvalue.
When they are crossed from the inside, a dynamic bifurcation takes place. When
damping is added, the lines change in smooth curves external to the origin, so that
a finite critical torque exists even for symmetric systems, that is, damping has a
stabilizing effect, which destroys the paradox of Nicolai. The effect of the axial
load on the torque is weak.

In the critical range, the stability domain is a portion of the space which is bounded
by three planes and a conical surface. Both static and dynamic bifurcations can
occur through these surfaces. Axial loads have no effect on the critical torque,
which only depends on the asymmetry magnitude. In contrast, a small torque
has a beneficial effect on the static instability triggered by the axial force. When
damping is introduced, the sharp edges of the stability domain are smoothed, and
a stabilizing effect on the dynamic instability is produced.

In a remarkable result, the stability of the Nicolai beam has been found not to
depend on the pretwist, to a first-order approximation, neither in the subcritical
nor in the critical range.

Asymptotic analysis gives results in excellent agreement with numerical solutions
of the algebraic eigenvalue problem relevant to the discretized beam.
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Appendix A: Geometrical characteristics of perturbed cross-sections

Let us consider a cross-section having identical elastogeometrical characteristics
with respect to the principal axes x and y. When one of the two major dimensions is
perturbed by a small nondimensional parameter ‖α‖� 1, its characteristics modify
into

A = A0+αA1, Ix = I0+α Ix1,

Iy = I0+α Iy1 + O(α2), J = J0+α J1+ O(α2).
(A.1)

Since the mass per unit length is proportional to the area, it is

m = m0+αm1, (A.2)

where m0 = m1 = A0%, % being the density. The magnitudes m0 and I0 have been
used in (3) to define nondimensional quantities. Two examples are given here.

Elliptical cross-section. A slightly eccentric ellipse is considered, with half-axes
a= R(1+α) and b= R, along x and y, respectively. When α= 0, the cross-section
becomes circular with radius R. The (dimensional) geometric characteristics read
as in (A.1), where

A0 := πR2, I0 :=
πR4

4
, J0 :=

πR4

2
,

A1 := πR2, Ix1 :=
πR4

4
, Iy1 :=

3πR4

4
, J1 := πR4.

(A.3)

Consequently, the nondimensional geometrical characteristics and mass per unit
length reads

Ĩx = 1+α, Ĩy = 1+ 3α+ O(α2),

β = β0+ O(α2), γ = γ0(1− 2α)+ O(α2), m̃ = 1+α,
(A.4)

where β0 := 2E/G and γ0 := E/G.

Rectangular cross-section. We consider a rectangle of sides a = h(1+ α) and
b = h, along x and y, respectively. When α = 0, the cross-section becomes a
square, of side h. The (dimensional) geometric characteristics are given by (A.1),
where

A0 := h2, I0 :=
h4

12
, J0 := 0.141h4,

A1 := h2, Ix1 :=
h4

12
, Iy1 :=

h4

4
, J1 := 0.141h4,

(A.5)
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and the corresponding nondimensional quantities become

Ĩx = 1+α, Ĩy = 1+ 3α+ O(α2),

β = β0+ O(α), γ = γ0+ O(α), m̃ = 1+α,
(A.6)

where β0 := 2.364E/G and γ0 := 1.182E/G.

Appendix B: Trial functions used in the Galerkin projection

The trial functions used in (6) are taken as the modes of the free oscillations of a
planar unprestressed cantilever. The relevant boundary value problem is

φ I V
−ω2φ = 0, φ(0)= φ′(0)= φ′′(1)= φ′′′(1)= 0, (B.1)

where ω is a nondimensional natural frequency. The solution reads

φ(z)= c
{

sin(γ z)− sinh(γ z)−
[sin(γ )+ sinh(γ )][cos(γ z)− cosh(γ z)]

cos(γ )+ cosh(γ )

}
, (B.2)

where γ :=
√
ω is a root of the characteristic equation

cos(γ ) cosh(γ )+ 1= 0. (B.3)

Moreover c is an arbitrary constant, to be determined via the normalization condi-
tion ∫ 1

0
φ2(z) dz = 1. (B.4)

Table 4 reports the values of γ and c for the first five modes. The eigenfunctions
satisfy the orthogonality conditions:∫ 1

0
φiφ j dz = δi j ,

∫ 1

0
φ′′i φ

′′

j dz = δi jω
2
i , (B.5)

where δi j is the Kronecker symbol.

1 2 3 4 5

γ 1.8751 4.6941 7.8548 10.9955 14.1372
c 0.734098 1.018460 0.999220 1.000040 0.999996

Table 4. Values of γ and c in (B.2) for the first five modes.
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Appendix C: Equations of motion

The motion of the beam, taking into account inertial effects, is governed by the
following equations, derived in [Bolotin 1963]:

T ′x − κ̃zTy − κy P + fx = 0,

T ′y + κ̃zTx + κx P + fy = 0,

M ′x − κ̃z My + κy L − Ty = 0,

M ′y + κ̃z Mx − κx L + Tx = 0,

(C.1)

where Tx and Ty are the shear forces, Mx and My are the bending moments, fx =

−mü and fy =−mv̈ are the inertial forces, κx and κy are the curvatures of the beam
in the two principal inertial planes, and κ̃z = L/(G J ) is the pretwisting angle. All
other symbols and notations appearing in the previous and subsequent equations
are the same as those specified in Section 1.

The kinematic relations are [Bolotin 1963]

ϕ =−v′− κ̃zu, ψ = u′− κ̃zv, κx = ϕ
′
− κ̃zψ, κy = ψ

′
+ κ̃zϕ, (C.2)

where ϕ and ψ are the rotations. From these, the curvatures are expressed in terms
of displacements:

κx =−v
′′
− 2κ̃zu′+ κ̃2

z v,

κy = u′′− 2κ̃zv
′
− κ̃2

z u.
(C.3)

To account for internal damping, the longitudinal unit strain is written as ε =
κx y−κy x . By using the Kelvin–Voigt constitutive law, that is, σ = Eε+ηε̇, where
σ is the normal stress, ε the longitudinal unit strain, and η the viscosity coefficient,
and integrating over the area A of the cross-section, we find

Mx =

∫
A
σ y d A = E Ixκx + ηIx κ̇x ,

My =−

∫
A
σ x d A = E Iyκy + ηIy κ̇y .

(C.4)

Then, differentiating the last two equations of (C.1) with respect to the space vari-
able and using (C.4) and (C.1) (solved with respect to T ′x , T ′y , Tx , and Ty), we
obtain

E Ixκ
′′

x + (L − 2κ̃z E Iy)κ
′

y + (P − κ̃
2
z E Ix + κ̃z L)κx

+ ηE Ix κ̇
′′

x − 2κ̃zηIy κ̇
′

y − κ̃
2
z ηIx κ̇x + fy = 0,

E Iyκ
′′

y − (L − 2κ̃z E Ix)κ
′

x + (P − κ̃
2
z E Iy + κ̃z L)κy

+ ηE Ix κ̇
′′

y + 2κ̃zηIx κ̇
′

x − κ̃
2
z ηIy κ̇y − fx = 0.

(C.5)
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These equations are further simplified by assuming (see [Seyranian et al. 2014])
that the displacements, curvatures, pretwisting κ̃z , torque, and viscosity coefficient
are small quantities of the first order, while third- and higher-order terms are ne-
glected. By adding an external damping ξ , which accounts for the interaction of
the beam with the surrounding air, the field equations (1) follow.

The boundary conditions at the clamped end of the beam require that the dis-
placements u and v and rotations ϕ and ψ vanish (by (2)2). The boundary condi-
tions at the free end require that the bending moments vanish:

Mx = 0, My = 0, (C.6)

and that the shear forces equate the projection of the gravitational force onto the
principal inertial axes in the current configuration:

Tx = Pψ, Ty =−Pϕ. (C.7)

By using (C.4) and (C.3) in (C.6) and linearizing, (2)2 are obtained; then, by using
(C.1)3, (C.1)4, (C.3), (C.4), and (C.6) and linearizing, (2)3 follow.

Appendix D: Independence of stability of the pretwist

We prove that, to the first asymptotic order, the stability of the Nicolai beam does
not depend on the pretwist. To this end, it will be sufficient to prove that the
contribution of the pretwist to the matrix Â1 that appears in (23) and (43) vanishes.

Remembering that A1 = A1u + A1t , (see (16)2 and (35)2), we obtain

Â1 = U T A1u U +U T A1t U .

Since, moreover,

U =
[
w 0
0 w

]
,

the contribution of the pretwist to Â1 is

U T A1t U

= L
[

0 wT ((β0h1+PEγ0h2+γ0h3))w

−wT ((β0h1+PEγ0h2+γ0h3))w 0

]
. (D.1)

By using definition (10)5 for the h2 matrix, integrating by parts, and using the
geometric boundary conditions, it is easy to check that h2i j = −h2 j i , that is, that
h2 is antisymmetric. Analogously, by considering the matrix β0h1+ γ0h3, with h1

and h3 given by (10)4 and (10)6, accounting for β0 = 2γ0, integrating by parts and
using the mechanical boundary conditions satisfied by the trial functions adopted,
it follows that 2h1i j + h3i j =−2h1 j i − h3 j i , that is, β0h1+ γ0h3 is antisymmetric.
Therefore, the off-diagonal blocks in (D.1), and therefore the matrix itself, vanish.
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RESPONSES OF FIRST-ORDER DYNAMICAL SYSTEMS
TO MATÉRN, CAUCHY, AND DAGUM EXCITATIONS

LIHUA SHEN, MARTIN OSTOJA-STARZEWSKI AND EMILIO PORCU

The responses of dynamical systems under random forcings is a well-understood
area of research. The main tool in this area, as it has evolved over a century, falls
under the heading of stochastic differential equations. Most works in the liter-
ature are related to random forcings with a known parametric spectral density.
This paper considers a new framework: the Cauchy and Dagum covariance func-
tions indexing the random forcings do not have a closed form for the associated
spectral density, while allowing decoupling of the fractal dimension and Hurst
effect. On the basis of a first-order stochastic differential equation, we calculate
the transient second-order characteristics of the response under these two covari-
ances and make comparisons to responses under white, Ornstein–Uhlenbeck,
and Matérn noises.

1. Introduction

A vast amount of research in mathematics, physics, and mechanics has, since the
time of Einstein, Langevin, and Smoluchowski, been motivated by the responses
of dynamical systems under random forcings. The main tool used in this area, as it
has evolved over a century of investigations, falls under the heading of stochastic
differential equations. While it seems that linear stochastic dynamical systems (that
is, those governed by linear differential equations) form a very well-established
body of knowledge, the subject of such systems driven by wide-sense stationary
(WSS) random noises with no Fourier transforms has not been explored. The point
is that, when dealing with a WSS process, all studies tacitly assume a spectral
density exists. However, this is not that case with WSS processes — and, generally,
WSS random fields in R3 — with either Cauchy [Gneiting and Schlather 2004] or
Dagum [Porcu et al. 2007] covariance functions. An additional intriguing fact
about the Cauchy and Dagum functions is that they can model fractal as well as
Hurst effects. Roughly speaking, the former is a roughness measure of a profile
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(that is, a realization on the real line) or surface of Rn , whilst the latter reflects
possible long-memory dependence in a time series or a random field.

The celebrated works [Matheron 1965; Stein 1999; Christakos 2000] (along with
the references therein) illustrate how several properties of random fields enjoying
Cauchy or Dagum covariance can be studied through their correlation functions.
In particular, the local and global behavior is sketched in the next sections.

While fractals are quite well known as “those enchanting, self-similar things”
[CFA], the Hurst effect, being less well known, warrants a few words here. The
effect is modeled by an exponent H , which, in the context of a time series, is a
measure of long-term memory. While 0 < H < 0.5 indicates a time series with
negative autocorrelation (for example, a decrease between values will likely be
followed by an increase), 0.5< H < 1 indicates a time series with positive auto-
correlation (an increase between values followed by another increase). The case
H = 0.5 indicates a true random walk, where there is no preference for a decrease
or increase following any particular value.

We consider the transient response of a linear, time-invariant system obeying
the equation

cX ′+ k X = c(β + γ t)U (t)F(t),

X (0)= 0,
(1)

to a wide-sense stationary random excitation F(t) having either a white noise,
Ornstein–Uhlenbeck (OU), Matérn, Cauchy, or Dagum covariance function. In (1)
c, k, β, and γ are deterministic constants, while U (t) is the Heaviside function:

U (t) :=
{

1 if t > 0,
0 if t < 0.

(2)

Letting a = k/c and Y (t)= (β + γ t)U (t)F(t) we have

X ′+ aX = Y (t). (3)

It is easy to see that the specific solution X (t) of the above ordinary differential
equation can be expressed as

X (t)=
∫ t

0
ha(t − τ)Y (τ ) dτ, (4)

where ha(t)= e−atU (t), a > 0, is the elementary solution of this ordinary differ-
ential equation. We assume that E[F(t)] = 0, which in turn implies E[X (t)] = 0.
For simplicity, we shall make use of the special case β = 1, γ = 0 in most parts of
the paper, without loss of generality.

Our objective in this study is to determine the second-order characteristics of
X (t) (and make relative comparisons), assuming that F(t) is a Gaussian random
process with either a white noise, OU, Matérn [Matérn 1986], generalized Cauchy
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[Gneiting and Schlather 2004], or Dagum [Porcu et al. 2007] covariance function.
The intriguing thing about generalized Cauchy and Dagum covariances is that they
are natural decouplers of fractal dimension and Hurst effects, in the sense that
the associated Gaussian random process is not self-similar. This, in turn, has con-
siderable advantages from the statistical viewpoint, since the parameters indexing
fractal dimension and the Hurst effect can be estimated separately. For many facts
on these classes of covariance functions and their properties in terms of fractal
dimension and the Hurst effect, the reader is referred to the survey in [Porcu and
Stein 2012].

Of course, white noise and Matérn have no Hurst effects (and white noise is
not even a fractal). We include them in our study because the former is the most
well-known random noise, while the latter is proposed as superior for multiscale
modeling.

The plan of the paper is as follows: In Section 2 we review the basic facts on the
covariance functions of Cauchy and Dagum types, including their fractal dimen-
sions and Hurst effects. In Sections 3 and 4, respectively, we compute the variance
and correlation structure of responses X (·) for five different random forcings F( ·).

2. Background

2.1. Covariance functions, fractal dimension, and the Hurst effect. This section
is largely expository and reports the basic facts needed for a better understanding
of the subsequent sections. As stated through Section 1, the process F(·) in (1) is
a zero-mean second-order stationary Gaussian random process defined on the real
line, so that its distribution is completely specified by its associated covariance
function C( · , ·) : R×R→ R, defined as

C(t1, t2) := Cov(F(t1), F(t2)), t1, t2 ∈ R.

As a consequence of the assumption of second-order stationarity, there exists a
mapping CF : R+ ∪ {0} → R such that

C(t1, t2)= CF (|t1− t2|).

Such a framework allows us to identify some important properties of the random
processes we want to study.

The local properties of a time series or a surface of Rn are related to the frac-
tal dimension, D, which is a roughness measure with range [n, n + 1). Higher
values indicate rougher surfaces. Long memory in a time series or spatial data is
associated with power law correlations, and is often referred to as the Hurst effect.
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Long-memory dependence is characterized by the H parameter [Mateu et al. 2007].
Let us see how these properties relate to those of the associated correlation function.

As far as the local behavior is concerned, in the weakly stationary (read: second-
order stationary) case, if, for some α ∈ (0, 1),

lim
r→0

(CF (0)−CF (r))r−α = K , 0< K <∞, r > 0, (5)

then, with probability one, the random process F(·) satisfies

D = dim(Gr F)=min
( 1
α/2

, 1−α/2
)
,

where, as before, CF denotes the covariance function of F . Here, Gr F denotes
graph(F)= {(t, F(t)), t ∈ [−1, 1]} ⊂ R2. Thus, the estimate of α determines that
of the fractal dimension D. Equation (5) refers to the issue of scaling laws, which
describe the way in which rather elementary measurements vary with the size of
the measurement unit, and we refer to [Hall and Wood 1993] for a detailed analysis
of the relation between the fractal index α and the fractal dimension D, as well as
to the work in [Adler 1981] on Gaussian index-β random fields, with β = α/2 in
this case.

On the other hand, if, for some β ∈ (0, 1),

lim
r→∞

CF (r)r−1+β
= 1, (6)

then the process is said to have long memory, with Hurst coefficient H = β/2. For
H ∈ (1/2, 1) or H ∈ (0, 1/2) the correlation is said to be, respectively, persistent or
antipersistent. In the spectral domain, under the conditions stated in the tauberian
and abelian theorems, the interpretation of parameters α and β is given in the
opposite fashion, so that the same properties can be studied with respect to the
Fourier transform of the covariance function, called the spectral density. Basically,
the parameter α is associated with the velocity of decay of the spectral density,
while the parameter β is associated with the local behavior of the spectral density
in the neighborhood of zero frequencies.

2.2. Parametric classes for the process F(·). Throughout the paper we shall ex-
amine how the response X (·) is affected by random excitation and in what ways it
is sensitive to specific classes of covariance functions that allow (or don’t allow) it
to index fractal dimensions and the Hurst effect. We shall make use of the following
functions:

(i) White noise. In this case F is a Gaussian white noise, and its covariance is
written as

CWN(r) := δ(r), r > 0, (7)

with δ denoting the Dirac delta function.
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(ii) Ornstein–Uhlenbeck. In this case F is an Ornstein–Uhlenbeck process (de-
noted F = OU), and its covariance function is of the negative exponential
type. It is written as follows:

COU(r; ν) :=
ν

2
e−νr , r > 0, (8)

where ν is a positive scaling parameter and where we parametrized COU in
such a way that

lim
ν→∞

COU( · ; ν)= CWN(·).

(iii) Matérn [1986]. A Gaussian process F has a Matérn covariance if

CM(r; ν) := rνKν(r), r > 0, (9)

where ν is a parameter that determines the smoothness at the origin of CM,
and thus the mean square differentiability of F . Here Kν is a modified Bessel
function of order ν. Special cases of interest are
• CM(r; 1/2)= e−r ,
• CM(r; 3/2)= (1+ r)CM(r; 1/2), and
• CM(r; 5/2)= (1+ r + 3r2/2)CM(r; 1/2).

