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The responses of dynamical systems under random forcings is a well-understood
area of research. The main tool in this area, as it has evolved over a century, falls
under the heading of stochastic differential equations. Most works in the liter-
ature are related to random forcings with a known parametric spectral density.
This paper considers a new framework: the Cauchy and Dagum covariance func-
tions indexing the random forcings do not have a closed form for the associated
spectral density, while allowing decoupling of the fractal dimension and Hurst
effect. On the basis of a first-order stochastic differential equation, we calculate
the transient second-order characteristics of the response under these two covari-
ances and make comparisons to responses under white, Ornstein–Uhlenbeck,
and Matérn noises.

1. Introduction

A vast amount of research in mathematics, physics, and mechanics has, since the
time of Einstein, Langevin, and Smoluchowski, been motivated by the responses
of dynamical systems under random forcings. The main tool used in this area, as it
has evolved over a century of investigations, falls under the heading of stochastic
differential equations. While it seems that linear stochastic dynamical systems (that
is, those governed by linear differential equations) form a very well-established
body of knowledge, the subject of such systems driven by wide-sense stationary
(WSS) random noises with no Fourier transforms has not been explored. The point
is that, when dealing with a WSS process, all studies tacitly assume a spectral
density exists. However, this is not that case with WSS processes — and, generally,
WSS random fields in R3 — with either Cauchy [Gneiting and Schlather 2004] or
Dagum [Porcu et al. 2007] covariance functions. An additional intriguing fact
about the Cauchy and Dagum functions is that they can model fractal as well as
Hurst effects. Roughly speaking, the former is a roughness measure of a profile
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(that is, a realization on the real line) or surface of Rn , whilst the latter reflects
possible long-memory dependence in a time series or a random field.

The celebrated works [Matheron 1965; Stein 1999; Christakos 2000] (along with
the references therein) illustrate how several properties of random fields enjoying
Cauchy or Dagum covariance can be studied through their correlation functions.
In particular, the local and global behavior is sketched in the next sections.

While fractals are quite well known as “those enchanting, self-similar things”
[CFA], the Hurst effect, being less well known, warrants a few words here. The
effect is modeled by an exponent H , which, in the context of a time series, is a
measure of long-term memory. While 0 < H < 0.5 indicates a time series with
negative autocorrelation (for example, a decrease between values will likely be
followed by an increase), 0.5< H < 1 indicates a time series with positive auto-
correlation (an increase between values followed by another increase). The case
H = 0.5 indicates a true random walk, where there is no preference for a decrease
or increase following any particular value.

We consider the transient response of a linear, time-invariant system obeying
the equation

cX ′+ k X = c(β + γ t)U (t)F(t),

X (0)= 0,
(1)

to a wide-sense stationary random excitation F(t) having either a white noise,
Ornstein–Uhlenbeck (OU), Matérn, Cauchy, or Dagum covariance function. In (1)
c, k, β, and γ are deterministic constants, while U (t) is the Heaviside function:

U (t) :=
{

1 if t > 0,
0 if t < 0.

(2)

Letting a = k/c and Y (t)= (β + γ t)U (t)F(t) we have

X ′+ aX = Y (t). (3)

It is easy to see that the specific solution X (t) of the above ordinary differential
equation can be expressed as

X (t)=
∫ t

0
ha(t − τ)Y (τ ) dτ, (4)

where ha(t)= e−atU (t), a > 0, is the elementary solution of this ordinary differ-
ential equation. We assume that E[F(t)] = 0, which in turn implies E[X (t)] = 0.
For simplicity, we shall make use of the special case β = 1, γ = 0 in most parts of
the paper, without loss of generality.

Our objective in this study is to determine the second-order characteristics of
X (t) (and make relative comparisons), assuming that F(t) is a Gaussian random
process with either a white noise, OU, Matérn [Matérn 1986], generalized Cauchy
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[Gneiting and Schlather 2004], or Dagum [Porcu et al. 2007] covariance function.
The intriguing thing about generalized Cauchy and Dagum covariances is that they
are natural decouplers of fractal dimension and Hurst effects, in the sense that
the associated Gaussian random process is not self-similar. This, in turn, has con-
siderable advantages from the statistical viewpoint, since the parameters indexing
fractal dimension and the Hurst effect can be estimated separately. For many facts
on these classes of covariance functions and their properties in terms of fractal
dimension and the Hurst effect, the reader is referred to the survey in [Porcu and
Stein 2012].