(iv) Generalized Cauchy [Gneiting and Schlather 2004]. In this case,

CC(r; θ, η) := (1+ r θ )−η/θ , (10)

where η > 0 and 0< θ 6 2 are necessary and sufficient conditions for positive
definiteness. Special cases of this class will also be of interest. In particular,
CC( · , 2, γ ) is the characteristic function of the symmetric Bessel distribu-
tion, CC( · , α, α) is the characteristic function of the Linnik distribution, and
CC( · , 1, γ ) is the symmetric generalized Linnik characteristic function [Ruiz-
Medina et al. 2011].

(v) Dagum [Porcu et al. 2007]. In this case,

CD(r; δ, ε) := 1− (1+ r−δ)−ε/δ, (11)

where 0<ε <δ and 0<δ6 2 are sufficient conditions for positive definiteness.

Some comments are in order. The Cauchy and Dagum models have been chosen
for the present study because they allow us to treat independently the fractal dimen-
sion D and the Hurst effect H of their associated random process F . In particular,
it can be shown [Gneiting and Schlather 2004] that the Cauchy covariance in (10)
behaves like (5) for θ ∈ (0, 2] and like (6) for η ∈ (0, 1), whilst the Dagum model
in (11) behaves like (5) for ε ∈ (0, 2] and like (6) for δ ∈ (0, 1), although some
caution is needed because we work under the restriction ε ≤ δ. Anyway, another
sufficient condition is δ ∈ (0, 2] and ε ∈ (0, 1] [Mateu et al. 2007]. Another useful
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sufficient condition in R3 is θ < (7− ε)/(1+ 5ε) and ε < 7. Since these two
models decouple (D, H), the associated random process will not be self similar in
the sense of Mandelbrot, and in general we shall have D+ H 6= 2 (recall that we
are working with profiles here).

The Matérn covariance in (9) indexes the fractal dimension D but has light tails,
so that it is not useful for indexing phenomena with long-range dependence.

3. The variance of X (·)

Equation (4) implicitly shows that the variance of the response X is evolutionary
in time (that is, nonstationary). Assuming β = 1 and γ = 0, we have

E[X2(t)] =
∫ t

0

∫ t

0
CF (t1− t2)ha(t − t1)ha(t − t2) dt1 dt2, (12)

with ha defined through (4) and where CF is the covariance function associated
with F , which can be one of the five choices proposed in previous section.

Let us now show how these variances vary from one case to another.

(i) White noise. If CF = CWN, the calculation of the variance in (4) is straight-
forward. In fact, if F = WN we have E[F] = 0 and S(ω) = S0 <∞, where S
denotes the Fourier transform of CWN and S0 is an arbitrary constant. Without loss
of generality, we let S0 = 1/(2π) so that∫

+∞

−∞

CWN(t) dt = 1.

We thus have (see [Elishakoff 1983, Equation (9.104), p. 348])

E[X2(t)] = 2π S0e−2at
{
β2

2a
(e2at
− 1)+ 2βγ

[
e2at

4a2 (2at − 1)+
1

4a2

]
+
γ 2

4a3 (e
2at(2a2t2

− 2at + 1)− 1)
}
.

(ii) Ornstein–Uhlenbeck. In the case F = OU , the variance of X (t) is

E[X2(t)] =
∫ t

0

∫ t

0
COU(t1− t2)ha(t − t1)ha(t − t2) dt1 dt2.

Direct computation yields the following special cases:

if a= ν= 1, E[X2(t)] = 1
4
−

1
4

e−2t(1+ e2t),

if a= 1, ν 6= 1, E[X2(t)] = 1
−1+ν

e−tν sinh(t),

if a 6= 1, a 6= ν, E[X2(t)] =
ν

2(a3−aν2)
[a−ν+(a+ν)e−2at

−2ae−(a+ν)t ].
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Figure 1. The variances of the response X (t) under white noise and
Ornstein–Uhlenbeck (OU) forcings. The white noise curve overlaps
with the OU process curves for ν = 10,000 and ν = 500.

Figure 1 depicts E[X2(t)] with different values of ν and compares it with the vari-
ance from the white noise. Here we let a = 1. Note that the variance caused by the
OU process goes to the variance caused by the white noise when ν is large enough
for F(t) approaching white noise.

(iii) Matérn. If CF =CM, the calculation of the variance is not available in a closed
form due to the presence of the modified Bessel function K in (9). Thus, we choose
the case CF = CM( · ; 3/2) so that, for a 6= 1,

E[X2(t)] =
∫ t

0

∫ t

0
CM(t1− t2; 3/2)ha(t − t1)ha(t − t2) dt1 dt2

=

∫ t

0

(∫ t2

0
+

∫ t

t2

)
CM(t1− t2; 3/2)e−a(t−t1)e−a(t−t2) dt1 dt2

=
a

(a2− 1)2
[2− 3a+ a3

+ e−2t(−2− 3a+ a3)+ e−t−t/a(6a− 2a3
+ 2t − 2a2t)].

For a = 1, a straightforward computation gives

E[X2(t)] = 1
4 (3+ e−2t(−2t2

− 6t − 3)).

The same calculations can be performed using the Fourier transform of the Matérn
function and then invoking basic Fourier calculus; the details are omitted for the
sake of simplicity.
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(iv) Generalized Cauchy. If CF (·)= CC( · , θ, η) then

E[X2(t)] =
∫ t

0

∫ t

0
CC(t1− t2; θ, η)ha(t − t1)ha(t − t2) dt1 dt2.

For θ = η = 1, we get

E[X2(t)] = 1
2a

e−a(2t+1)

×
[
E1(−2a(t+1))−E1(−2a)−2e2a(t+1)(Ei(−a)−Ei(−a(t+1))

)
−2Ei(a(t+1))+Ei(2a(t+1))+2Ei(a)−Ei(2a)

]
,

where

Ei(z) := −
∫
∞

−z
e−t/t dt, En(z) :=

∫
∞

1
e−zt/tn dt.

For θ = η = a = 1, we obtain

E[X2(t)] = e(−Ei(−1)+Ei(−1− t))+ e−(1+2t)(Ei(1)−Ei(1+ t)).

(v) Dagum. If CF (·)=CD( · ; δ, ε), we cannot get an explicit formula for E[X2(t)],
but by numerical computation of (12) using Matlab we obtain the plots in Figure 2.
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Figure 2. Variances under various forcings: Matérn, Cauchy (η = 0.8,
θ = 1.6; η = 0.4, θ = 0.6; and η = 1.0, θ = 1.0), Ornstein–Uhlenbeck
(ν= 10,000), white noise, and Dagum (ε= 0.8, δ= 1.6; ε= 0.4, δ= 0.6;
and ε = 0.5, δ = 1.0).
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4. Correlation structure of the response X (·)

The correlation function of the response can be readily calculated as follows (recall
that, by construction, E[X (·)] = 0):

CX (t1, t2) : = E[X (t1)X (t2)]

= E

[∫ t1

0
Y (τ1)ha(t1− τ1) dτ1

∫ t2

0
Y (τ2)ha(t2− τ2) dτ2

]
=

∫ t2

0

∫ t1

0
E[Y (τ1)Y (τ2)]ha(t1− τ1)ha(t2− τ2) dτ1 dτ2

=

∫ t2

0

∫ t1

0
9(τ1, τ2)CF (τ1, τ2)ha(t1− τ1)ha(t2− τ2) dτ1 dτ2, (13)

where CF (τ1, τ2) is the covariance function of F(t) and where

9(t1, t2) := (β + γ t1)(β + γ t2)U (t1)U (t2).

(i) White noise. If CF = CWN, the calculation of CX can be deduced from (13) and
the fact that

CY (t1, t2)=9(t1, t2)CWN(t1, t2).

Also, keeping in mind that

δ(τ1− τ2)= 0 if τ1 6= τ2

if t1 > t2, we see that

CX (t1, t2)=
∫ t2

0

∫ t1

0
CY (τ1, τ2)ha(t1− τ1)ha(t2− τ2) dτ1 dτ2

= e−a(t1+t2)
∫ t2

0
(β + γ τ2)

2e2aτ2 dτ2

= e−a(t1+t2)
{
β2

2a
(e2at2 − 1)+ 2βγ

[
e2at2

4a2 (2at2− 1)+
1

4a2

]
+
γ 2

4a3 (e
2at2(2a2t2

2 − 2at2+ 1)− 1)
}

= e−a(t1−t2)E[X (t2)2].

We can then repeat the same procedure when t1 < t2 in order to deduce

CX (t1, t2)=
{

e−a(t1−t2)E[X (t2)2] if t1 > t2,
e−a(t2−t1)E[X (t1)2] if t1 < t2.
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From the equations above, if we let γ = 0, we can see that when t1 and t2 are large
enough,

CX (t1, t2)≈ CX (t2, t1)≈ e−a|t1−t2|β
2

2a
,

which shows that the random process is homogeneous (that is, WSS). We see that
this correlation function is different from the correlation function of white noise.

(ii) Ornstein–Uhlenbeck. In the case F = OU , we determine the correlation func-
tion of X (t) as follows.

If a = ν = 1,

CX (t1, t2)=


1
4 [e
−t1+t2(t1− t2+ 1)+ e−t1−t2(−t1− t2− 1)] if t1 > t2,

1
4 [e
−t2+t1(t2− t1+ 1)+ e−t2−t1(−t2− t1− 1)] if t1 < t2,

which shows that CX is symmetric.
If a = 1, ν 6= 1, we get

CX (t1, t2)=


νe−(1+ν)(t1+t2)

2(−1+ ν2)
[eνt1+t2 + et1+νt2 − et1+t2+2νt2

+ eν(t1+t2)(−1− ν+ νe2t2)] if t1 > t2,

CX (t2, t1) if t1 < t2.

Finally, if a 6= 1 and a 6= ν,

CX (t1, t2)=
ν

2a(a2− ν2)

[
a(e−a(t1+t2)− e−νt1−at2 − e−at1−νt2 + e−ν(t1−t2))

+ ν(e−a(t1+t2)− e−a(t1−t2)
]

if t1 > t2,

and the symmetric extension follows when t1 < t2.
Figure 3 shows the correlation function of the response from the OU process.

Note that, as ν becomes large, the correlation function of X (t) approaches the
covariance of the response to the white noise excitation.

(iii) Matérn. If CF = CM( · ; ν = 3/2), we can find the autocorrelation function
of X (t) by direct inspection. The correlation is symmetric, so we do not give the
symmetry extensions for all the cases.

If a 6= 1, we easily get

CX (t1, t2)=
1

2a(−1+ a2)2

{
(−2+ a)(1+ a)2[e−2at2 + e−a(t1+t2)− 1]

+ (−1+a)2(2+a)e−a(t1−t2)− 2a(−3− t1+a2(1+ t1))e(−1+a)t1−2at2

− 2a[−3− t2+ a2(1+ t2)]e−(at1+t2)

− 2a[3+ t1− t2+ a2(−1− t1+ t2)]e(−1+a)(t1−t2)
}

if t1 > t2.
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If a = 1,

CX (t1, t2)= 1
4 {e
−t1−t2[−3− 3(t1+ t2)− (t2

1 + t2
2 )]}

+
1
4 e−(t1−t2)[3+ 3(t1− t2)+ (t1− t2)2] if t1 > t2.

If t1 and t2 are large enough,

CX (t1, t2)≈ 1
4 e−(t1−t2)[3+ 3(t1− t2)+ (t1− t2)2] if t1 > t2,
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Figure 3. The correlation function under the OU forcings at various ν
values (top) and the correlation functions of response X (t) at t1 = 5
under white noise and OU forcings (bottom). The white noise curve
overlaps with the OU process curves for ν = 10,000 and 500.
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and the random process is homogeneous, that is, CX (t1, t2) = CX (|t2 − t1|). We
also observe that, if the excitation correlation function is Matérn, the correlation
function of the response is approximately Matérn.

(iv) Generalized Cauchy. If CF ( ·)=CC( · , θ, η) then, if the correlation function of
F(t) is Cauchy, we can find the correlation function of X (t) by direct inspection:

CX (t1, t2)= 1
2 e−1−t1−t2[2Ei(1)−Ei(1+ t2)−Ei(1+ t1)]

+
1
2 e1−(t1−t2)[−Ei(−1)+Ei(−1− t2)]

+
1
2 e−1−(t1−t2)[−Ei(1)+Ei(1+ t1− t2)]

+
1
2 e1+(t1−t2)[Ei(−1− t1)−Ei(−1− t1+ t2)] if t1 > t2.

Once again, we omit the case t1 < t2 since it can be deduced by a symmetry
extension. Note that, although Ei(1+ t1) and Ei(1+ t2) go to +∞ when t1, t2→
+∞, the function e−1−t1−t2 decreases more rapidly. Hence, when t1 and t2 are large
enough, the first term goes to zero. When t1, t2→+∞, the functions Ei(−1− t1)
and Ei(−1− t2) are close to zero as well. Therefore, we have

CX (t1, t2)≈ 1
2 e1−(t1−t2)[−Ei(−1)] + 1

2 e−1−(t1−t2)[−Ei(1)+Ei(1+ t1− t2)]

+
1
2 e1+(t1−t2)[−Ei(−1− t1+ t2)] if t1 > t2.

Now we see that

CX (t1, t2)= CX (t2, t1)≈ CX (|t1− t2|)

=
1
2 e1−|t1−t2|[−Ei(−1)] + 1

2 e−1−|t1−t2|[−Ei(1)+Ei(1+ |t1− t2|)]

+
1
2 e1+|t1−t2|[−Ei(−1− |t1− t2|)],

or

CX (t1, t2)= CX (t2, t1)≈ CX (r)

=
1
2 e1−r

[−Ei(−1)] + 1
2 e−1−r

[−Ei(1)+Ei(1+ r)]

+
1
2 e1+r

[−Ei(−1− r)],
(14)

which means that, when t1 and t2 are large enough, the response is homogeneous.
Finally, if r→ 0, from Taylor’s formula we have

CX (r)

=−eEi(−1)+
(
−

1
2−

1
2 eEi(−1)

)
r2
+

1
6 r3
+
(
−

1
8−

1
24 eEi(−1)

)
r4
+

7
120 r5

+O(r6).

Comparing with the Cauchy function,

1
1+r
= 1− r + r2

− r3
+ r4
− r5
+ O(r6),

we see that the response from Cauchy excitation is not Cauchy.
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Figure 4. The correlation functions of response X (t) at t1 = 5 under
various forcings: Cauchy (η = 0.4, θ = 0.6; η = 0.8, θ = 1.6; and
η = 1.0, θ = 1.0), Dagum (ε = 0.4, δ = 0.6; ε = 0.5, δ = 1.0; and
ε = 0.8, δ = 1.6), Matérn, Ornstein–Uhlenbeck (ν = 10,000), and white
noise.

(v) Dagum. In this case no explicit analytical formula for the correlation function
of X (t) can be obtained and one has to proceed by numerical integration of (13).
Figure 4 shows the resulting correlation function compared to those due to the
four other excitations. Since there is no formula analogous to (14), we cannot say
whether the response from Dagum-type excitation is Dagum or not.

5. Conclusions

A study has been conducted of the responses of first-order, linear dynamical sys-
tems under time-stationary random forcings of Cauchy and Dagum types. These
forcings lack explicit parametric spectral densities, yet they allow the decoupling
of the fractal dimension and Hurst effect. Working directly in the time domain,
we find transient second-order characteristics of responses and, for comparison,
we also examine the effects of Gaussian white noise, Ornstein–Uhlenbeck (which
in the limit becomes white noise), and Matérn forcings. Overall, given the same
variance on input, the variance on output is strongest for Matérn, then Cauchy,
then white noise, and finally Dagum forcing. We also find that, if the excitation
correlation function is Matérn, the correlation function of the response is approxi-
mately Matérn. On the other hand, the response due to the Cauchy excitation is not
Cauchy, but, at this stage, we cannot say whether the response due to the Dagum
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excitation (with its fractal and Hurst effects) is Dagum or not. The latter issue
will require further research. An analogous study of the responses of second-order,
linear dynamical systems subjected to Cauchy and Dagum excitations is presently
underway [Shen et al. 2014b].

While the studies reported in the aforementioned paper and in the present work
focused on randomness in the time domain for a one-degree-of-freedom system,
similar studies have been conducted in the spatial domain for static systems. Namely,
responses of elastic rods (or, equivalently, shear beams) [Shen et al. 2015] and
Bernoulli-Euler beams [Shen et al. 2014a] with random field properties and, also
possibly, under random field forcings of either Cauchy or Dagum type have been
compared with those of either linear, exponential, or Matérn. Typically, given the
same variance of the random field, the variance on output is strongest for Matérn.
However, the relative effects of Dagum, Cauchy, linear, and exponential models
depend on the particular loading situation. In a number of cases, the results may
be obtained in explicit (albeit very lengthy) analytical forms, but as Cauchy and
Dagum models are introduced, one has to resort to numerics. Thus, while the intro-
duction of fractal and Hurst effects brings more reality into models of randomness
in time and space domains, it results in more challenging analyses.

Further research is needed in order to evaluate the impact of the proposed frame-
work in terms of the fractal dimension and Hurst effect for the resulting stochastic
structures. Analytically, this is not an easy task. From a statistical viewpoint, it
would be of interest to follow along the lines of [Gneiting and Schlather 2004;
Mateu et al. 2007]: first, simulating Gaussian random processes under the covari-
ances obtained in the present paper, then estimating the fractal dimension and Hurst
effect, and inspecting whether there is any tendency toward decoupling. This will
be an important issue to address in the future.
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REFLECTIONS ON
MATHEMATICAL MODELS OF DEFORMATION WAVES

IN ELASTIC MICROSTRUCTURED SOLIDS

JÜRI ENGELBRECHT AND ARKADI BEREZOVSKI

This paper describes the mathematical models derived for wave propagation in
solids with internal structure. The focus of the overview is on one-dimensional
models which enlarge the classical wave equation by higher-order terms. The
crucial parameter in models is the ratio of characteristic lengths of the excita-
tion and the internal structure. Novel approaches based on the concept of inter-
nal variables permit one to take the thermodynamical conditions into account
directly. Examples of generalisations include frequency-dependent multiscale
models, nonlinear models and thermoelasticity. The substructural complexity
within the framework of elasticity gives rise to dispersion of waves. Dispersion
analysis shows that acoustic and optical branches of dispersion curves together
describe properly wave phenomena in microstructured solids. In the case of non-
linear models, the governing equations are of the Boussinesq type. It is argued
that such models of waves in solids with microstructure display properties that
can be analysed as phenomena of complexity.