Of course, white noise and Matérn have no Hurst effects (and white noise is
not even a fractal). We include them in our study because the former is the most
well-known random noise, while the latter is proposed as superior for multiscale
modeling.

The plan of the paper is as follows: In Section 2 we review the basic facts on the
covariance functions of Cauchy and Dagum types, including their fractal dimen-
sions and Hurst effects. In Sections 3 and 4, respectively, we compute the variance
and correlation structure of responses X (·) for five different random forcings F(·).

2. Background

2.1. Covariance functions, fractal dimension, and the Hurst effect. This section
is largely expository and reports the basic facts needed for a better understanding
of the subsequent sections. As stated through Section 1, the process F(·) in (1) is
a zero-mean second-order stationary Gaussian random process defined on the real
line, so that its distribution is completely specified by its associated covariance
function C( · , ·) : R×R→ R, defined as

C(t1, t2) := Cov(F(t1), F(t2)), t1, t2 ∈ R.

As a consequence of the assumption of second-order stationarity, there exists a
mapping CF : R+ ∪ {0} → R such that

C(t1, t2)= CF (|t1− t2|).

Such a framework allows us to identify some important properties of the random
processes we want to study.

The local properties of a time series or a surface of Rn are related to the frac-
tal dimension, D, which is a roughness measure with range [n, n + 1). Higher
values indicate rougher surfaces. Long memory in a time series or spatial data is
associated with power law correlations, and is often referred to as the Hurst effect.
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Long-memory dependence is characterized by the H parameter [Mateu et al. 2007].
Let us see how these properties relate to those of the associated correlation function.

As far as the local behavior is concerned, in the weakly stationary (read: second-
order stationary) case, if, for some α ∈ (0, 1),

lim
r→0

(CF (0)−CF (r))r−α = K , 0< K <∞, r > 0, (5)

then, with probability one, the random process F(·) satisfies

D = dim(Gr F)=min
( 1
α/2

, 1−α/2
)
,

where, as before, CF denotes the covariance function of F . Here, Gr F denotes
graph(F)= {(t, F(t)), t ∈ [−1, 1]} ⊂ R2. Thus, the estimate of α determines that
of the fractal dimension D. Equation (5) refers to the issue of scaling laws, which
describe the way in which rather elementary measurements vary with the size of
the measurement unit, and we refer to [Hall and Wood 1993] for a detailed analysis
of the relation between the fractal index α and the fractal dimension D, as well as
to the work in [Adler 1981] on Gaussian index-β random fields, with β = α/2 in
this case.

On the other hand, if, for some β ∈ (0, 1),

lim
r→∞

CF (r)r−1+β
= 1, (6)

then the process is said to have long memory, with Hurst coefficient H = β/2. For
H ∈ (1/2, 1) or H ∈ (0, 1/2) the correlation is said to be, respectively, persistent or
antipersistent. In the spectral domain, under the conditions stated in the tauberian
and abelian theorems, the interpretation of parameters α and β is given in the
opposite fashion, so that the same properties can be studied with respect to the
Fourier transform of the covariance function, called the spectral density. Basically,
the parameter α is associated with the velocity of decay of the spectral density,
while the parameter β is associated with the local behavior of the spectral density
in the neighborhood of zero frequencies.

2.2. Parametric classes for the process F(·). Throughout the paper we shall ex-
amine how the response X (·) is affected by random excitation and in what ways it
is sensitive to specific classes of covariance functions that allow (or don’t allow) it
to index fractal dimensions and the Hurst effect. We shall make use of the following
functions:

(i) White noise. In this case F is a Gaussian white noise, and its covariance is
written as

CWN(r) := δ(r), r > 0, (7)

with δ denoting the Dirac delta function.
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(ii) Ornstein–Uhlenbeck. In this case F is an Ornstein–Uhlenbeck process (de-
noted F = OU), and its covariance function is of the negative exponential
type. It is written as follows:

COU(r; ν) :=
ν

2
e−νr , r > 0, (8)

where ν is a positive scaling parameter and where we parametrized COU in
such a way that

lim
ν→∞

COU( · ; ν)= CWN(·).

(iii) Matérn [1986]. A Gaussian process F has a Matérn covariance if

CM(r; ν) := rνKν(r), r > 0, (9)

where ν is a parameter that determines the smoothness at the origin of CM,
and thus the mean square differentiability of F . Here Kν is a modified Bessel
function of order ν. Special cases of interest are
• CM(r; 1/2)= e−r ,
• CM(r; 3/2)= (1+ r)CM(r; 1/2), and
• CM(r; 5/2)= (1+ r + 3r2/2)CM(r; 1/2).