1. Introduction

Waves are not only carriers of energy; they are also carriers of information. This
means that waves generated by certain initial and boundary conditions carry the in-
formation not only from those conditions, but the information about the properties
of the media they meet in their course of propagation as well. This information
is reflected in changes of the wave profiles or, in other words, in changes of their
spectra. In the present overview we focus on the influence of microstructure of
solids on the macrobehaviour of deformation waves. Although deformation waves
in solids have been studied for over a century, new and intriguing applications con-
tinue to arise in contemporary engineering problems. Solids with unconventional
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properties resulting from their composition and internal architecture and their wave
propagation characteristics will be of interest along with the novel technologies
that they inspire. Of particular interest are multiscale wave processes in solids
characterised by hierarchical structures, with nested levels of geometric and/or ma-
terial complexity, as well as multiphysics phenomena due to coupled mechanical,
thermal and electromagnetic effects. Besides, deformation waves can be regarded
as attractive characterisation tools, due to their sensitivity to small-scale structural
features, such as discontinuities, interphases and defects.

Every material body has actually a microstructure at a smaller scale. Take for
example alloys, polycrystalline solids, ceramic composites, functionally graded
materials, granular materials, etc. From this viewpoint, there exists an intrinsic
space-scale which should be taken into account in deriving the governing equation
of motion. The natural question is: when is it needed? Clearly one should pay atten-
tion to two characteristic lengths: the characteristic length L0 of an external excita-
tion (the wavelength) and the internal characteristic length l. When L0/ l ≥ 1, the
conventional theories and corresponding mathematical models can be effectively
used because the microstructure acts collaboratively. When L0/ l ≈ 1, the influence
of a microstructure becomes important, which demonstrates the nonlocality of the
wave propagation [Engelbrecht and Braun 1998]. In terms of time-scale, the high-
frequency excitations (corresponding to short wavelengths) should also strongly be
influenced by the presence of the microstructure. All this calls for more sophisti-
cated and physically well-grounded modelling where the conventional assumptions
for constructing the theories might not work, and attention should be focussed on
catching effects caused by the internal structure of materials. Although there are
many theoretical studies in this field, the space-scale in real dimensions is not
always introduced. That is why some estimates should here be given. The internal
characteristic lengths certainly vary largely in scale [Gates et al. 2005]. If we
take a characteristic size of a structural element of 100 m, then in typical materials
the characteristic internal lengths are between 10−3 m and 10−6 m. However, in
concrete, for example, the internal lengths can be around 10−2 m. We leave aside
here smaller and larger internal lengths like in nanostructured materials (in nm) or
seismology (in km).

As mentioned by Eringen [1999], “the published work in microcontinuum me-
chanics is so large” that we do not aim to present an overwhelming review, but shall
concentrate our attention on the mathematical modelling of elastic deformation
waves. Even more, in order to explain the various models, we limit ourselves to
the analysis of one-dimensional longitudinal waves as a benchmark, although in
most cases the more general three-dimensional theories exist as a basis for deriving
them. This gives a possibility to compare the interaction effects between macro-
and microstructure in a simple and transparent manner and find unified patterns.
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In addition, it gives a possibility to analyse the changes which occur to one of
the three cornerstones of mathematical physics — to the classical wave equation —
which will turn into an equation with higher-order terms governing the dispersion
effects. Some basic concepts should be reviewed in order to explain descriptions
used in various studies:

– Microstructured solids display “material substructural complexity” [Mariano
and Stazi 2005] because of interaction between their constituents.

– Substructural complexity can be characterised as “complexity of particles”
[Kröner 1968], which leads to nonlocality and wave dispersion.

– In mathematical models for waves, higher-order spatial gradients should be
accompanied by higher-order time derivatives [Metrikine 2006] and be dy-
namically consistent [Askes and Aifantis 2006].

An overview is needed for summing up the previous research on models of
waves in microstructured solids and demonstrating their essential features. The
present overview is initiated by many others, which sometimes are selective, em-
phasising the author’s sympathies. We tried to pay due attention to all essential
results, to the best of our knowledge.

The paper is organised as follows. In Section 2, a brief description of basic
theories is presented, including discrete and continuum theories and links between
them. This is the basis for Section 3, where various one-dimensional mathematical
models are presented and compared. Section 4 is devoted to the generalisation
of models involving multiscale and multifield cases, and in Sections 5 to 7 the
analysis of physical effects observed in the macro- and microbehaviour of waves
in microstructured solids is presented. Finally, in Section 8 a summary of results
and further discussion are given.

2. Theoretical landscape of modelling

The idea of theories relies on the mathematical modelling of phenomena under
consideration. This was already known to Leonardo da Vinci: observe the phe-
nomenon, and list quantities having numerical magnitude that seem to influence it.
Although the great master recommended setting up linear relations among the pairs
of these quantities, it was a considerable step forward to contemporary physical
sciences. Nowadays we certainly know about the importance of being nonlinear,
but in many cases the basic concepts follow the advice of Leonardo da Vinci, as
will be explicitly seen from what follows.

In the case of microstructured solids, the deformation waves, as said in Section 1,
are influenced by the microstructure. In an ideal case, the behaviour of materials
should be simulated, with only the constitutive law describing interactions between
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atoms. However, explicit calculation of all of the atomic degrees of freedom will
never be feasible due to the scales of deformation that are important in realistic
problems. The only possibility is to selectively remove most of these degrees of
freedom to make the problem tractable [Curtin and Miller 2003]. Thus, the crucial
point in modelling wave phenomena is to choose the starting point: either to start
from a discrete (lattice structure) or from a continuous (continuum) model in order
to capture size effects of the microstructure. Here one should remember that “mass
point and continuum theories have equal rights in the classical mechanics of matter”
[Kröner 1968].

So, attention should be paid to (i) discrete models (bottom-up approach); (ii)
continuum models (top-down approach); and (iii) links between discrete and con-
tinuum models.

2.1. Discrete models. A discrete model takes into account all the constituents of
a solid by treating them as point-like masses. For example, the monocrystalline
solids have a regular arrangement of their constituents; in polycrystalline solids
the arrangements are more complicated [Maugin 1999]. We leave aside here amor-
phous materials and liquid crystals. The most intriguing question is how to estab-
lish (postulate) the interactive forces between the constituents which are included
into the equations of motion for every point-like mass (usually Newton’s law).

The well-known studies of Brillouin [1946] and Askar [1986] have analysed the
basic cases, including diatomic and polyatomic chains. Kunin [1975] has derived
the governing equations for a diatomic chain with an additional average relative
deformation (called microdeformation) of the elementary cell together with a deep
mathematical analysis of corresponding models. Maugin [1999] has presented a
contemporary description of waves in elastic crystals (lattice dynamics).

Probably, the best-known discrete model for waves in a one-dimensional lattice
is the Born–von Kármán model [1912], (see also [Maugin 1999]). This model and
its counterparts for more complicated cases form the basis for the derivation of
the higher-order dispersive wave equation by continualisation procedures; see for
example [Maugin 1999; Askes and Metrikine 2005; Askes et al. 2008; Andrianov
et al. 2010]. However, as remarked in [Seeger 2010], the explicit solution of the
Born–von Kármán model derived by Schrödinger [1914] predicts that very distant
particles start to move, even at arbitrarily small time after any localised perturbation.
This physically inconsistent situation can be avoided by taking inertia of particles
into account and using more complicated continualisation techniques. There are
several studies along this line [Metrikine and Askes 2002; Askes and Aifantis 2006;
Polyzos and Fotiadis 2012] resulting in strain-gradient models. This means actually
following the principle of dynamic consistency [Metrikine 2006].

Besides one-dimensional chains, also two-dimensional structures are analysed;
see [Maugin 1999; Pichugin et al. 2008; Andrianov et al. 2010]. The studies of
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granular media include also the modelling of granular lattices, i.e., chains of beads
under Hertz contact [Coste et al. 1997; Porter et al. 2009].

2.2. Continuum models. Looking back in history, the important generalisation to
account for the influence of a microstructure into the continuum theory was made
by E. Cosserat and F. Cosserat [1909], who elaborated a theory with microrotations
at each material point of a continuum. The degrees of freedom are then charac-
terised by three rigid directors and the corresponding theory is nowadays called
micropolar. If these directors are deformable, then the result is the micromorphic
theory [Eringen and Suhubi 1964a; Eringen and Suhubi 1964b; Mindlin 1964;
Eringen 1999]. When the directors are constrained in a special way (three micro-
rotations and one microstretch), then the result is the microstretch theory [Eringen
1969]. Detailed descriptions of these theories can be found in the monographs
[Eringen 1999; Capriz 1989; Maugin 2013]. In what follows we limit ourselves to
one-dimensional micromorphic theory and leave aside the Cosserat-type microro-
tation. Analysis of the latter theory in the contemporary framework can be found
in [Neff 2006; Neff and Jeong 2009].

Another avenue to generalisation is the inclusion of higher-order gradients of
strain into the free energy function, as compared with the classical Cauchy theory,
which accounts only for strains in constitutive equations; see [dell’Isola et al. 2009],
for example. Such a possibility was pointed out already by Kröner [1968], and
a detailed overview on gradient theories is given by Maugin [2013]. There are
several studies on waves using this idea [Metrikine and Askes 2002; Papargyri-
Beskou et al. 2009; Polyzos and Fotiadis 2012]. A comparison of gradient and
micromorphic theories is given by Kirchner and Steinmann [2004].

According to Kröner [1968], the complexity of particles in a solid plays a de-
cisive role in deriving the mathematical models. This concept is explicitly used
by Mindlin [1964], who has introduced a unit cell which “may also be interpreted
as a molecule of a polymer, a crystallite of a polycrystal or a grain of a granular
material”. Such an approach is used in many later studies for deriving the governing
equations of waves [Engelbrecht et al. 2005; Papargyri-Beskou et al. 2009; Porubov
et al. 2009; Polyzos and Fotiadis 2012; Berezovski et al. 2013]. Mariano [2002] has
used order parameters for describing, as he said, “the substructural configuration”.

As far as our knowledge on internal structure of solids is not always explicitly
described, one should think about replacing the physical structure by a certain field.
Then the concept of internal variables has proved to be useful. Proposed origi-
nally to describe dissipative processes, and traced back to [Duhem 1911a; Duhem
1911b], the modern understanding is presented by Maugin and Muschik [1994].
The generalisation of this concept by introducing dual internal variables has made
it possible to use for describing wave processes [Ván et al. 2008; Berezovski
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et al. 2011b]. This approach has a clear thermodynamic background, although
the microstructure itself becomes latent and its influence can be considered as an
additional field. Such a possibility is also mentioned by Capriz [1989] and Mariano
[2002]. Germain [1973] has noted a possibility to introduce “hidden parameters”
into the function of internal energy.

The separation of the macro- and microstructure in a continuum leads, in general
terms, to the formulation of separate balance laws for each [Eringen and Suhubi
1964a; Eringen and Suhubi 1964b; Mindlin 1964; Eringen 1999; Mariano 2002].
Maugin [1993; 2011a] has proposed using the material formulation to represent the
balance law of the macrostructure, which includes all the interaction forces within
the solid, accounting for microstructural effects. Such an approach becomes very
useful, when internal variables are introduced, for describing the effects due to
the presence of the microstructure. Namely, the evolution of internal variables
needed for determining the internal forces is then governed not by a balance law
but by satisfying thermodynamical considerations [Ván et al. 2008; Berezovski
et al. 2011b].

2.3. Links between lattice dynamics and continua. Calculation of values of con-
tinuum variables based on atomistic models has a long and rich history (see, for
example, reviews by Goddard [1986], Zimmerman et al. [2002] and Webb et al.
[2008]). Contemporary contributions include the thermomechanical equivalent
continuum [Zhou 2005], generalised mathematical homogenisation method [Fish
et al. 2005], and scale-dependent molecular averages [Murdoch 2010]. As concerns
wave propagation, Chen et al. [2003; 2004] have justified applicability of micro-
continuum theories from the atomistic viewpoint, and they stress the importance
of size effects and phonon dispersion relation; see also [Chen and Lee 2003].

From the physical viewpoint, an extremely important question is how to es-
tablish the material parameters from discrete (atomic) models at the microscale.
There are several studies in this direction based on experiments. Maranganti and
Sharma [2007] have established strain-gradient elastic constants for various metals,
semiconductors, silica and polymers by relating them to the atomic displacement
correlations in a molecular dynamics computational ensemble (see also a long list
of references on studies in this field). Zeng et al. [2006] have proposed to determine
the dispersive elastic constants by using phonon dispersion relations. Dispersive
phonon imaging is used by Jakata and Every [2008] for the cubic crystals Ge, Si,
GaAs, and InSb.

Remark 1. We do not go into details for describing the homogenisation meth-
ods, which basically deal with averaged physical parameters, and serve well for
static problems. But an important idea for describing waves in periodic structures
must be stressed. The studies by Achenbach et al. [1968] and Sun et al. [1968]
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analysed dynamic behaviour of laminated composites by introducing the effective
stiffness theory capable to describe dispersive effects. Later, a similar problem was
studied by Ziegler [1977], who explained the mechanism of emerging stopping
bands for harmonic waves as a result of combination of Floquet waves. Santosa
and Symes [1991] derived a governing equation for waves in periodic composites
which includes higher-order terms responsible for dispersion, like simple govern-
ing equations derived from lattice dynamics [Maugin 1999]. A similar problem
for bilaminates is studied by Fish et al. [2002]. Nowadays, the homogenisation
approach for such periodic composites is well developed; see for example [Craster
et al. 2010].

Remark 2. In modelling of waves in microstructured solids, the inertial effects
caused by the microstructure must be taken into account. This has been stressed
already by Eringen [1964], who introduced the law of conservation of microinertia.
This is characteristic to micromorphic models, strain gradient models, etc. In other
words, kinetic energy must be attributed also to the microstructure, as in [Mindlin
1964; Mariano 2002; Engelbrecht et al. 2005].

3. Models of waves in microstructured solids

The diversity of models presented in the previous section means that “ a unified
continuum-mechanical description of materials with inherent microstructure is to
date not available” [Kirchner and Steinmann 2004]. Nevertheless, there exists a
guiding tool for the selection of a proper model: optical modes should be taken
into account together with acoustic modes. As mentioned in [Chen et al. 2003],

The absence of optical branch is due to the neglecting of the atomic
structure of crystal. From this viewpoint, classical continuum theory, the
gradient theories, and the couple stress theories do not stem from the
considerations of microstructure or micromotion and as a consequence,
would break down if the micromotion and/or the microstructure become
too significant to be neglected.

This is why we consider mainly approaches that include optical modes, at least in
principle.

3.1. General frameworks. We start with most characteristic examples in the gen-
eral setting.

3.1.1. Micromorphic solids. Mindlin [1964] formulated the linear micromorphic
theory using two balance laws: one for macrostructure, another for microstructure.
In the case of centrosymmetric, isotropic materials, these laws are
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ρv̇ = div(σ + τ )+ f , (1)

Iψ̈ = divµ+ τ +8, (2)

where ρ is the density, v is the particle velocity, I is a microinertia tensor, ψ is
the microdeformation tensor, f is the body force, and 8 is the double force per
unit volume. The corresponding stress tensors, namely, the Cauchy stress σ , the
relative stress τ , and the double stress µ,

σ ≡
∂W
∂ε
, τ ≡

∂W
∂γ
, µ≡

∂W
∂~
, (3)

are defined, respectively, as derivatives of the free energy W with respect to the
classical strain tensor ε, the relative deformation tensor γ , and the microdeforma-
tion gradient ~ [Mindlin 1964],

ε ≡ 1
2(∇u+ (∇u)T ), γ ≡∇u−ψ, ~ ≡∇ψ . (4)

In terms of the macrodisplacement u, after choosing the quadratic free energy
function W , Mindlin’s model (1)–(2) results in

(λ+ 2µ)(1− l2
1∇

2)∇∇ · u−µ(1− l2
2∇

2)∇ ×∇ × u
= ρ(ü− h2

1∇∇ · ü+ h2
2∇ ×∇ × ü), (5)

where l2
1, l

2
2 describe the elastic microstructural parameters and h2

1, h2
2 the microin-

ertia, while λ and µ are the Lamé parameters as in the classical theory of elasticity.
This is known as Form I, in Mindlin’s notation. Papargyri-Beskou et al. [2009]
have followed [Mindlin 1964], and after certain simplifications get

(1− g2
∇

2)[(λ+µ)∇∇ · u+µ∇2u] = ρ(ü− h2
∇

2ü), (6)

where g2
= l2

1 = l2
2 and h2

= h1
2 = h2

2 govern the elastic microstructural and microin-
ertia terms.

A more general model than that of [Mindlin 1964] is described in [Mariano
2002], with the effects of microstructure embedded into order parameters as

Div T + bni
= ρ ẍ, (7)

Div S− z+βni
=

d
dt
∂χ

∂ϕ̇
−
∂χ

∂ϕ
, (8)

where x is the placement field, ϕ is the order parameter, T = ∂W/∂F is the first
Piola–Kirchhoff stress tensor, S = ∂W/∂∇ϕ is the microstress tensor, bni is the
noninertial bulk force, z = ∂W/∂ϕ is the internal self-force, βni is the noninertial
external bulk interaction force, χ is the substructural kinetic coenergy density (the
Legendre transform with respect to ϕ̇ of the substructural kinetic energy density),
and ρ is the density of the macrostructure. The model is presented here in its orig-
inal form [Mariano 2002], and all the notation can be found in the original paper.
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In the micromorphic theory of Mindlin, as well as in the multifield Mariano
model, the balances of linear momentum for macroscale and microscale are in-
troduced independently. This means that the introduced microdeformation or the
corresponding order parameter play the role of an additional degree of freedom,
causing obvious problems with boundary conditions.

3.1.2. Material formulation and internal variables. An alternative framework is
provided by the internal variable approach. This approach is based on the canonical
(or material) formulation of continuum mechanics. Following [Maugin 2006], we
represent the canonical (material) momentum balance in the form

∂P
∂t

∣∣∣
X
− divR b= f int

+ f ext
+ f inh, (9)

where P is material momentum, b the material Eshelby stress, and f int, f ext,
and f inh are the material internal force, material external (body) force and the
material inhomogeneity force, respectively. They are defined by

P =−ρ0ν · F, b=−(LIR + T · F), L= K −W, (10)

f inh
=

( 1
2v

2)
∇Rρ0−

∂W
∂X

∣∣∣
expl
, (11)

f ext
=− f0 · F, f int

= T : (∇R F)T −∇RW |impl, (12)

where F is the deformation gradient, ρ0 is the matter density in the reference
configuration, v is the velocity vector, K is the kinetic energy density, W is the
free energy per unit reference volume, T is again the first Piola–Kirchhoff stress
tensor, f0 is the body force in the reference configuration. The subscript expl
means taking the material gradient keeping the fields fixed (and thus extracting
the explicit dependence on X), while the subscript impl means taking the material
gradient only through fields present in the function. The “dot” notation is used for
the product of two tensors and colon denotes the tensor contraction. Equation (9)
is called the pseudomomentum balance [Maugin 1993].

The canonical form of the energy conservation at any regular material point X
in the body, for sufficiently smooth fields, has the form

∂(Sθ)
∂t

∣∣∣
X
+∇R · Q = hint, hint

= T : Ḟ− ∂W
∂t

∣∣∣
X
, (13)

where Q is the material heat flux, S is the entropy density per unit reference volume,
and θ is the absolute temperature. In addition, the Clausius–Duhem inequality is
to be satisfied as

−

(
∂W
∂t
+ S ∂θ

∂t

)
X
+ T : Ḟ+∇R(θ J)− S · ∇Rθ ≥ 0, (14)
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where S is the entropy flux and J is the “extra entropy flux”, which vanishes in
most cases. Berezovski et al. [2011b] have used the dual internal variable concept
[Ván et al. 2008] in addition to canonical equations (9) and (13). In this case,
for example, the governing equation for the internal variable α (identified as the
microdeformation tensor) is obtained by satisfying inequality (14) [Engelbrecht
and Berezovski 2012]:

Im α̈ =
(
−
∂W
∂α
+ divR

∂W
∂(∇α)

)
, (15)

where Im can be identified as the microinertia, calculated from geometry and state
variables (for details, see [ibid.]).

In order to go further, the free energy function W must be specified. The con-
straints for W require positive definiteness for uniqueness and stability; it should
be homogeneous and polyconvex in terms of the deformation gradient. In linear
theory W is a quadratic function; in the simplest version of nonlinear theory it is
a cubic function. The regularity of energy densities is analysed in [Mariano 2002].
The specific question is how microdeformations (or the order parameter or internal
variables) are described in the function W . This question must be answered with
a full confidence about the internal structure but at the same time offers several
opportunities for respective models (see below). For the description of deformation
waves in microstructured solids, the inertia of the microstructure should be taken
into account [Mindlin 1964; Mariano 2002].

Remark 3. Mindlin [1964] used Hamilton’s principle for deriving the equations
of motion combining total kinetic and potential energies and the work done by
external forces. It is possible also to directly use the Euler–Lagrange formulation
[Engelbrecht et al. 2005; Casasso and Pastrone 2010]. The two approaches yield
the same equations of motion and the same pseudomomentum balance [Engel-
brecht et al. 2006].

3.2. One-dimensional models. The classical one-dimensional wave equation pos-
sesses the well-known d’Alembert solution. It is of considerable interest to use
the one-dimensional setting also for describing microstructured solids in order to
understand possible effects in the most transparent way. Certainly, one notes the
price of simplifications compared with three-dimensional models: the oversimpli-
fied description of rotational effects, as in the Cosserats’ model, the emerging arte-
fact between scalar and covectorial character of energy equation and the balance
of momentum [Maugin 2011a] and simplification of geometry of solids. On the
other hand, the appearance of new terms in the wave equation can cast more light
on dispersive, nonlinear, and other effects. A typical example in this sense is the
Boussinesq-type equation [Christov et al. 2007; Engelbrecht et al. 2011].
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3.2.1. Structure of equations. The models briefly described in Section 3.1 result
in systems of partial differential equations. In the one-dimensional case with a
single microstructure, this means that one obtains a system of two equations. If we
now take displacement u = u1 and the microdeformation ϕ = ϕ11 according to the
Mindlin model [1964], then the kinetic energy density K and the potential energy
density W are

K = 1
2ρu2

t +
1
2 Iϕ2

t , W =W (ux , ϕ, ϕx), (16)

where ρ and I denote macroscopic density and microinertia, respectively, and in-
dices denote derivatives. The corresponding Euler–Lagrange equations have the
general form (

∂L

∂ut

)
t
+

(
∂L

∂ux

)
x
−
∂L

∂u
= 0, (17)(

∂L

∂ϕt

)
t
+

(
∂L

∂ϕx

)
x
−
∂L

∂ϕ
= 0, (18)

where the Lagrangian density is given by L = K −W . The simplest potential
energy function is a quadratic function

W = 1
2(λ+ 2µ)u2

x + Aϕux +
1
2 Bϕ2

+
1
2Cϕ2

x , (19)

where λ, µ are Lamé parameters (in order to keep notations from classical elastic-
ity) and A, B, C are other material constants.

The governing equations are now [Engelbrecht et al. 2005]

ρut t = (λ+ 2µ)uxx + Aϕx , (20)

Iϕt t = Cϕxx − Aux − Bϕ, (21)

which is the simplest Mindlin-type (micromorphic) model. A similar model is
used in [Porubov et al. 2009; Casasso and Pastrone 2010]. Huang and Sun [2008]
have derived the governing equations for waves along the layers of a bimaterial
layered medium. In terms of the displacement U and “kinematic variable” 8, the
governing system of equations in a micromorphic case is

k1Ut t = k2Uxx + k28x , (22)

k38t t = k48xx − k2Ux − k28, (23)

where k1, k2, k3, k4 reflect elastic and geometric characteristics of layers. The
system of equations (20)–(21) is very similar to the system (22)–(23).

Maugin [1999] has derived a model of a chain of dumbbells (see also [Askar
1986]) which exhibits transverse displacements U and rotations ψ . After continu-
alisation, the governing equations are
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ρ0Ut t = (µ+χ)Uxx +χψx , (24)

jψxx = αψxx −χUx −χψ, (25)

where coefficients are related to the mass m, chain scale a and stiffness k. Note
that here j is the microinertia density and χ and α are micropolar coefficients.

Again, the structure of the equations is the same as above. In order to compare
these (and other) results within one framework, we shall focus now on models in
the form of single equation, derived directly from three-dimensional models (5)
or (6), or from systems of equations like (20)–(21) or (22)–(23). Let us introduce
a wave operator

Lw = ut t − c2
i uxx , (26)

where ci is a velocity, and the function

Fw = Fw(uxx , uxxxx , uxxtt , . . . ), (27)

leaving the coefficients of derivative aside. Then the models derived for describ-
ing the one-dimensional wave propagation in microstructured solids can be sum-
marised by either

Lw = Fw( · ) (28)

or, more explicitly,

Lw = (L jw)xx + (Lkw)t t +Fw( · ), (29)

where L jw, Lkw have velocities c j , ck , respectively (see Whitham [1974]). The
presentation (29) can be called hierarchical since it involves several wave operators,
and in general Liw = O(ε), where ε is a small parameter. In general terms, Fw is
also of accuracy O(ε).

3.2.2. Classification of models. Models of dispersive waves in terms of Lw and Fw

are collected in Table 1, and the corresponding models in terms of Lw and L jw

are presented in Table 2.
The models listed in Tables 1 and 2 are derived using various assumptions and

procedures, but they all include higher-order derivatives in space and/or in time, or
mixed space-time ones. All these derivatives are even, which shows that the models
are conservative and that they display dispersive effects (see Section 5). These
effects are reflected first in phase and group velocities, and second in wave profiles.

Table 2 demonstrates the structures of models using the wave operators (26).
The basic idea behind introducing such operators is the possibility to stress the
importance of scaling [Engelbrecht et al. 2006]. Namely, in this case the wave
hierarchies can be formulated [Whitham 1974]. The general structure of models
is then

L1w = δ(L1w)xx + δ
2(L2w)xxxx + · · · , (30)
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Fw( · ) Sources

0 Classical wave equation

uxxxx [Santosa and Symes 1991], [Maugin 1995],
[Erofeyev 2003], [Andrianov et al. 2010],
[dell’Isola et al. 2012], [Andrianov et al. 2013]

uxxxx , u6x [Pichugin et al. 2008], [Andrianov et al. 2011]

uxxtt [Love 1944], [Maugin 1995], [Wang and Sun 2002]

uxxxx , uxxtt [Askes and Metrikine 2002], [Pastrone et al. 2004],
[Metrikine 2006], [Papargyri-Beskou et al. 2009],
[Porubov et al. 2009], [Challamel et al. 2009],
[Polyzos and Fotiadis 2012]

uxxxx , uxxtt , uxx [Engelbrecht and Pastrone 2003],

uxxxx , uxxtt , ut t t t [Metrikine 2006], [Polyzos and Fotiadis 2012],
[Pichugin et al. 2008]

uxxtt , ut t t t [Pichugin et al. 2008]

uxxxx , uxxtt , u6x [Polyzos and Fotiadis 2012]

Table 1. Models of dispersive waves in the form Lw =Fw, Lw = ut t − c2
0uxx .

(L jw) (Lkw) Fw Source

(ut t − c2
j uxx)xx uxx [Engelbrecht et al. 2005]

[Engelbrecht and Salupere 2014]

(ut t − c2
i uxx)t t [Maugin 1995] (here ck = ci )

(ut t − c2
i uxx)xx (ut t − c2

i uxx)t t uxx [Engelbrecht et al. 2005]
[Berezovski et al. 2011b]

(ut t − c2
i uxx)xx uxxxx [Berezovski et al. 2011b]

(ut t − c2
i uxx)xx (ut t − c2

i uxx)t t uxx , uxxxx [Berezovski et al. 2011b]

(ut t − c2
i uxx)xx (ut t − c2

i uxx)t t uxxxx [Engelbrecht et al. 2005]

Table 2. Models of dispersive waves in the form Lw = (L jw)xx + (Lkw)t t +Fw.

where δ is related to the ratio L0/ l. Such a hierarchy explicitly demonstrates
the dependence of the macrobehaviour on microstructure. If δ is small then waves
“feel” more the properties of the macrostructure, and the influence of the microstruc-
ture is of a perturbative character. If, however, δ is large, then waves “feel” more
the properties of the microstructure. The wave hierarchies are analysed in several
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studies [Whitham 1974; Engelbrecht et al. 2006; Casasso and Pastrone 2010] and
an overview presented by Engelbrecht and Salupere [2014].

The most complicated case — model 5 of Table 2 — has been derived by Bere-
zovski et al. [2011a] by using the concept of dual internal variables ϕ1 and ϕ2 [Ván
et al. 2008]. Here, ϕ1 is identified as a microdeformation and ϕ2 as its rate. The
energy function has the quadratic form

W = 1
2ρc2u2

x + Auxϕ1+ A′uxϕ2+
1
2 Bϕ2

1 +
1
2C(ϕ2

1)x +
1
2 Dϕ2

2, (31)

where ρ is the density and c is the velocity in the macrostructure; the coefficients A
and A′ characterise coupling, and B, C , D the microstructure. The corresponding
dispersive wave equation has the form

ut t − c2uxx =
C
B
(ut t − c2uxx)xx −

I
B
(ut t − c2uxx)t t +

A′2

ρB
uxxxx −

A2

ρB
uxx . (32)

The right-hand side of (32) includes the space and time derivatives of the wave
operator Lw = ut t − c2uxx and additional terms with coupling coefficients. Note
that (32) can be rewritten in terms of different wave operators as

ut t − (c2
− c2

A)uxx =
C
B
(ut t − (c2

− c2
c)uxx)xx −

I
B
(uxx − c2uxx)t t , (33)

where c2
A = A2/ρB, c2

c = A
′2/ρC . If A′ = 0 then (32) yields, in a shorter form

obtained by asymptotic analysis [Engelbrecht et al. 2005],

ut t − (c2
− c2

A) uxx = p2c2
A(ut t − c2

1uxx)xx , (34)

where c2
1 = C/I B, p2

= I/B.

Remark 4. The models in Section 3.2 are one-dimensional with a clear three-
dimensional background. Similar models are known for rods [Samsonov 2001;
Porubov 2003], where the higher-order derivatives in governing equations in terms
of the displacement appear due to geometrical considerations (effects of the trans-
verse displacement). As far as dispersive effects are of a different character, the
governing equation is called the “double” dispersion equation [Samsonov 2001].
The combination of microstructural effects and geometrical characteristics of rods
is studied in [Porubov 2000].

4. Generalisation of models

The mathematical models described in Section 3 involved one microstructure be-
side the macrostructure; this microstructure is homogeneously distributed over the
space, the dissipative effects are not accounted for, and the governing equations
are linear. Clearly, these assumptions need more attention and, if needed, to be
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changed. In what follows, possible generalisations are described. Dissipative mod-
els will not be considered here; attention is paid to thermoelasticity, i.e., to coupled
fields with energy transfer.

4.1. Multiscale models. In reality, there are cases when a microstructure includes
another microstructure at a smaller scale [Engelbrecht et al. 2006], or there are two
microstructures in parallel with different properties [Berezovski et al. 2010]. The
first case (a scale within a scale) may be called hierarchical microstructures and
the second case concurrent microstructures.

For a hierarchical microstructure, the free energy function is taken in the form
[Engelbrecht et al. 2006; Berezovski et al. 2010]

W = 1
2(λ+ 2µ)u2

x + A1ϕ1ux +
1
2 B1ϕ

2
1 +

1
2C1(ϕ1)

2
x

+
1
2 A12(ϕ1)xϕ2+

1
2 B2ϕ

2
2 +

1
2C2(ϕ2)

2
x , (35)

where ϕ1 and ϕ2 are microdeformations (ϕ2 within ϕ1) and A1, B1, B2, C1, C2, A12

are coefficients. Then the governing equations are (see also [Casasso and Pastrone
2010])

ρut t = (λ+ 2µ)uxx + A1(ϕ1)x , (36)

I1(ϕ1)t t = C1(ϕ1)xx − A1ux − B1ϕ1+ A12(ϕ2)x , (37)

I2(ϕ2)t t = C2(ϕ2)xx − A12(ϕ1)x − B2ϕ2, (38)

where I1 and I2 are the corresponding microinertias.
For a concurrent microstructure, the free energy is [Berezovski et al. 2010]

W = 1
2(λ+ 2µ)u2

x + A1ϕ1ux +
1
2 B1ϕ

2
1 +

1
2C1(ϕ1)

2
x

+ A12(ϕ1)xϕ2+
1
2 B2ϕ

2
2 +

1
2C2(ϕ2)

2
x + A2ϕ2ux , (39)

where now ϕ1 and ϕ2 are parallel microstructure (the same scale). The governing
equations become

ρut t = (λ+ 2µ)uxx + A1(ϕ1)x + A2(ϕ2)x , (40)

I1(ϕ1)t t = C1(ϕ1)xx + A12(ϕ2)x − A1ux − B1ϕ1, (41)

I2(ϕ2)t t = C2(ϕ2)xx − A12(ϕ1)x − A2ux − B2ϕ2. (42)

If A12 6= 0 then the microstructures are coupled; if, however, A12 = 0, then both
microstructures are coupled with the macrostructure but not coupled with each
other [Berezovski et al. 2010]. In the latter case, after reformulating the system of
equations (36)–(38) in the form of a single equation and using asymptotic analysis,
the analogue to (33) can be obtained as [Engelbrecht et al. 2006]
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ut t − (c2
0− a2

A1)uxx

= p2
1c2

A1[ut t − (c2
1− c2

A2)uxx ]xx − p2
1c2

A1c2
A2(ut t − c2

2uxx)xxxx , (43)

where c2
A1 = A2

1/ρB1, c2
A2 = A2

2/ρB2, c2
1 = C1/I1, p2

1 = I1/B1, p2
2 = I2/B2. One

should note the appearance of the sixth-order derivatives in (43), as in the model
derived from lattice dynamics in the continuum limit [Maugin 1999]. However,
here ut t xxxx is also involved because of the inertia of the second microstructure.

There are many studies concerning multiscales in terms of building of atomistic-
continuum models (see, for example, [Liu et al. 2010] and the references therein).
Such an approach is needed because, in design of structural elements, some areas
like crack tips, plastic zones, thin layers, etc., need smaller spatial scales com-
pared with the whole. That is why mixed atomistic-continuum models are derived.
Here, however, multiscale is understood as excitation-dependent (i.e., frequency-
dependent). The governing parameter is L0/ l, which gives the weight to different
terms in models, and consequently is the reason for the appearance of different
physical effects.

4.2. Nonlinear models. Contemporary technology is often characterised by inten-
sive and high-speed impacts. That is why nonlinearities should be accounted for in
mathematical models. This means that the full deformation tensor involves nonlin-
ear terms and the stress-strain should also be nonlinear [Eringen 1962]. As shown
by Engelbrecht [1997], the physical nonlinearities (stress-strain relations) for most
materials are stronger than geometrical (deformation tensor), and, therefore, we
limit ourselves here to physical nonlinearities only. This is easily formulated
in terms of the free energy function W . Note, however, that we deal with one-
dimensional problems, and for three-dimensional problems such an assumption
needs careful analysis. Following the model (20)–(21), instead of the free energy
function (18), we can postulate [Engelbrecht et al. 2005]

W = 1
2(λ+ 2µ)u2

x + Aϕux +
1
2 Bϕ2

+
1
2Cϕ2

x +
1
6 Nu3

x +
1
6 Mϕ3

x , (44)

where now N and M are nonlinear parameters for macro- and microstructure, re-
spectively. In this case, the governing equations are

ρut t = (λ+ 2µ)uxx + Nux uxx + Aϕx , (45)

Iϕt t = Cϕxx +Mϕxϕxx − Aux − Bϕ. (46)

Porubov et al. [2009] have derived the same model, linking N and M to Mur-
naghan’s moduli. From (45) and (46) we get

ut t − (c2
− c2

A)uxx − k1(u2
x)x = p2c2

A(ut t − c2
1uxx)xx + k2(u2

xx)xx , (47)

where k1 and k2 are coefficients (compare with (33)). Equation (47) in terms of
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the deformation v = ux reads

vt t − (c2
− c2

A)vxx − k1(v
2)xx = p2c2

A(vt t − c2
1vxx)xx + k2(v

2
x)xxx . (48)

This equation will be analysed later.
Several modifications of (47) are derived under various assumptions. Maugin

[1999] has described the continualisation of discrete lattices and obtained

ut t − c2uxx + c2βaux uxx −
c2a2

12
uxxxx = 0, (49)

where a is lattice spacing and β is related to the potential. Andrianov et al. [2013]
have derived a similar model for a layered composite and Erofeyev [2003] for a
medium with coupled stresses. In these models, nonlinear terms stem from the
macrostructure. It is certainly possible to assume that nonlinearity is essential only
at the level of the microstructure. Then the corresponding governing equation reads
[Engelbrecht and Pastrone 2003]

ut t − (c2
− c2

A)uxx = p2c2
A(ut t − c2

1uxx)xx + k2(u2
xx)xx . (50)

All models (47)–(50) are of the Boussinesq-type. Christov et al. [1996; 2007] have
stated that the Boussinesq paradigm grasps the following effects: (a) bidirection-
ality of waves; (b) nonlinearity (of any order); (c) dispersion (of any order, mod-
elled by space and time derivatives of the fourth order at least). The recent results
of studies are summarised by Christov et al. [2007], and with a special attention to
microstructured solids by Engelbrecht et al. [2011].