(iv) Generalized Cauchy [Gneiting and Schlather 2004]. In this case,

CC(r; θ, η) := (1+ r θ )−η/θ , (10)

where η > 0 and 0< θ 6 2 are necessary and sufficient conditions for positive
definiteness. Special cases of this class will also be of interest. In particular,
CC( · , 2, γ ) is the characteristic function of the symmetric Bessel distribu-
tion, CC( · , α, α) is the characteristic function of the Linnik distribution, and
CC( · , 1, γ ) is the symmetric generalized Linnik characteristic function [Ruiz-
Medina et al. 2011].

(v) Dagum [Porcu et al. 2007]. In this case,

CD(r; δ, ε) := 1− (1+ r−δ)−ε/δ, (11)

where 0<ε <δ and 0<δ6 2 are sufficient conditions for positive definiteness.

Some comments are in order. The Cauchy and Dagum models have been chosen
for the present study because they allow us to treat independently the fractal dimen-
sion D and the Hurst effect H of their associated random process F . In particular,
it can be shown [Gneiting and Schlather 2004] that the Cauchy covariance in (10)
behaves like (5) for θ ∈ (0, 2] and like (6) for η ∈ (0, 1), whilst the Dagum model
in (11) behaves like (5) for ε ∈ (0, 2] and like (6) for δ ∈ (0, 1), although some
caution is needed because we work under the restriction ε ≤ δ. Anyway, another
sufficient condition is δ ∈ (0, 2] and ε ∈ (0, 1] [Mateu et al. 2007]. Another useful
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sufficient condition in R3 is θ < (7− ε)/(1+ 5ε) and ε < 7. Since these two
models decouple (D, H), the associated random process will not be self similar in
the sense of Mandelbrot, and in general we shall have D+ H 6= 2 (recall that we
are working with profiles here).

The Matérn covariance in (9) indexes the fractal dimension D but has light tails,
so that it is not useful for indexing phenomena with long-range dependence.

3. The variance of X (·)

Equation (4) implicitly shows that the variance of the response X is evolutionary
in time (that is, nonstationary). Assuming β = 1 and γ = 0, we have

E[X2(t)] =
∫ t

0

∫ t

0
CF (t1− t2)ha(t − t1)ha(t − t2) dt1 dt2, (12)

with ha defined through (4) and where CF is the covariance function associated
with F , which can be one of the five choices proposed in previous section.

Let us now show how these variances vary from one case to another.

(i) White noise. If CF = CWN, the calculation of the variance in (4) is straight-
forward. In fact, if F = WN we have E[F] = 0 and S(ω) = S0 <∞, where S
denotes the Fourier transform of CWN and S0 is an arbitrary constant. Without loss
of generality, we let S0 = 1/(2π) so that∫

+∞

−∞

CWN(t) dt = 1.

We thus have (see [Elishakoff 1983, Equation (9.104), p. 348])

E[X2(t)] = 2π S0e−2at
{
β2

2a
(e2at
− 1)+ 2βγ

[
e2at

4a2 (2at − 1)+
1

4a2

]
+
γ 2

4a3 (e
2at(2a2t2

− 2at + 1)− 1)
}
.

(ii) Ornstein–Uhlenbeck. In the case F = OU , the variance of X (t) is

E[X2(t)] =
∫ t

0

∫ t

0
COU(t1− t2)ha(t − t1)ha(t − t2) dt1 dt2.

Direct computation yields the following special cases:

if a= ν= 1, E[X2(t)] = 1
4
−

1
4

e−2t(1+ e2t),

if a= 1, ν 6= 1, E[X2(t)] = 1
−1+ν

e−tν sinh(t),

if a 6= 1, a 6= ν, E[X2(t)] =
ν

2(a3−aν2)
[a−ν+(a+ν)e−2at

−2ae−(a+ν)t ].
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Figure 1. The variances of the response X (t) under white noise and
Ornstein–Uhlenbeck (OU) forcings. The white noise curve overlaps
with the OU process curves for ν = 10,000 and ν = 500.

Figure 1 depicts E[X2(t)] with different values of ν and compares it with the vari-
ance from the white noise. Here we let a = 1. Note that the variance caused by the
OU process goes to the variance caused by the white noise when ν is large enough
for F(t) approaching white noise.