Remark 5. The nonlinear governing equation for rods derived by Samsonov [2001]
and Porubov [2003] belong also to the family of Boussinesq equations. In this
case the nonlinearity is quadratic, like the nonlinearity of the macrostructure (equa-
tions (47) and (48)) in microstructured materials, but it may also be cubic [Porubov
and Maugin 2005].

4.3. Thermoelastic models. The classical thermoelastic theory combines the elas-
tic behaviour of homogeneous media with heat conduction, which is usually gov-
erned by Fourier’s law (see, for example, [Nowacki 1972]). The difference between
elastic deformation of a solid and heat conduction consists in that the former is a
conservative process without dissipation, whereas the latter is a dissipative one.
Bearing in mind microstructured materials, it is possible to use the concept of
internal variables to construct mathematical models for governing the wave motion.
This is achieved by the dual internal variable theory [Ván et al. 2008], which per-
mits modelling of the dissipation effects due to the microstructure in thermoelastic
solids [Berezovski et al. 2011b; Engelbrecht and Berezovski 2012]. The dissipation
is associated with microtemperature, i.e., fluctuations of temperature due to the
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difference of thermal characteristics of the macro- and microstructure in a solid.
Here we present two models: the first one dealing with microtemperature only,
and the second one with microdeformation and microtemperature simultaneously.

First, following [Berezovski et al. 2011b] and [Berezovski and Engelbrecht
2013], we postulate the free energy function W as

W = 1
2(λ+2µ)u2

x−
ρcp

2θ0
(θ−θ0)

2
+m(θ−θ0)ux+Qϕx ux+

1
2 Pϕ2

x+
1
2 Dψ2, (51)

where cp is the heat capacity, m = −α(3λ+ 2µ), α is the dilatation coefficient,
θ is the temperature, θ0 is the reference temperature. The first internal variable ϕ
is the microtemperature and the second internal variable ψ is the rate of the first
one; Q, P , D2 are, as before, the material parameters. Leaving aside the details
(see references above), the governing equations are

ρut t = (λ+ 2µ)uxx +mθx + Qϕxx , (52)

Lϕt t + Rϕt = Pϕxx + Quxx , (53)

ρcpθt − (kθx)x = mθ0uxt + Rϕ2
t , (54)

where k is the thermal conductivity and R, L are the material parameters related to
conductance, which are obtained from satisfying the dissipation inequality. Note
that the heat conduction is governed by the parabolic equation (54), while the
microtemperature is governed by the hyperbolic equation (53).

Second, following Berezovski et al. [2011b], we use the dual internal variables;
the first pair, ϕ1 and ϕ2, are related to microdeformation, and the second pair,
ψ1 and ψ2, to microstructure. Then the free energy function W is

W = 1
2(λ+ 2µ)u2

x −
ρcp

2θ0
(θ − θ0)

2
+m(θ − θ0)ux + Aϕ1ux +

1
2 Bϕ2

1

+
1
2C(ϕ2

1)x +
1
2 D1ϕ

2
2 + Q(ψ1)x ux +

1
2 P(ψ2

1 )x +
1
2 D2ψ

2
2 , (55)

where A, B, C , D1, Q, P , D2 are, as before, the material parameters. Now the
governing equations are

ρut t = (λ+ 2µ)uxx +mθx + A(ϕ1)x + Q(ϕ2)xx , (56)

I (ϕ1)t t = C(ϕ1)xx − Aux − Bϕ1, (57)

L(ϕ2)t t + R(ϕ2)t = P(ϕ2)xx + Quxx , (58)

ρcpθt − (kθx)x = mθ0uxt + R(ϕ2
2)t . (59)

For details of the derivation, see [Berezovski et al. 2014]. This model contains
two hyperbolic equations for microeffects: Equation (57), for microinertia, and
Equation (58), for microtemperature. These equations are not coupled, but both of
them are coupled with the balance of momentum (56). The fourth equation, (59),
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which models the heat conduction at the macrolevel, is parabolic and related only
to the microtemperature, while microdeformation is nondissipative.

4.4. Models for inhomogeneous microstructure. Previous models were derived
using the assumption of the homogeneity of the microstructure. In many practical
application, this assumption must be refined. This is the case, for example, of
functionally graded materials (FGMs) which are made up of two or more materials
(constituent phases) combined in solid states [Birman and Byrd 2007; Mahamood
et al. 2012]. The specimens made of FGMs can have a thin coating of a parent
material or a special distribution within a bulk material [Yin et al. 2004]. Such inho-
mogeneities should be taken into account also in deriving the governing equations.

The simplest way to do that is to modify the well-known Mindlin model. In this
case, starting from the conventional free energy function

W = 1
2(λ+ 2µ)u2

x + Aϕux +
1
2 Bϕ2

+
1
2Cϕ2

x , (60)

we assume that A= A(x), B = B(x), and C =C(x). Then the governing equations
yield (compare with equations (20) and (21))

ρut t = (λ+ 2µ)uxx + Aϕx + Axϕ, (61)

Iϕt t = Cϕxx − Aux − Bϕ+Cxϕx . (62)

Here, as before, ϕ denotes the microdeformation, the elements of the microstruc-
ture are of the same size (I = const), but the variation of the microstructure is
emphasised by Ax and Cx .

5. Wave dispersion

The main aim of applying various theories to derive mathematical models is to get
closer to reality. It has been shown in Sections 3 and 4 that inertia of microstruc-
ture(s) leads to higher-order time derivatives, the elasticity of microstructure(s) to
higher-order space derivatives, and the coupling of macro- and microstructures
results in the changes of velocities. The latter phenomenon is demonstrated also
by numerical simulation of waves in metal-ceramic composites by using the finite
volume method [Engelbrecht et al. 2005]. In this case, the physical parameters
were assigned to every volume element in a material. The changes in the volume
fraction f = Vc/V are directly reflected in changes of velocities, where Vc is the
volume of ceramic particles and V is the total volume.

In what follows, we explain how introduced microstructure models affect the
macrobehaviour of waves: dispersion, wave profiles, frequencies, velocities, spec-
tra, etc. As we have seen, the classical nondispersive wave equation is modified
for processes in microstructured solids. The included even-order higher derivatives
(fourth-order, sixth-order, etc.) lead to dispersion of waves. In discrete systems
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the dispersion analysis is carried out by Brillouin [1946] and Askar [1986]. For
diatomic chains they noticed the existence of acoustical and optical branches of
the dispersion relation. Mindlin [1964] and Eringen [1972] have described the
behaviour of the dispersion curves in microstructured materials, including also
acoustical and optical branches. There are many studies to be noted [Huang and
Sun 2008; Metrikine 2006; Andrianov et al. 2013] in dispersion analysis, but the
most detailed studies are presented by Papargyri-Beskou et al. [2009] and Bere-
zovski et al. [2013].

These studies demonstrate that the typical dispersion curves are convex. How-
ever, given the structural characteristics of solids, the periodic character of disper-
sion curves, as shown by Brillouin [1946] for a discrete chain, is not observed
except in some limit cases [Pichugin et al. 2008]. In most models where the
assumptions about length scales involve long waves (small wave numbers), the
dispersion curves in a short-wave limit tend to some asymptotes corresponding to
certain velocities [Engelbrecht et al. 2005; Metrikine and Askes 2002; Berezovski
et al. 2011a]. This is explicitly seen from the analysis of group and phase velocities
[Papargyri-Beskou et al. 2009; Berezovski et al. 2013]. If short waves are close to
nanoscale in the length, then phonon-like dispersion curves are closer to the results
of Brillouin [Maranganti and Sharma 2007].

5.1. Dispersion relations. Papargyri-Beskou et al. [2009] derived the following
dispersion relation, following [Mindlin 1964] (see (6) in the one-dimensional set-
ting):

ω2
= c2k2(1+ g2k2)(1+ h2k2)−1, c2

= (λ+ 2µ)/ρ, (63)

where ω, k are the frequency and the wave number, respectively, and g2, h2 are the
microstructural elasticity and microinertia coefficients. The corresponding disper-
sion curves are shown in Figure 1. It is concluded that the dispersion is physically
acceptable only if h2 > g2. This conclusion stresses the importance of the microin-
ertia. The main deficiency of the strain-gradient model is the absence of the optical
branch of the dispersion curve.

A more realistic dispersion relation follows from (33), with A′ = 0 for the sake
of simplicity (see [Berezovski et al. 2013]):

ω2
= (c2

− c2
A) k2

+ p2(ω2
− c2k2)(ω2

− c2
1k2). (64)

The corresponding dispersion curves are shown in Figure 2 [Berezovski et al. 2013].
In this figure, the dispersion curve computed from the relation

ω2
= (c2

− c2
A)k

2
− p2c2

A(w
2
− c2

1k2)2 (65)
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Figure 1. Dispersion curves of the ω/C p,s versus wavenum-
ber kp,s type for elastic medium with microstructure obeying
Equation (63). Adapted from [Papargyri-Beskou et al. 2009].
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Figure 2. Dispersion curves in case of cgr < cph (cA = 0.8c, c1 = 0.2c).

following from (34) is also shown. The asymptotes in Figure 2 reflect the dimen-
sionless velocities: ω = k, ω = c1k/c, ω = cRk/c, where c2

1 = C/I , c2
R = c2

− c2
A.

These velocities play a role in the case of shorter waves.
Dispersion relation (64), which reflects the behaviour of waves modelled by (33),

leads to two dispersion curves — one branch is acoustic (lower branch), another one
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Figure 3. Comparison of the longitudinal dispersive curves with and
without the correction factors. Adapted from [Huang and Sun 2008].

is optical (upper branch). Such a situation is noticed in many studies [Erofeyev
2003; Engelbrecht et al. 2005; Huang and Sun 2008; Berezovski et al. 2011a]. (As
an example, the dispersion curves from the paper by Huang and Sun [2008] are
shown in Figure 3.)

Direct calculations by the finite element method also display the changes in
velocities due to dispersive effects [Gonella et al. 2011; Greene et al. 2012].

No band gaps are observed in the dispersion curves shown in Figures 2, 3. How-
ever, the existence of such band gaps has been demonstrated by Madeo et al. [2013]
for unidirectional wave propagation in relaxed micromorphic media [Neff et al.
2014].

5.2. Phase and group velocities. The phase (cph=ω/k) and group (cgr= ∂ω/∂k)
speeds corresponding to relation (64) are depicted in Figure 4. It must be noted
that the asymptotic value of the acoustic phase speed approaches the value c1/c
monotonically, while the group speed changes faster and nonmonotonically. It is
possible to determine the dimensionless parameters which govern the process as
[Engelbrecht et al. 2013]

γ 2
A = c2

A/ c2, γ 2
1 = c2

1/ c2, 0 = 1− γ 2
A− γ

2
1 . (66)

The parameter 0 is crucial for distinction between dispersion types. If 0 ≥ 0 then
the dispersion is normal (cgr < cph) and if 0 < 0 then the dispersion is anomalous
(cgr > cph). In the dispersionless case 0 = 0. Following Papargyri-Beskou et al.
[2009] (Figure 5), these conditions are related to the ratio h/g: if h/g > 1 then the
dispersion is normal, and if h/g < 1 then the dispersion is anomalous.
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The parameter γA is related to coupling effects, and it defines the dimensionless
speed of long waves. The greater the value of γA, the smaller the speed of long
waves. The parameter γ1 is actually the ratio of speeds in macro- and microstruc-
tures. The greater the value of γ1, the greater the speeds of short waves. The
parameters γA and γ1 can be used for determining the differences between the full
equation (33) and its asymptotic presentation (34); see [Peets et al. 2008]. In ad-
dition, a dimensionless parameter γAB might be useful for asymptotic estimations,
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uncoupled microstructure model. Here cA1 = cA2 = cA12 = 0.4c,
c1 = 0.5c, c1 = 0.3c.

given by
γ 2

AB = c2
A/ c2

B = D2 I/ρB2L2
0 = δ I ∗D2/B2, (67)

where it is assumed that I = ρl2 I ∗, δ= l2/L2
0. As follows from (67), it involves the

scale parameter δ, which also gives weight to higher-order terms in the governing
equations.

In the case of a hierarchical microstructure modelled by the system (36)–(38) or
by (43), the dispersion relation reads as

(c2k2
−ω2)(c1k2

−ω2
+ω2

1)(c
2
2k2
−ω2

+ω2
2)

− c2
A12ω

2
2k2(c2k2

−ω2)− c2
A1ω

2
1k2(c2

2−ω
2
+ω2

2)= 0. (68)

Here, in addition to the notation of (43), we define c2
A12 = A2

12/I1 B2, ω2
1 = 1/p2

1,
and ω2

2 = 1/p2
2 . The typical dispersion curves are shown in Figure 6.

This model may involve an interesting physical phenomenon: negative group
velocity (NGV), analysed by Peets et al. [2013]. Indeed, such a case is shown in
Figure 7. The physical explanation for this phenomenon may be the following.
It is known that the optical branches are related to nonpropagating oscillations
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Figure 7. Group (solid line) and phase (dashed line) speed curves
against the wave number, cA = 0.3c, c1 = 0.2c.

[Brillouin 1946]. In the case shown in Figure 6, two optical branches can be very
close to each other at certain frequencies. This can be considered as a preresonant
situation: these nonpropagating oscillations are coupled, resulting in the NGV. This
is also the reason for the multivalued phase velocity (Figure 7). Note that in optics
the NGV is usually space-dependent, [Dogariu et al. 2001] but here, as seen from
Figure 7, the NGV is dependent on the wave number. Consequently, for an arbitrary
excitation with a wide spectrum, only some spectral components are affected.

5.3. Wave profiles. Dispersion effects are certainly reflected in wave profiles. A
typical profile is shown in Figure 8 [Berezovski et al. 2013], where the influence
of optical and acoustic branches of dispersion curves is seen. It is noted that high
frequency oscillations due to the optical dispersion branch appear. A detailed anal-
ysis of such effects is presented by Tamm and Peets [2013]. Clearly, these effects
must be taken into account not only in solving the direct problems but especially in
nondestructive testing with acoustic waves. Several numerical results are presented
for an impact-type excitation in [Askes and Metrikine 2002; Fish et al. 2002; Peets
and Tamm 2010], for a triangular pulse in [Wang and Sun 2002], for a harmonic
pulse in [Peets and Tamm 2010], for a burst-type pulse in [Greene et al. 2012].

5.4. Influence of nonlinearity. The nonlinear models described in Section 4 lead
to Boussinesq-type equations. The possible balance of dispersion and nonlinearity
may lead to soliton-type solutions. There are three essential problems related to
solitons: (i) existence of solitons, (ii) emergence of solitons, and (iii) interaction
of solitons. Contrary to the celebrated KdV-solitons governed by an equation with
first-order time derivative in a leading term, here the governing equations possess
a second-order time derivative in leading terms. This means that, as in the clas-
sical wave equation, the waves propagate to the left and to the right (d’Alembert
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Figure 8. Top: phase (dotted lines) and group (solid lines) speed
curves. Bottom: wave profile at 60 time steps. Here cA = 0.6c,
c1 = 0.5c, dimensionless frequency for the boundary condition is 0.8.

solution), not in one direction, as results from the KdV equation. Most studies
concerning solitons and the KdV equation focus on fluids. However, a historical
review on solitons in elastic solids is presented in [Maugin 2011b]. Here we focus
on models of nonlinear microstructured solids based on equations described in
Section 4.

5.4.1. Existence of solitons. We take (48) as the basic equation. In its dimension-
less form, it yields

VT T − bVX X −
1
2µ(V

2)X X = δ
(
βVT T − γ VX X + δ

1/2 1
2κ(V

2
X )X

)
X X , (69)

where V = UX , U = u/U0, X = x/ l, T = ct/ l and, as before δ = l2/λ2. The
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coefficients of (69) are related to the free energy function (44) by

b = 1−
D2

(λ+ 2µ)B
, µ=

NU0

(λ+ 2µ)L0
, β =

I D2

ρl2 B2 ,

γ =
C D2

(λ+ 2µ)B2l2 , κ =
D3 MU0

(λ+ 2µ)B3l3L0
.

(70)

The existence of a single solitary wave solution to (69) should satisfy the conditions
[Janno and Engelbrecht 2005b]

c2
s − b

βc2
s − γ

> 0,
(βc2

s − γ

c2
s − b

)3
>

4κ
µ2 , (71)

µ 6= 0, βc2
s − γ 6= 0, c2

s − b 6= 0, (72)

where cs is a characteristic speed of solitary waves. For other types of govern-
ing equations, the solitary waves are described in [Maugin 1999; Erofeyev 2003;
Porubov et al. 2009].

5.4.2. Emergence of solitons. In the classical example of the KdV equation, a har-
monic initial condition leads to a train of solitons [Zabusky and Kruskal 1965].
Here the results should be two trains of solitons, propagating to the left and to the
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Figure 9. Formation of train of solitons for B0 = 0.02, K = 5500.
Profiles plotted every 1500 time steps.
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right. Indeed, it has been shown by numerical simulations [Engelbrecht et al. 2006;
2011] that solving (69) with an initial condition in the form of a single bell-type
pulse results in two trains of solitons. Figure 9 shows the emergence process in
the course of time. If dispersion is controlled by other higher-order derivatives,
then the emergence process is somewhat different. Several examples are presented
in [Maugin 1999]. Emergence of solitons is described also in laminates where
the stress-strain law of layers is nonlinear and dispersion is caused by layering
[Engelbrecht et al. 2007].

5.4.3. Interaction of solitary waves. This is a crucial problem when determining
whether solitary waves behave like solitons or not. A soliton should interact with
another soliton, keeping its amplitude (velocity), and only a phase change is al-
lowed. This process has been intensively studied by many authors [Soerensen
et al. 1984; Maugin and Christov 1997; Bogdan and Kosevich 1997; Maugin 1999;
Christov et al. 2007; Salupere et al. 2008; Porubov 2009]. An intriguing question
is the shape of solitary waves. Bearing in mind the microstructured solids, two
nonlinearities are presented in (68): nonlinearity of the macrostructure and non-
linearity of the microstructure. It has been shown [Janno and Engelbrecht 2005b]
that the existence of two nonlinearities leads to the asymmetry of a solitary wave.
Note that, with κ = 0 (no nonlinearity at the microstructure), (68) has the solitary
wave solution [Porubov 2003; Janno and Engelbrecht 2005b]

V (X − cs T )= As sech2 [ 1
2κ1(X − cs T )

]
,

AS = 3(c2
s − b)/µ, κ2

1 = (c
2
s − b)/δ(βc2

s − γ ).
(73)

This symmetric solution turns asymmetric if κ 6= 0 in (69). The evolution equation
(one-wave equation) derived from (69) is a modified KdV-type equation, and for
this an exact solution is found by Randrüüt and Braun [2010], which displays
asymmetry due to the existence of the nonlinearity at the microstructure.

It is concluded by many authors that the interaction of solitary waves in such
systems is usually accompanied by radiation [Christov et al. 2007; Salupere et al.
2008; Engelbrecht et al. 2011]. This means that the interaction can be considered
elastic only in the course of several interactions, although the waves retain their
individuality [Christov et al. 2007]. The governing equation may include more
complicated nonlinearities, as in the case of chains of beads [Coste et al. 1997].

Remark 6. Turning again to waves in rods, the problems of emergence and inter-
action of solitary waves are studied in detail in [Porubov 2009].

6. Thermal effects

In Section 4, the governing equations were presented for microstructured thermoe-
lastic solids. Definitely, the internal structure of thermoelastic solids displays not
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Figure 10. Distribution of temperature, stress, and microtemperature
in a microstructured half-space at 350 time steps after thermal impact.

only differences in elastic properties but also in thermal characteristics. The in-
ternal temperature fluctuations which might be called microtemperature display a
specific behaviour [Berezovski and Berezovski 2013; Berezovski and Engelbrecht
2013]. As an example, the propagation of a thermal pulse described by (52)–(54)
is illustrated in Figure 10. Besides the usual diffusion of the macrotemperature θ in
course of time close to boundary, wave-type behaviour of the total temperature is
observed following the deformation wave. This is possible because of coupling ef-
fects between microtemperature (governed by a hyperbolic operator in (53)), stress,
and macrotemperature.

7. Material identification

Physical effects due to the microstructure of solids serve as signatures about the
structure. Changes in velocities and wave profiles and/or their spectra can be used
to solve the inverse problems; that means determining material constants from the
analysis of changes. As said before, waves are carriers of information. The prob-
lem, however, is complicated because the number of material constants is high. For
example, Equation (33), which is a basic model in our discussion, involves, beside
the properties of the macrostructure (density and the elastic constants), the proper-
ties of the microstructure (constants B, C , D, I ) and of coupling (constants A, A′).
In terms of the wave equation, these constants are grouped for coefficients. The
situation is even more complicated in multiscale models or thermoelastic models
(Section 4).

One possible approach to determine the material constants is to start from ho-
mogenisation methods [Santosa and Symes 1991; Forest 1998; 1999; Fish et al.
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2002; Wang and Sun 2002]. Some constants are presented in [Erofeyev 2003].
More contemporary homogenisation methods are described in [Jänicke and Steeb
2012; Fish and Kuznetsov 2012]. On other hand, numerical methods can be com-
bined with material characterisation [Gonella et al. 2011; Greene et al. 2012]. The
latter approach is also supported by theoretical results [Neff 2005; Neff and Forest
2007].

Another approach is to solve an inverse problem: given the structure of a model
and an initial excitation and results of measurements, one has to determine the
coefficients of the model. This approach is widely used in nondestructive eval-
uation (NDE) of material properties. There are many methods of NDE [Hellier
2001]; here we limit ourselves only to the possibilities of ultrasound NDE, based
on the usage of acoustic waves as carriers of information. A detailed description of
solving the inverse problem for the Mindlin-type micromorphic model is given in
[Janno and Engelbrecht 2011]. The basic model is either the linear equation (34)
or its nonlinear modification (48), together with their basic systems of two equa-
tions, like the system (20)–(21). The conditions for the existence of the solution
together with its uniqueness and stability guarantee a well-posed problem. Har-
monic waves and wave packets are used in the case of linear problems, and solitons
in the case of nonlinear problems. The main ideas are to use changes in phase
velocities [Janno and Engelbrecht 2005c] and properties of solitary waves [Janno
and Engelbrecht 2005a] for determining material constants. Harmonic waves and
Gaussian wave packets are used in the linear case. In the nonlinear case, a novel
method is proposed based on measuring the asymmetry of a solitary wave [Janno
and Engelbrecht 2005a]. The crucial point is to establish a number of possible
coefficients which can be determined from solving a corresponding well-posed
inverse problem.

8. Discussion and final remarks

Technological demands for microstructured materials are high, and there is a grow-
ing need to predict the behaviour of such structures under high-intensity and high-
frequency excitations. As shown above, there exists a general framework for build-
ing appropriate mathematical models in order to grasp microscopic-to-macroscopic
relations in materials. One might say that the unifying goal of this framework is to
understand better the bulk behaviour of matter which depends on microscopic con-
stituents and their properties. In this context, there are several avenues of research.

The first avenue leads towards developing the theory of microstructured con-
tinua. It is reflected in many monographs [Eringen 1999; Capriz 1989; Maugin
1999; 2013] and overviews [Mariano 2002] together with a lot of research papers.
Several subfields are important: modelling of elastic microstructures, modelling
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of coupled fields (thermo-, electro-, magnetoelasticity), modelling of dislocations
and phase transitions, etc. In this context, multiscale problems which depend on
the character of excitations (the ratio L0/ l) become more and more important,
resulting in hierarchical models.

The second avenue could be described as casting the theory of microstructured
continua into concrete mathematical models, i.e., into systems of equations or sin-
gle equations. In wave dynamics, this means deriving the modified systems of wave
equations with leading terms of the second-order partial derivatives together with
higher-order terms. These equations may be built in the form of certain hierarchies
[Whitham 1974]. In this overview we moved along this avenue, presenting the
mathematical models and analysing the corresponding physical effects.

The third avenue is related to numerical simulations. Due to complicated mathe-
matical models and several scales, numerical schemes need to be modified in order
to describe multiscales or coupling effects (see, for example, [Mariano and Stazi
2005; Vernerey et al. 2007; Berezovski et al. 2008]). Here we also use numerical
simulations to demonstrate the changes in wave profiles.

The fourth avenue should lead to experimental verification. There are not very
many results in this important direction. The early experiments of Potapov and
Rodyushkin [2001] demonstrated the existence of solitary waves. The studies
[Coste et al. 1997; Porter et al. 2009] described experiments with solitary waves in
chains of beads, which give a possibility to build tunable one-dimensional phononic
materials [Daraio et al. 2006]. Clearly, much is expected in moving along this
avenue — not only phononic materials, but the general applications in the NDE
should be further developed for more precise materials characterisation.

As said before, in this overview, attention was focussed on models of waves
in their simplest one-dimensional setting. The concept of internal variables per-
mits easy derivation of the mathematical models accounting for various physical
effects. It is demonstrated that, beside the classical wave equation, the modified
wave equations with higher-order terms form an interesting and challenging chapter
in mathematical physics. These equations can be derived by satisfying thermody-
namical constraints, and naturally involve both acoustic and optical branches in
dispersion relations. This is extremely important in order to model the physical
situation correctly (see, e.g., Figure 8).

The dispersion analysis reflects rich physical phenomena due to microstruc-
ture(s), and accounts for the multiscale problems, resulting in hierarchical equa-
tions. If nonlinear effects are included then the governing equations are of the
Boussinesq type. The coupling of the macro- and microstructure leads to changes
in velocities and wave profiles. The main conclusion from the analysis above is
the following. The influence of the microstructure on wave propagation in solids
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is modelled best if (i) microinertia is taken into account, and (ii) the correspond-
ing dispersion relation includes both acoustic (in-phase) and optical (out-of-phase)
branches. If, however, some asymptotic procedures are applied in order to simplify
the full model, then the simplified model should in some sense grasp the influence
of the optical branch.

The classical wave equation is a cornerstone in mechanics and mathematical
physics. It describes the propagation of an excitation in homogeneous elastic media.
What is discussed above is how to modify this beautiful mathematical model in
order to come closer to reality. As a result, the mathematical models involve higher-
order derivatives and nonlinear terms which stem from the properties of materials.
Such models gain more and more attention in contemporary engineering problems
of dynamical response of materials and constructions.

It must be noted that the existence of a microstructure in a bulk material means
that the constituents interact with each other and influence the macrobehaviour.
This is a typical problem of complexity, where the behaviour of constituents leads
to changes in the global behaviour [Nicolis and Nicolis 2007]. There are also
attempts to cast the analysis into this pattern in multiscale materials [Engelbrecht
2009; Liu et al. 2010; Engelbrecht and Pastrone 2011]. However, such an approach
is not used for describing solids only, it is also noted in fluids (see [Engelbrecht
et al. 2010]).

Finally, the ideas worked out theoretically during the last century [Maugin 2013]
have matured now to reach practical applications. The search certainly goes on, as
said by Mariano [2012]:

. . . effective developments in applied sciences rely on a deep compre-
hension and command of the inner nature of the models involved and
techniques utilised.
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Translated as Elastic media with microstructure, I: One-dimensional models, Springer Series in
Solid-State Sciences 26, Springer, Berlin, 1982.

[Liu et al. 2010] W. K. Liu, D. Qian, S. Gonella, S. Li, W. Chen, and S. Chirputkar, “Multiscale
methods for mechanical science of complex materials: bridging from quantum to stochastic mul-
tiresolution continuum”, Int. J. Numer. Methods Eng. 83:8–9 (2010), 1039–1080.

[Love 1944] A. E. H. Love, A treatise on the mathematical theory of elasticity, 4th ed., Dover, New
York, 1944.

http://dx.doi.org/10.1016/j.compscitech.2005.06.009
http://dx.doi.org/10.1016/j.compscitech.2005.06.009
http://dx.doi.org/10.1137/0125053
http://dx.doi.org/10.1137/0125053
http://dx.doi.org/10.1007/BF01209391
http://dx.doi.org/10.1007/BF01209391
http://dx.doi.org/10.1016/j.jmps.2011.03.003
http://dx.doi.org/10.1016/j.jmps.2011.03.003
http://dx.doi.org/10.1016/j.ijsolstr.2012.06.011
http://dx.doi.org/10.1016/j.ijsolstr.2012.06.011
http://dx.doi.org/10.1080/15376490802470366
http://dx.doi.org/10.1080/15376490802470366
http://dx.doi.org/10.1103/PhysRevB.77.174301
http://dx.doi.org/10.1103/PhysRevB.77.174301
http://dx.doi.org/10.1016/j.commatsci.2011.04.011
http://dx.doi.org/10.1016/j.commatsci.2011.04.011
http://dx.doi.org/10.1088/0266-5611/21/6/014
http://dx.doi.org/10.1088/0266-5611/21/6/014
http://dx.doi.org/10.1088/0305-4470/38/23/006
http://dx.doi.org/10.1088/0305-4470/38/23/006
http://dx.doi.org/10.1016/j.wavemoti.2005.04.006
http://dx.doi.org/10.1016/j.wavemoti.2005.04.006
http://dx.doi.org/10.1007/978-3-642-21584-1
http://dx.doi.org/10.1007/978-3-642-21584-1
http://dx.doi.org/10.1201/9780203023631.ch4
http://dx.doi.org/10.1201/9780203023631.ch4
http://dx.doi.org/10.1007/978-3-662-30257-6_40
http://dx.doi.org/10.1007/978-3-642-81748-9
http://dx.doi.org/10.1002/nme.2915
http://dx.doi.org/10.1002/nme.2915
http://dx.doi.org/10.1002/nme.2915
http://www.archive.org/details/atreatiseonmath01lovegoog


MODELS OF DEFORMATION WAVES IN ELASTIC MICROSTRUCTURED SOLIDS 79

[Madeo et al. 2013] A. Madeo, P. Neff, I.-D. Ghiba, L. Placidi, and G. Rosi, “Wave propagation in
relaxed micromorphic continua: modeling metamaterials with frequency band-gaps”, Contin. Mech.
Therm. (2013), 1–20. In press.

[Mahamood et al. 2012] R. M. Mahamood, E. T. Akinlabi, M. Shukla, and S. Pityana, “Functionally
graded material: an overview”, pp. 1593–1597 in Proceedings of the World Congress on Engineer-
ing (London, 2012), vol. III, edited by S. I. Ao et al., Lecture Notes in Engineering and Computer
Science 2199, Newswood, Hong Kong, 2012.

[Maranganti and Sharma 2007] R. Maranganti and P. Sharma, “A novel atomistic approach to de-
termine strain-gradient elasticity constants: tabulation and comparison for various metals, semicon-
ductors, silica, polymers and the (lr) relevance for nanotechnologies”, J. Mech. Phys. Solids 55:9
(2007), 1823–1852.

[Mariano 2002] P. M. Mariano, “Multifield theories in mechanics of solids”, pp. 1–93 Advances in
Applied Mechanics 38, Elsevier, New York, 2002.

[Mariano 2012] P. M. Mariano, “Perspectives in continuum mechanics: a preface”, Math. Methods
Appl. Sci. 35:15 (2012), 1737–1740.

[Mariano and Stazi 2005] P. M. Mariano and F. L. Stazi, “Computational aspects of the mechanics
of complex materials”, Arch. Comput. Methods Eng. 12:4 (2005), 391–478.

[Maugin 1993] G. A. Maugin, Material inhomogeneities in elasticity, Applied Mathematics and
Mathematical Computation 3, Chapman and Hall, London, 1993.

[Maugin 1995] G. A. Maugin, “On some generalizations of Boussinesq and KdV systems”, Proc.
Estonian Acad. Sci. Phys. Math. 44:1 (1995), 40–55.

[Maugin 1999] G. A. Maugin, Nonlinear waves in elastic crystals, Oxford University Press, 1999.

[Maugin 2006] G. A. Maugin, “On the thermomechanics of continuous media with diffusion and/or
weak nonlocality”, Arch. Appl. Mech. 75:10–12 (2006), 723–738.

[Maugin 2011a] G. A. Maugin, Configurational forces: thermomechanics, physics, mathematics,
and numerics, CRC, Boca Raton, FL, 2011.

[Maugin 2011b] G. A. Maugin, “Solitons in elastic solids (1938–2010)”, Mech. Res. Commun. 38:5
(2011), 341–349.

[Maugin 2013] G. A. Maugin, Continuum mechanics through the twentieth century: a concise his-
torical perspective, Solid Mechanics and its Applications 196, Springer, Dordrecht, 2013.

[Maugin and Christov 1997] G. A. Maugin and C. I. Christov, “Nonlinear duality between elastic
waves and quasi-particles in microstructured solids”, Proc. Estonian Acad. Sci. Phys. Math. 46:1–2
(1997), 78–84.

[Maugin and Muschik 1994] G. A. Maugin and W. Muschik, “Thermodynamics with internal vari-
ables, I: General concepts”, J. Non Equilib. Thermodyn. 19:3 (1994), 217–249.

[Metrikine 2006] A. V. Metrikine, “On causality of the gradient elasticity models”, J. Sound Vib.
297:3-5 (2006), 727–742.

[Metrikine and Askes 2002] A. V. Metrikine and H. Askes, “One-dimensional dynamically consis-
tent gradient elasticity models derived from a discrete microstructure, 1: Generic formulation”, Eur.
J. Mech. A Solids 21:4 (2002), 555–572.

[Mindlin 1964] R. D. Mindlin, “Micro-structure in linear elasticity”, Arch. Ration. Mech. Anal. 16
(1964), 51–78.

[Murdoch 2010] A. I. Murdoch, “On molecular modelling and continuum concepts”, J. Elasticity
100:1-2 (2010), 33–61.

http://dx.doi.org/10.1007/s00161-013-0329-2
http://dx.doi.org/10.1007/s00161-013-0329-2
http://www.iaeng.org/publication/WCE2012/WCE2012_pp1593-1597.pdf
http://www.iaeng.org/publication/WCE2012/WCE2012_pp1593-1597.pdf
http://dx.doi.org/10.1016/j.jmps.2007.02.011
http://dx.doi.org/10.1016/j.jmps.2007.02.011
http://dx.doi.org/10.1016/j.jmps.2007.02.011
http://www.sciencedirect.com/science/article/pii/S0065215602801028
http://dx.doi.org/10.1002/mma.2690
http://dx.doi.org/10.1007/BF02736191
http://dx.doi.org/10.1007/BF02736191
http://dx.doi.org/10.1007/978-1-4899-4481-8
http://dx.doi.org/10.1007/s00419-006-0062-4
http://dx.doi.org/10.1007/s00419-006-0062-4
http://books.google.com/books?id=lyQI4zrEQeMC
http://books.google.com/books?id=lyQI4zrEQeMC
http://dx.doi.org/10.1016/j.mechrescom.2011.04.009
http://dx.doi.org/10.1007/978-94-007-6353-1
http://dx.doi.org/10.1007/978-94-007-6353-1
http://books.google.com/books?id=COLXj-35fRMC&pg=PA78
http://books.google.com/books?id=COLXj-35fRMC&pg=PA78
http://dx.doi.org/10.1515/jnet.1994.19.3.217
http://dx.doi.org/10.1515/jnet.1994.19.3.217
http://dx.doi.org/10.1016/j.jsv.2006.04.017
http://dx.doi.org/10.1016/S0997-7538(02)01218-4
http://dx.doi.org/10.1016/S0997-7538(02)01218-4
http://dx.doi.org/10.1007/BF00248490
http://dx.doi.org/10.1007/s10659-010-9248-7


80 JÜRI ENGELBRECHT AND ARKADI BEREZOVSKI

[Neff 2005] P. Neff, “On material constants for micromorphic continua”, pp. 337–348 in Trends
in applications of mathematics to mechanics (Seeheim, 2004), edited by Y. Wang and K. Hutter,
Shaker, Aachen, 2005.

[Neff 2006] P. Neff, “A finite-strain elastic-plastic Cosserat theory for polycrystals with grain rota-
tions”, Int. J. Eng. Sci. 44:8-9 (2006), 574–594.

[Neff and Forest 2007] P. Neff and S. Forest, “A geometrically exact micromorphic model for elastic
metallic foams accounting for affine microstructure. Modelling, existence of minimizers, identifica-
tion of moduli and computational results”, J. Elasticity 87:2-3 (2007), 239–276.