(iii) Matérn. If CF =CM, the calculation of the variance is not available in a closed
form due to the presence of the modified Bessel function K in (9). Thus, we choose
the case CF = CM( · ; 3/2) so that, for a 6= 1,

E[X2(t)] =
∫ t

0

∫ t

0
CM(t1− t2; 3/2)ha(t − t1)ha(t − t2) dt1 dt2

=

∫ t

0

(∫ t2

0
+

∫ t

t2

)
CM(t1− t2; 3/2)e−a(t−t1)e−a(t−t2) dt1 dt2

=
a

(a2− 1)2
[2− 3a+ a3

+ e−2t(−2− 3a+ a3)+ e−t−t/a(6a− 2a3
+ 2t − 2a2t)].

For a = 1, a straightforward computation gives

E[X2(t)] = 1
4 (3+ e−2t(−2t2

− 6t − 3)).

The same calculations can be performed using the Fourier transform of the Matérn
function and then invoking basic Fourier calculus; the details are omitted for the
sake of simplicity.
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(iv) Generalized Cauchy. If CF (·)= CC( · , θ, η) then

E[X2(t)] =
∫ t

0

∫ t

0
CC(t1− t2; θ, η)ha(t − t1)ha(t − t2) dt1 dt2.

For θ = η = 1, we get

E[X2(t)] = 1
2a

e−a(2t+1)

×
[
E1(−2a(t+1))−E1(−2a)−2e2a(t+1)(Ei(−a)−Ei(−a(t+1))

)
−2Ei(a(t+1))+Ei(2a(t+1))+2Ei(a)−Ei(2a)

]
,

where

Ei(z) := −
∫
∞

−z
e−t/t dt, En(z) :=

∫
∞

1
e−zt/tn dt.

For θ = η = a = 1, we obtain

E[X2(t)] = e(−Ei(−1)+Ei(−1− t))+ e−(1+2t)(Ei(1)−Ei(1+ t)).

(v) Dagum. If CF (·)=CD( · ; δ, ε), we cannot get an explicit formula for E[X2(t)],
but by numerical computation of (12) using Matlab we obtain the plots in Figure 2.
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Figure 2. Variances under various forcings: Matérn, Cauchy (η = 0.8,
θ = 1.6; η = 0.4, θ = 0.6; and η = 1.0, θ = 1.0), Ornstein–Uhlenbeck
(ν= 10,000), white noise, and Dagum (ε= 0.8, δ= 1.6; ε= 0.4, δ= 0.6;
and ε = 0.5, δ = 1.0).
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4. Correlation structure of the response X (·)

The correlation function of the response can be readily calculated as follows (recall
that, by construction, E[X (·)] = 0):

CX (t1, t2) : = E[X (t1)X (t2)]

= E

[∫ t1

0
Y (τ1)ha(t1− τ1) dτ1

∫ t2

0
Y (τ2)ha(t2− τ2) dτ2

]
=

∫ t2

0

∫ t1

0
E[Y (τ1)Y (τ2)]ha(t1− τ1)ha(t2− τ2) dτ1 dτ2

=

∫ t2

0

∫ t1

0
9(τ1, τ2)CF (τ1, τ2)ha(t1− τ1)ha(t2− τ2) dτ1 dτ2, (13)

where CF (τ1, τ2) is the covariance function of F(t) and where

9(t1, t2) := (β + γ t1)(β + γ t2)U (t1)U (t2).

(i) White noise. If CF = CWN, the calculation of CX can be deduced from (13) and
the fact that

CY (t1, t2)=9(t1, t2)CWN(t1, t2).

Also, keeping in mind that

δ(τ1− τ2)= 0 if τ1 6= τ2

if t1 > t2, we see that

CX (t1, t2)=
∫ t2

0

∫ t1

0
CY (τ1, τ2)ha(t1− τ1)ha(t2− τ2) dτ1 dτ2

= e−a(t1+t2)
∫ t2

0
(β + γ τ2)

2e2aτ2 dτ2

= e−a(t1+t2)
{
β2

2a
(e2at2 − 1)+ 2βγ

[
e2at2

4a2 (2at2− 1)+
1

4a2

]
+
γ 2

4a3 (e
2at2(2a2t2

2 − 2at2+ 1)− 1)
}

= e−a(t1−t2)E[X (t2)2].

We can then repeat the same procedure when t1 < t2 in order to deduce

CX (t1, t2)=
{

e−a(t1−t2)E[X (t2)2] if t1 > t2,
e−a(t2−t1)E[X (t1)2] if t1 < t2.
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From the equations above, if we let γ = 0, we can see that when t1 and t2 are large
enough,

CX (t1, t2)≈ CX (t2, t1)≈ e−a|t1−t2|β
2

2a
,

which shows that the random process is homogeneous (that is, WSS). We see that
this correlation function is different from the correlation function of white noise.

(ii) Ornstein–Uhlenbeck. In the case F = OU , we determine the correlation func-
tion of X (t) as follows.

If a = ν = 1,

CX (t1, t2)=


1
4 [e
−t1+t2(t1− t2+ 1)+ e−t1−t2(−t1− t2− 1)] if t1 > t2,

1
4 [e
−t2+t1(t2− t1+ 1)+ e−t2−t1(−t2− t1− 1)] if t1 < t2,

which shows that CX is symmetric.
If a = 1, ν 6= 1, we get

CX (t1, t2)=


νe−(1+ν)(t1+t2)

2(−1+ ν2)
[eνt1+t2 + et1+νt2 − et1+t2+2νt2

+ eν(t1+t2)(−1− ν+ νe2t2)] if t1 > t2,

CX (t2, t1) if t1 < t2.

Finally, if a 6= 1 and a 6= ν,

CX (t1, t2)=
ν

2a(a2− ν2)

[
a(e−a(t1+t2)− e−νt1−at2 − e−at1−νt2 + e−ν(t1−t2))

+ ν(e−a(t1+t2)− e−a(t1−t2)
]

if t1 > t2,

and the symmetric extension follows when t1 < t2.
Figure 3 shows the correlation function of the response from the OU process.

Note that, as ν becomes large, the correlation function of X (t) approaches the
covariance of the response to the white noise excitation.

(iii) Matérn. If CF = CM( · ; ν = 3/2), we can find the autocorrelation function
of X (t) by direct inspection. The correlation is symmetric, so we do not give the
symmetry extensions for all the cases.

If a 6= 1, we easily get

CX (t1, t2)=
1

2a(−1+ a2)2

{
(−2+ a)(1+ a)2[e−2at2 + e−a(t1+t2)− 1]

+ (−1+a)2(2+a)e−a(t1−t2)− 2a(−3− t1+a2(1+ t1))e(−1+a)t1−2at2

− 2a[−3− t2+ a2(1+ t2)]e−(at1+t2)

− 2a[3+ t1− t2+ a2(−1− t1+ t2)]e(−1+a)(t1−t2)
}

if t1 > t2.



FIRST-ORDER SYSTEMS UNDER MATÉRN, CAUCHY, AND DAGUM EXCITATIONS 37

If a = 1,

CX (t1, t2)= 1
4 {e
−t1−t2[−3− 3(t1+ t2)− (t2

1 + t2
2 )]}

+
1
4 e−(t1−t2)[3+ 3(t1− t2)+ (t1− t2)2] if t1 > t2.

If t1 and t2 are large enough,

CX (t1, t2)≈ 1
4 e−(t1−t2)[3+ 3(t1− t2)+ (t1− t2)2] if t1 > t2,
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Figure 3. The correlation function under the OU forcings at various ν
values (top) and the correlation functions of response X (t) at t1 = 5
under white noise and OU forcings (bottom). The white noise curve
overlaps with the OU process curves for ν = 10,000 and 500.
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and the random process is homogeneous, that is, CX (t1, t2) = CX (|t2 − t1|). We
also observe that, if the excitation correlation function is Matérn, the correlation
function of the response is approximately Matérn.

(iv) Generalized Cauchy. If CF (·)=CC( · , θ, η) then, if the correlation function of
F(t) is Cauchy, we can find the correlation function of X (t) by direct inspection:

CX (t1, t2)= 1
2 e−1−t1−t2[2Ei(1)−Ei(1+ t2)−Ei(1+ t1)]

+
1
2 e1−(t1−t2)[−Ei(−1)+Ei(−1− t2)]

+
1
2 e−1−(t1−t2)[−Ei(1)+Ei(1+ t1− t2)]

+
1
2 e1+(t1−t2)[Ei(−1− t1)−Ei(−1− t1+ t2)] if t1 > t2.