[Neff and Jeong 2009] P. Neff and J. Jeong, “A new paradigm: the linear isotropic Cosserat model
with conformally invariant curvature energy”, Z. Angew. Math. Mech. 89:2 (2009), 107–122.

[Neff et al. 2014] P. Neff, I.-D. Ghiba, A. Madeo, L. Placidi, and G. Rosi, “A unifying perspective:
the relaxed linear micromorphic continuum”, Contin. Mech. Therm. 26:5 (2014), 639–681.

[Nicolis and Nicolis 2007] G. Nicolis and C. Nicolis, Foundations of complex systems: nonlinear
dynamics, statistical physics, information and prediction, World Scientific, Hackensack, NJ, 2007.
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ON THE APPROXIMATION THEOREM
FOR STRUCTURED DEFORMATIONS FROM BV(�)

MIROSLAV ŠILHAVÝ

This note deals with structured deformations introduced by Del Piero and Owen.
As treated in the present paper, a structured deformation is a pair (g, G) where
g is a macroscopic deformation giving the position of points of the body and G
represents deformations without disarrangements. Here g is a map of bounded
variation on the reference region �, and G is a Lebesgue-integrable tensor-
valued map. For structured deformations of this level of generality, an approx-
imating sequence gk of simple deformations is constructed from the space of
maps of special bounded variation on �, which converges in the L1(�) sense
to (g, G) and for which the sequence of total variations of gk is bounded. The
condition is optimal. Further, in the second part of this note, the limit relation
of Del Piero and Owen is established on the above level of generality. This
relation allows one to reconstruct the disarrangement tensor M of the structured
deformation (g, G) from the information on the approximating sequence.

1. Introduction and results

This paper deals with the geometry of deformation of nonclassical continua mod-
eled as media capable of (first-order) structured deformations introduced by Del
Piero and Owen [1993; 1995].1 The main objective of the theory of structured
deformations is to describe how a continuous body with microstructure will deform
under the applied forces.

In the original setting [Del Piero and Owen 1993; 1995], a structured deforma-
tion is a triplet (K, g, G) of objects whose nature will now be roughly described.
The set K, the crack site, is a subset of vanishing Lebesgue measure of the ref-
erence region �, the map g : � ∼ K→ R3, the deformation map, is piecewise
continuously differentiable and injective, and G is a piecewise continuous map

Communicated by Gianpietro Del Piero.
MSC2010: primary 74R99; secondary 74A05.
PACS2010: 81.40.Lm.
Keywords: structured deformation, fracture, approximations, maps of bounded variation, maps of

special bounded variation.
1 The reader is referred to the proceedings [Del Piero and Owen 2004] and to the recent survey

[Baía et al. 2011] for additional references and for further developments.
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from �∼ K to the set of invertible second-order tensors describing deformation
without disarrangements. The following “accommodation inequality” is assumed:

0< m ≤ det G ≤ det Da g

in � ∼ K, with m a suitable constant, where Da g is the classical derivative of g
where it exists.2 Within this context, a classical deformation is the triplet (K, g,Dg)
with g a continuously differentiable injective deformation function and with G :=
Dg = Da g the deformation gradient, where D denotes the derivative (gradient)
operation on differentiable maps. A more general class of structured deformations
is provided by simple deformations, which are triples (K, g,Da g) where g is only
piecewise-smooth injective with jump discontinuities describing partial or full sep-
aration of pieces of the body and G := Da g. In view of these classes, where G
coincides with the deformation gradient, in the general case, the tensor of deficit

M = Da g− G (1)

measures the departure of (K, g, G) from the simple deformation (K, g,Da g).
A substantial step towards a concrete interpretation of the tensor G is offered

by the approximation theorem [Del Piero and Owen 1993, Theorem 5.8]. That
theorem shows that each structured deformation (K, g, G) is a limit of a suitable
sequence of simple deformations (Kk, gk,Da gk) in the sense that

Kk→ K, gk→ g, and Da gk→ G (2)

with suitably defined convergences of the objects in (2). I note that the nontrivial
feature of the proof of the approximation theorem lies in proving the injectivity
of gk . Moreover, Del Piero and Owen [1993] prove the following the limit relation
for the tensor M:

M(x)= lim
ρ→0

lim
k→∞

(4π/3)−1ρ−3
∫

J (gk)∩B(x,ρ)
[gk]⊗ nk dH2, (3)

valid for any sequence (not just the one constructed in the proof of the approxi-
mation theorem) (Kk, gk,Da gk) satisfying (2) and any x ∈�∼ K, where B(x, ρ)
is the open ball of center x and radius ρ, J (gk) is the set of all points of (jump)
discontinuity of gk , [gk] is the jump of gk at the points of J (gk), nk is the normal
to J (gk), and H2 is the area measure.

To apply the relaxation techniques of the calculus of variations, Choksi and
Fonseca [1997] later enlarged the space of structured deformations to contain all

2 Later we shall identify Da g with the absolutely continuous part of the derivative of a map g of
bounded variation.
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pairs (g, G) where g is in3 SBV(�,Rm) and G is in L1(�,Mm×n). Here m and n
are positive integers, the dimensions of the spaces Rm and Rn of dependent and
independent variables, respectively. Thus, in addition to weaker regularity, the
authors relax the injectivity requirement and put the crack site K equal to ∅. (The
cracks are described by the omnipresent discontinuities of g.)

Choksi and Fonseca [1997, Theorem 2.12] prove the following version of the ap-
proximation theorem, which is stated here in a slightly rephrased form as explained
below:

Theorem 1.1. Let �⊂ Rn be a bounded open set, and let (g, G) ∈ L1(�,Rm)×

L1(�,Mm×n). Then there exists a sequence gk in SBV(�,Rm) such that

gk→ g in L1(�,Rm) and Da gk = G over �. (4)

Here Da gk is the absolutely continuous part of the generalized derivative of gk .
The statement of [Choksi and Fonseca 1997, Theorem 2.12] is narrower since (a)
the authors assume, in accord with the overall framework of their paper, that g is in
SBV(�,Rm) and (b) since they replace the equality (4)2 by the weak∗ convergence
in the sense of measures (although they say that they will prove the equality). Their
proof also shows that g ∈ L1(�,Rm) suffices.

In connection with this generality, the question arises: what additional informa-
tion beyond (4) can be imposed on the sequence gk if it is known that g belongs to
the smaller space BV(�,Rm) or even to SBV(�,Rm)? An answer, one of the two
goals of this note, given in the subsequent theorem, is proved for reference regions
represented by admissible domains (which is a mild restriction on �, satisfied, e.g.,
by all open sets with lipschitzian boundary).4

Theorem 1.2 (approximation theorem). If � is an admissible domain in Rn and
(g, G)∈BV(�,Rm)×L1(�,Mm×n), then there exists a sequence gk∈SBV(�,Rm)

such that in addition to (4) the total variation M(Dgk) of gk satisfies

sup{M(Dgk) : k = 1, . . . }<∞; (5)

hence, we have the following convergence (without passing to a subsequence):

Dgk ⇀
∗ Dg in M(�,Mm×n). (6)

3 I use the standard notations for function spaces throughout this introduction: thus, BV(�,Rn)
and SBV(�,Rn) are spaces of Rm -valued maps on � of bounded variation and of special bounded
variation, and L1(�,Rm) and L1(�,Mm×n) are spaces of (Lebesgue-)integrable Rm - or Mm×n-
valued maps on �. M(�,Mm×n) is the space of Mm×n-valued measures on �. The reader is
referred to Sections 2 and 3 below for detailed definitions.

4 See Lemma 5.1 on page 93.
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Thus, the extra information stemming from the inclusion g ∈ BV(�,Rm) is (5).
It is easy to see that, conversely if (g, G)∈ L1(�,Rm)×L1(�,Mm×n) is a pair sat-
isfying (4) and (5) with gk ∈ SBV(�,Rm), then necessarily g ∈ BV(�,Rm); in this
sense, (5) is optimal. (Both directions are very intuitive.) The proof of the bound-
edness in the approximation theorem is based on the observation in Lemma 5.1
below, but otherwise the construction of the sequence essentially follows that of
Choksi and Fonseca.5

The second goal of the present note is to give an analog to the limit relation (3)
in the setting of maps of bounded variation.

Theorem 1.3 (the limit relation). Let � be a bounded open subset of Rn , let
(g, G) ∈ BV(�,Rm)× L1(�,Mm×n), and let gk ∈ SBV(�,Rm) be a sequence
satisfying

gk→ g in L1(�,Rm), Da gk→ G in L1(�,Mm×n), (7)

and (6) (in particular, let gk be the sequence from Theorem 1.2). Then there exists
a subsequence of gk (not relabeled) such that the tensor M (see (1)) satisfies

M(x)= ess lim
ρ→0

lim
k→∞

κ−1
n ρ−n

∫
J (gk)∩B(x,ρ)

[gk]⊗ nk dHn−1 (8)

for almost every point x of �.

Here ess limρ→0 is the essential limit as ρ → 0, i.e., the limit neglecting an
exceptional set of ρ’s of vanishing Lebesgue measure.6 Further, κn is the volume
of the unit ball in Rn , J (gk) is the set of all points of jump discontinuity of gk ,
[gk] is the jump of gk at the points of J (gk), nk is the normal to J (gk), and Hn−1

is the (n− 1)-dimensional Hausdorff measure.7

The Appendix to the present paper also outlines a proof of a weaker version of
the approximation theorem that does not use Alberti’s theorem mentioned above.
In that version, the equality (4)2 is replaced by the convergence (7)2.

2. Preliminaries, notation, and measures

Throughout, n is a positive integer, the dimension of the underlying space Rn , and
m is a positive integer, the dimension of the target space Rm . We denote by a · b the
scalar product in both these spaces and by | · | the euclidean norm. Further, Mm×n

is the set of all linear transformations from Rn to Rm . The value of A ∈ Mm×n

on x ∈ Rn is denoted by Ax. We denote by A · B := tr(ABT) the scalar product

5 In particular, Alberti’s theorem [1991] (Theorem 3.7 below) is used in the same way as in
[Choksi and Fonseca 1997].

6 See the definition in Section 2 below.
7 See Section 3 for precise definitions of these notions.
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in Mm×n , where AT
∈Mn×m is the transpose of A and tr denotes the trace. We

further denote by |A| =
√

A · A the associated euclidean norm.
If f is a map with domain any set M and if N ⊂ M , then f |N denotes the

restriction of f to N .
The interior, closure, and boundary of a set M ⊂ Rn is denoted by int M , cl M ,

and bdry M . As in the introduction, B(x, ρ) denotes the open ball in Rn of center x
and radius ρ. The symbol κn denotes the volume of B(0, 1).

Throughout, let � be an open subset of Rn , later to be restricted by additional
requirements. Let Z be a finite-dimensional inner-product space.

We denote by Ln the Lebesgue measure in Rn [Federer 1969, §2.6.5], and if k
is an integer, 0 ≤ k ≤ n, we denote by Hk the k-dimensional Hausdorff measure
in Rn [ibid., §§2.10.2–2.10.60]; recall that Hn

= Ln . If A ⊂ Rn is a Borel set, we
denote by Hk A the restriction of Hk to A, which is the measure defined by

(Hk A)(B)=Hk(A∩ B) (9)

for each Borel set B ⊂ Rn . If A ⊂ Rn is a Borel set and f a Z -valued Borel
map defined Hk almost everywhere on A, integrable with respect to Hk on A, then
fHk A denotes the Z -valued measure on Rn defined by

( fHk A)(B)=
∫

A∩B
f dHk (10)

for each Borel set B ⊂ Rn . The definitions (9) and (10) also apply to k = n, i.e., to
Ln
≡Hn , resulting in Ln A and fLn A.
We denote by L1(�, Z) the set of all (classes of equivalence of) Lebesgue-

integrable maps on�with values in Z ; we write | · |L1(�,Z) for the norm on L1(�, Z),
defined by

| f |L1(�,Z) =

∫
�

| f | dLn

for each f ∈ L1(�, Z). We denote by C∞0 (�, Z) the set of all of indefinitely
differentiable Z -valued maps f on Rn with compact support contained in �.

We denote by M(�, Z) the set of all (finite) Z -valued measures on �. If µ ∈
M(�, Z), we denote by |µ| the total variation (measure) of µ, i.e., the smallest
nonnegative measure on � such that |µ(B)| ≤ |µ|(B) for each Borel subset B of �.
We denote by M(µ) the mass of µ, defined by M(µ)= |µ|(�). A standard result
is that

M(µ)= sup
{∫

�

f · dµ : f ∈ C∞0 (�, Z), | f | ≤ 1 on �
}
. (11)
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We say that a measure µ∈M(�, Z) is supported by a Borel set A⊂� if µ(B)= 0
for every Borel set B ⊂ � such that A ∩ B = ∅. The reader is referred to [Am-
brosio et al. 2000, Chapter 1] for further details of measures with values in finite-
dimensional inner-product spaces.

If f is a Z -valued map defined L1 almost everywhere in an interval (0, ε) where
ε > 0, we say that a ∈ Z is an essential limit of f at 0 and write

a = ess lim
ρ→0

f (ρ) (12)

if there exists an L1 null set N ⊂ (0, ε) such that

a = lim
ρ→0

ρ∈(0,ε)∼N

f (ρ),

where the last limit is the ordinary limit relative to a subset of (0, ε). Note that, un-
like the set N , the value a is uniquely determined, which justifies the notation (12).

3. Maps of bounded variation, sets of finite perimeter,
and admissible domains

We state some basic definitions and properties of the space BV of maps of bounded
variation, of the space SBV of special maps of bounded variation, of sets of finite
perimeter, and of admissible domains that will be needed in the sequel. For more
details, see [Ambrosio et al. 2000; Evans and Gariepy 1992; Ziemer 1989; Federer
1969].

Definition 3.1. We denote by BV(�,Rm) the set of all g ∈ L1(�,Rm) such that
there exists a measure Dg ∈M(�,Mm×n) satisfying∫

�

g ·div T dLn
=−

∫
�

T · dDg (13)

for each T ∈ C∞0 (�,Rm×n). Here div T is an Rm-valued map on � such that

a · div T = tr(D(T Ta))

for each a ∈ Rm , where D(T Ta) denotes the classical derivative of the map T Ta.
The elements of BV(�,Rm) are called maps of bounded variation; the measure Dg
is uniquely determined by g and is called the weak (or generalized) derivative of g.
We denote by M(Dg) the mass of the measure Dg as defined in Section 2 and
call M(Dg) the total variation of g. Equations (11) and (13) provide

M(Dg)=sup
{∫

�

g· div T dLn
:T ∈C∞0 (�,Rm×n), |T | ≤ 1 on �

}
. �
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The choice of T represented by a matrix function with only the (i, j) element
different from 0, where i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, reduces (13) to the usual
index definition of BV as in, e.g., [Ambrosio et al. 2000, Equation (3.2)].

The set BV(�,Rm) is a Banach space under the norm

|g|BV(�,Rm) := |g|L1(�,Rm)+M(Dg).

Definition 3.2. Let g ∈ L1(�,Rm). We say that g has an approximate limit at
x ∈� if there exists a ∈ Rm such that

lim
ρ→0

κ−1
n ρ−n

∫
B(x,ρ)

|g− a| dLn
= 0.

The value a is uniquely determined and is called the approximate limit of g at x.
The complement S(g) ⊂ � in � of the set of all x ∈ � where the approximate
limit of g exists is called the approximate discontinuity set of g. �

Definition 3.3. Let g ∈ L1(�,Rm). We say that x ∈ � is an approximate jump
point of g if there exist a, b ∈ Rm , a 6= b, and n ∈ Rn with |n| = 1 such that

lim
ρ→0

κ−1
n ρ−n

∫
B+(x,ρ,n)

|g− a| dLn
= 0,

lim
ρ→0

κ−1
n ρ−n

∫
B−(x,ρ,n)

|g− b| dLn
= 0.

(14)

Here
B±(x, ρ, n)= { y ∈ B(x, ρ), ±( y− x) · n> 0}.

The triplet (a, b, n), if it exists, is uniquely determined to within the interchange
of a and b and a simultaneous change of the sign of n. In any case, the product

[g]⊗ n, (15)

occurring frequently below, is uniquely determined, where

[g] = a− b

is the jump of g at x. We denote by J (g) the set of all approximate jump points
of g and call any ±n the normal of J (g) at x. �

The following result describes the relationship between the sets S(g) and J (g):

Theorem 3.4. If g ∈ BV(�,Rm), then:

(i) J (g)⊂ S(g) and Hn−1(S(g)∼ J (g))= 0.

(ii) J (g) is countably (Hn−1, n− 1)-rectifiable in the sense that Hn−1 almost all
of J (g) can be covered by countably many class-1 surfaces Ck , k = 1, . . . , of
dimension n− 1 in Rn .
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The derivative of a map of bounded variation has the following well known
structure. The subsequent treatment uses especially the jump and the absolutely
continuous parts of the derivative to be introduced now.

Theorem 3.5. If g ∈ BV(�,Rm), then:

(i) The derivative Dg has a unique decomposition

Dg = Da g Ln �+Dc g+Dj g,

where Da g, the absolutely continuous part of Dg, is a map in L1(�,Mm×n);
Dc g, the Cantor part of Dg, is a measure on � singular with respect to Ln and
diffuse with respect to Hn−1, i.e., Dc g is supported by a set of null Lebesgue
measure in Rn and Dc g(B) = 0 for each Borel subset B of � of finite Hn−1

measure; and Dj g, the jump part of Dg, is a measure absolutely continuous
with respect to Hn−1.

(ii) The jump part Dj g is supported by J (g), and in fact,

Dj g = [g]⊗ nHn−1 J (g),

where, for every point x of J (g), the value [g]⊗ n is the product (15).

(iii) For Ln almost every point x of �, we have

Da g(x)= lim
ρ→0

κ−1
n ρ−nD(B(x, ρ)). (16)

Definition 3.6. We denote by SBV(�,Rm) the set of all g ∈ BV(�,Rm) with
Dc g=0. The elements of SBV(�,Rm) are called special maps of bounded variation.

�

SBV(�,Rm) is a closed subspace of BV(�,Rm) under the norm | · |BV(�,Rm).

Theorem 3.7 [Alberti 1991]. If � is bounded, then for any G ∈ L1(�,Mm×n),
there exists a g ∈ SBV(�,Rm) such that Da g= G; moreover, there exists a constant
c ∈ R depending only on � such that the map g as above can be chosen to satisfy

M(g)≤ c|G|L1(�,Mm×n).

We conclude this section with basic information on sets of finite perimeter and
on admissible domains. Sets of finite perimeter fall in the framework of BV as
will be explained below. For a subset of the class of sets of finite perimeter called
admissible domains (see below), we shall establish the approximation theorem.
The distinguishing feature of admissible domains � is that maps from BV(�,Rm)

have well defined boundary values.

Definition 3.8. A set E ⊂ Rn is said to have a finite perimeter if 1E ∈ BV(Rn,R),
where 1E denotes the characteristic function of E . The perimeter of E is M(D1E).
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The measure-theoretic boundary of E is the set S(1E) that differs from the reduced
boundary bdry∗(E) := J (1E) by a set of Hn−1 measure 0. �

Theorem 3.9. If E is a set of finite perimeter, then for every x ∈ bdry∗(E), the
triplet (a, b, n) as in Definition 3.3 can be chosen to be (0, 1, n(x)); with this
choice, n(x) is uniquely determined and is called the measure-theoretic normal
to E at x. Equations (14) then imply the following well known formulas:

lim
ρ→0

κ−1
n ρ−nLn(E ∩B+(x, ρ, n))= 0,

lim
ρ→0

κ−1
n ρ−nLn(B−(x, ρ, n)∼ E))= 0,

where n= n(x). One has

D1E = nHn−1 bdry∗ E .

Thus, even 1E ∈ SBV(Rn,R).

Definition 3.10 [Ziemer 1989, Definition 5.10.1]. A bounded open set �⊂ Rn is
said to be an admissible domain if it has a finite perimeter and the following two
conditions are satisfied:

(i) Hn−1(bdry B ∼ bdry∗ B)= 0.

(ii) There exists a constant M , and for each x ∈ bdry�, there is a ball B(x, r)
with

Hn−1(bdry∗ E ∩ bdry∗�)≤ MHn−1(�∩ bdry∗ E)

whenever E ⊂ cl�∩B(x, r) is a set of finite perimeter. �

Each open bounded set with lipschitzian boundary is an admissible domain
[Ziemer 1989, Remark 5.10.2]. The following two theorems describe the main
virtues of admissible domains:

Theorem 3.11 (see [Ziemer 1989, Section 5.10]). If � is an admissible domain
and g ∈ BV(�,Rm), then there exist an Hn−1-measurable map gbdry� on bdry�
such that ∫

�

g · div T dLn
+

∫
�

T · dDg =
∫

bdry(�)
T n · gbdry� dHn−1

for every class-1 map T on � with values in Mm×n that has a continuous extension
(again denoted by T ) to cl�, where n is the measure-theoretic normal to �. There
exists a c ∈ R depending only on � such that∫

bdry�
|gbdry�| dHn−1

≤ c|g|BV(�,Rm).
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The map gbdry� is determined to within a change on a set of Hn−1-measure 0 and
is called the trace of g. One has

lim
r→0

κ−1
n r−n

∫
B( y,r)∩�

|g− gbdry�( y)| dLn
= 0 (17)

for Hn−1 almost every point y of bdry�.

Theorem 3.12 (cf. [Ziemer 1989, Lemma 5.10.4]). If � is an admissible domain
and g ∈ BV(�,Rm), then the extension g0 of g to Rn equal to 0 outside � satisfies
g0 ∈ BV(Rn,Rm),

Dg0 = Dg− gbdry�⊗ nHn−1 bdry�,

and there exists a c ∈ R depending only on � such that

|g0|BV(Rn,Rm) ≤ c|g|BV(�,Rm).

4. The BV setting of structured deformations

For the purpose of the approximation theorem and the limit relation (as stated in
Section 1), we enlarge the set SBV(�,Rm)× L1(�,Mm×n) of structured deforma-
tions of Choksi and Fonseca [1997] to form the set BV(�,Rm)× L1(�,Mm×n).
We furthermore interpret the elements g ∈ SBV(�,Rm) as the macroscopic de-
formations of the body � with macroscopic crack site J (g). We note that the
space of structured deformations (K, g, G) of Del Piero and Owen [1993] as de-
scribed in Section 1 with K = ∅ is a subset of SBV(�,Rm)× L1(�,Mm×n) ⊂

BV(�,Rm)× L1(�,Mm×n). In a general, (g, G) ∈ BV(�,Rm)× L1(�,Mm×n),
the map g is the possibly discontinuous macroscopic displacement, of the body �
and G is a microscopic disarrangement as explained in the introduction and in
accord with the original papers by Del Piero and Owen [1993; 1995].

5. Proof of the approximation theorem

The proof of the Approximation Theorem is based on the decomposition of Rn

into the disjoint union of sufficiently small cubes of equal edge length and with
faces parallel to the natural coordinate planes in Rn . Various maps involved in the
construction are then approximated by (generally) discontinuous maps constant on
the cubes (as in the present section) or by discontinuous maps linear on the cubes
(as in the Appendix below).

For each positive integer k, consider the decomposition of Rn into the system of
cubes

C(k, p) := C/k+ p, p ∈ Zn/k, (18)
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where C := [0, 1)n , C/k := {x/k : x ∈ C}, Zn is the set of n tuples of integers, and
Zn/k := {z/k : z ∈ Zn

}.
Let e1, . . . , en be the natural orthonormal basis in Rn .

Lemma 5.1. Let k be a positive integer, let f ∈ C∞0 (R
n,Rm), and let p, q ∈ Zn/k

be such that P := C(k, p) and Q := C(k, q) are two adjacent cubes sharing
the common face F := cl P ∩ cl Q 6= ∅ of normal n pointing from P to Q. Let
m : P ∪ Q→ Rm be defined by

m(x)=
{

a if x ∈ P,
b if x ∈ Q,

where

a = kn
∫

P
f dLn and b= kn

∫
Q

f dLn (19)

are the averages of f over the two cubes. Then m ∈ SBV(int(P ∪ Q),Rm),

Dm = (b− a)⊗ nHn−1 F, Dam = 0, (20)

and

M(Dm)≤
∫

P∪Q
|Dn f | dLn, (21)

where Dn f is the directional derivative of f in the direction n.

Proof. We only prove (21) since the other assertions of the lemma are immediate.
Let x ∈ P be arbitrary, and denote y(x) := x+ n/k so that y(x) ∈ Q. Then

f ( y(x))− f (x)= k−1
∫ 1

0
Dn f (x+ tn) dt,

and hence,

| f ( y(x))− f (x)| ≤ k−1
∫ 1

0
|Dn f (x+ tn)| dt. (22)

We have

U :=
∣∣∣∣∫

Q
f dLn

−

∫
P

f dLn
∣∣∣∣= ∣∣∣∣∫

P
f ( y(x)) dLn(x)−

∫
P

f (x) dLn(x)
∣∣∣∣

≤

∫
P
| f ( y(x))− f (x)| dLn(x).

Consequently, integrating (22) over P , we obtain
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U ≤ k−1
∫ 1

0

∫
P
|Dn f (x+ tn)| dLn(x) dt = k−1

∫ 1

0

∫
P+tn
|Dn f | dLn dt

≤ k−1
∫ 1

0

∫
P∪Q
|Dn f | dLn dt

= k−1
∫

P∪Q
|Dn f | dLn

;

the last inequality above follows from P + tn⊂ P ∪ Q for each t ∈ [0, 1]. Multi-
plying the just proved inequality∣∣∣∣∫

Q
f dLn

−

∫
P

f dLn
∣∣∣∣≤ k−1V, V :=

∫
P∪Q
|Dn f | dLn,

by kn , we obtain
|b− a| ≤ kn−1V,

and a combination with (20)1 provides that the total variation (measure) |Dm| sat-
isfies

|Dm| = |b− a|Hn−1 F ≤ kn−1VHn−1 F.

Integrating over Rn , we obtain

M(Dm)= |Dm|(Rn)≤ kn−1VHn−1(F)= V,

which is (21). �

Proposition 5.2. Let f ∈C∞0 (R
n,Rm). There exists a sequence mk ∈ SBV(Rn,Rm)

such that

mk→ f in L1(Rn,Rm), (23)

Damk = 0 on Rn for all k = 1, . . . , (24)

and

M(Dmk)≤ 2n
∫

Rn
|D f | dLn. (25)

Proof. For each positive integer k, consider the decomposition of Rn into the system
of cells as in (18). Let mk : Rn

→ Rn be defined by

mk(x)= f (k, p) (26)

for each x ∈ Rn , where p ∈ Zn/k is uniquely determined by the requirement that
x ∈ C(k, p) and where

f (k, p)= kn
∫

C(k, p)
f dLn.
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Then mk is piecewise constant, with all points of jump discontinuity contained in
the union

n⋃
i=1

⋃
l∈Z/k

Pk,i,l,

where

Pk,i,l = {x ∈ Rn
: x · ei = l}

for any l ∈ Z/k. Here for each i = 1, . . . , n, the system

Sk,i = {Pk,i,l : l ∈ Z/k}

forms an equidistant system of parallel planes perpendicular to ei .
We now fix k = 1, . . . and i = 1, . . . , n and denote by Sk,i ⊂ Rn the union of the

system Sk,i of planes perpendicular to ei . Next we apply Lemma 5.1 to each pair
of adjacent cubes C(k, p) and C(k, q) with p, q ∈ Zn/k sharing a common face
perpendicular to ei . Summing the inequality (21) over all such pairs, we obtain

M(Dmk Sk,i )≤ 2
∫

Rn
|Dei f | dLn,

where Dei f is the directional derivative of f in the direction ei . Summing over all i ,
we obtain (25). Relation (23) follows immediately from the well known properties
of the piecewise-constant approximations on system of cubes of decreasing edge
length. Finally (24) follows from the piecewise-constant character of mk . �

Proof of the approximation theorem. By Alberti’s theorem (Theorem 3.7), there
exists h ∈ SBV(�,Rm) such that

Dah = G on �. (27)

Put l := g − h, which is an element of BV(�,Rm). Since � is an admissible
domain, the extension l0 of l to Rn equal to 0 outside � satisfies l0 ∈ BV(Rn,Rm)

by Theorem 3.12. Let fk be a sequence of mollifications of l0 on Rn with the
mollification parameter tending to 0 so that fk ∈ C∞0 (R

n,Rm),∫
Rn
|D fk | dLn

≤M(Dl0), (28)

fk→ l0 in L1(Rn,Rm),

and hence in particular

fk |�→ l in L1(�,Rm). (29)
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Applying Proposition 5.2 with f replaced by fk , we find that for each k there exists
an mk ∈ SBV(Rn,Rm) such that

|mk − fk |L1(Rn,Rm) < 1/k, (30)

Damk = 0 on Rn, (31)

and

M(Dmk)≤ 2n
∫

Rn
|D fk | dLn. (32)

We put
gk = mk |�+ h

for k = 1, . . . so that gk ∈ SBV(�,Rm). Equations (29) and (30) imply

mk |�→ l in L1(�,Rm) as k→∞,

and hence, we have (4)1. Further, (31) and (27) imply (4)2. Finally, (32), (28), and
h ∈ SBV(�,Rm) imply (5). Assertion (6) then follows by an easy argument that
is left to the reader. �

6. Proof of the limit relation

Lemma 6.1. Let � be bounded, let g be a map (not a class of equivalence)
in BV(�,Rm), let x ∈�, and let ε > 0 be such that B(x, ε)⊂�. Then for L1 almost
every ρ ∈ (0, ε), g| bdry B(x, ρ) is the trace of g|B(x, ρ) ∈ BV(B(x, ρ,Rm).

Proof. By the Lebesgue differentiation theorem, there exists a Borel set E ⊂ �
with Ln(E)= 0 such that for every y ∈�∼ E we have

lim
r→0

κ−1
n r−n

∫
B( y,r)∩�

|g− g( y)| dLn
= 0. (33)

Since by Fubini’s theorem

0= Ln(E)=
∫
∞

0
Hn−1(E ∩ bdry B(x, ρ)) dL1(ρ),

we see that for L1 almost every ρ > 0 we have

Hn−1(E ∩ bdry B(x, ρ))= 0.

For every such a ρ ∈ (0, ε), we have (33) for Hn−1 almost every y ∈ bdry B(x, ρ)
and hence in particular also

lim
r→0

κ−1
n r−n

∫
B( y,r)∩B(x,ρ)

|g− g( y)| dLn
= 0



ON THE APPROXIMATION THEOREM FOR STRUCTURED DEFORMATIONS 97

since B(x, ρ)⊂�. A comparison with (17) of Theorem 3.11 written for� replaced
by B(x, ρ) shows that g( y) coincides with the trace of g|B(x, ρ) for Hn−1 almost
every y ∈ bdry B(x, ρ). �

Proof of the limit relation. Let us extend g and gk by 0 outside �. We first
note that by (7)1 we may pass to a subsequence of gk (not relabeled) such that
|g− gk |L1(�,Rm) < 2−k so that the function

ϕ(x)=
∞∑

k=1

|g(x)− gk(x)|

satisfies ∫
�

ϕ dLn
≤ 1. (34)

Let x ∈� be fixed, and let ε > 0 be any number satisfying B(x, ε)⊂�. Since∫
∞

0

∫
bdry B(x,ρ)

ϕ dHn−1 dρ =
∫
�

ϕ dLn
≤ 1

by (34), there exists a subset N1 of (0, ε) with L1(N1)= 0 such that∫
bdry B(x,ρ)

ϕ dHn−1
≡

∞∑
k=1

∫
bdry B(x,ρ)

|g− gk | dHn−1 <∞ (35)

for every ρ ∈ (0, ε)∼ N1. Hence, for every ρ ∈ (0, ε)∼ N1, we have∫
bdry B(x,ρ)

|g− gk | dHn−1
→ 0

and hence

gk→ g (36)

in the Lebesgue space L1(bdry B(x, ρ),Hn−1) on bdry B(x, ρ) relative to the mea-
sure Hn−1. By Lemma 6.1, for every k = 1, . . . , there exists a subset Mk of (0, ε)
with L1(Mk) = 0 such that for every ρ ∈ (0, ε) ∼ Mk the restriction of the map
gk | bdry B(x, ρ) is the trace of gk |B(x, ρ) ∈ BV(B(x, ρ),Rm). Let

N = N1 ∪

∞⋃
k=1

Mk,

so that L1(N )= 0. For every ρ ∈ (0, ε)∼ N , we have∫
bdry B(x,ρ)

ϕgk ⊗ n dHn−1
=

∫
B(x,ρ)

gk ⊗Dϕ dLn
+

∫
B(x,ρ)

ϕ dDgk (37)
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for all k = 1, . . . and for any ϕ ∈ C∞0 (R
n) where n is the normal to B(x, ρ). The

limit using (36), (7)1, and (6) then gives∫
bdry B(x,ρ)

ϕg⊗ n dHn−1
=

∫
B(x,ρ)

g⊗Dϕ dLn
+

∫
B(x,ρ)

ϕ dDg, (38)

and hence, g| bdry B(x, ρ) is the trace of g|B(x, ρ) ∈ BV(B(x, ρ),Rm) for every
ρ ∈ (0, ε)∼ N . In particular, for ϕ ≡ 1 on Rn , we obtain from (37) and (38)

Dgk(B(x, ρ))→
∫

bdry B(x,ρ)
g⊗ n dHn−1

= Dg(B(x, ρ)),

i.e.,

Dgk(B(x, ρ))→ Dg(B(x, ρ))

as k→∞ for each ρ ∈ (0, ε)∼ N .8 Combining with (7)2, we then obtain

(Dgk −Da gk Ln �)(B(x, ρ))→ (Dg− G Ln �)(B(x, ρ)) (39)

as k→∞; noting that

Dgk −Da gk Ln �= [gk]⊗ nkHn−1 J (gk),

where [gk] is the jump of gk on J (gk) and nk is the normal to J (gk), we see that
(39) reads

lim
k→∞

∫
J (gk)∩B(x,ρ)

[gk]⊗ nk dHn−1
= Dg(B(x, ρ))−

∫
B(x,ρ)

G dLn (40)

for every ρ ∈ (0, ε)∼ N . This holds for every x ∈� where N = N (x). Dividing
(40) by κnρ

n and using that (16) and

G(x)= lim
ρ→0

κ−1
n ρ−n

∫
B(x,ρ)

G dLn

hold simultaneously for Ln almost every x ∈ �, we see that for every such an x
we have

lim
ρ→0

ρ∈(0,ε)∼N

lim
k→∞

∫
J (gk)∩B(x,ρ)

[gk]⊗ nk dHn−1
= Da g− G(x),

i.e., (8) holds. �

8 This is otherwise not a direct consequence of (6).
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Appendix: Elementary proof of a weaker form
of the approximation theorem

We here outline a proof of the following form of the approximation theorem without
using Alberti’s theorem:

Theorem A.1. If � is an admissible domain and

(g, G) ∈ BV(�,Rm)× L1(�,Mm×n),

then there exist two sequences mk, hk ∈ SBV(�,Rm) such that

mk→ g in L1(�,Rm) and Damk = 0 over �, (1)

hk→ 0 in L1(�,Rm) and Dahk→ G in L1(�,Mm×n), (2)

and

sup{M(Dmk) : k = 1, . . . }<∞ and sup{M(Dhk) : k = 1, . . . }<∞; (3)

consequently, the sequence gk = mk + hk ∈ SBV(�,Rm) satisfies

gk→ g in L1(�,Rm) and Da gk→ G in L1(�,Mm×n) (4)

and

sup{M(Dgk) : k = 1, . . . }<∞ and Dgk ⇀
∗ Dg in M(�,Mm×n).

Proof outline. We denote by g0 the extension of g to Rn equal to 0 outside �.
Since � is an admissible domain, we have g0 ∈ BV(Rn,Rm) by Theorem 3.12. Let
fk be a sequence of mollifications of g0 on Rn with the mollification parameter
tending to 0. Applying Proposition 5.2 in the same way as in the proof of the
approximation theorem (Section 1), we find a sequence mk ∈ SBV(Rn,Rm) such
that | fk−mk |L1(Rn,Rm)< 1/k. The sequence mk |� (again denoted mk) then satisfies
(1) and (3)1.

Next, let G0 be the extension of G to Rn equal to 0 outside �, and put

hk(x)= G(k, p)(x− x(k, p))

for any x ∈ Rn where p ∈ Zn/k is uniquely determined by the requirement x ∈
C(k, p), x(k, p) is the barycenter of C(k, p), and

G(k, p)= kn
∫

C(k, p)
G dLn.

Then hk is easily seen to satisfy (2) and (3)2. �
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