Once again, we omit the case t1 < t2 since it can be deduced by a symmetry
extension. Note that, although Ei(1+ t1) and Ei(1+ t2) go to +∞ when t1, t2→
+∞, the function e−1−t1−t2 decreases more rapidly. Hence, when t1 and t2 are large
enough, the first term goes to zero. When t1, t2→+∞, the functions Ei(−1− t1)
and Ei(−1− t2) are close to zero as well. Therefore, we have

CX (t1, t2)≈ 1
2 e1−(t1−t2)[−Ei(−1)] + 1

2 e−1−(t1−t2)[−Ei(1)+Ei(1+ t1− t2)]

+
1
2 e1+(t1−t2)[−Ei(−1− t1+ t2)] if t1 > t2.

Now we see that

CX (t1, t2)= CX (t2, t1)≈ CX (|t1− t2|)

=
1
2 e1−|t1−t2|[−Ei(−1)] + 1

2 e−1−|t1−t2|[−Ei(1)+Ei(1+ |t1− t2|)]

+
1
2 e1+|t1−t2|[−Ei(−1− |t1− t2|)],

or

CX (t1, t2)= CX (t2, t1)≈ CX (r)

=
1
2 e1−r

[−Ei(−1)] + 1
2 e−1−r

[−Ei(1)+Ei(1+ r)]

+
1
2 e1+r

[−Ei(−1− r)],
(14)

which means that, when t1 and t2 are large enough, the response is homogeneous.
Finally, if r→ 0, from Taylor’s formula we have

CX (r)

=−eEi(−1)+
(
−

1
2−

1
2 eEi(−1)

)
r2
+

1
6 r3
+
(
−

1
8−

1
24 eEi(−1)

)
r4
+

7
120 r5

+O(r6).

Comparing with the Cauchy function,

1
1+r
= 1− r + r2

− r3
+ r4
− r5
+ O(r6),

we see that the response from Cauchy excitation is not Cauchy.
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Figure 4. The correlation functions of response X (t) at t1 = 5 under
various forcings: Cauchy (η = 0.4, θ = 0.6; η = 0.8, θ = 1.6; and
η = 1.0, θ = 1.0), Dagum (ε = 0.4, δ = 0.6; ε = 0.5, δ = 1.0; and
ε = 0.8, δ = 1.6), Matérn, Ornstein–Uhlenbeck (ν = 10,000), and white
noise.

(v) Dagum. In this case no explicit analytical formula for the correlation function
of X (t) can be obtained and one has to proceed by numerical integration of (13).
Figure 4 shows the resulting correlation function compared to those due to the
four other excitations. Since there is no formula analogous to (14), we cannot say
whether the response from Dagum-type excitation is Dagum or not.

5. Conclusions

A study has been conducted of the responses of first-order, linear dynamical sys-
tems under time-stationary random forcings of Cauchy and Dagum types. These
forcings lack explicit parametric spectral densities, yet they allow the decoupling
of the fractal dimension and Hurst effect. Working directly in the time domain,
we find transient second-order characteristics of responses and, for comparison,
we also examine the effects of Gaussian white noise, Ornstein–Uhlenbeck (which
in the limit becomes white noise), and Matérn forcings. Overall, given the same
variance on input, the variance on output is strongest for Matérn, then Cauchy,
then white noise, and finally Dagum forcing. We also find that, if the excitation
correlation function is Matérn, the correlation function of the response is approxi-
mately Matérn. On the other hand, the response due to the Cauchy excitation is not
Cauchy, but, at this stage, we cannot say whether the response due to the Dagum
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excitation (with its fractal and Hurst effects) is Dagum or not. The latter issue
will require further research. An analogous study of the responses of second-order,
linear dynamical systems subjected to Cauchy and Dagum excitations is presently
underway [Shen et al. 2014b].

While the studies reported in the aforementioned paper and in the present work
focused on randomness in the time domain for a one-degree-of-freedom system,
similar studies have been conducted in the spatial domain for static systems. Namely,
responses of elastic rods (or, equivalently, shear beams) [Shen et al. 2015] and
Bernoulli-Euler beams [Shen et al. 2014a] with random field properties and, also
possibly, under random field forcings of either Cauchy or Dagum type have been
compared with those of either linear, exponential, or Matérn. Typically, given the
same variance of the random field, the variance on output is strongest for Matérn.
However, the relative effects of Dagum, Cauchy, linear, and exponential models
depend on the particular loading situation. In a number of cases, the results may
be obtained in explicit (albeit very lengthy) analytical forms, but as Cauchy and
Dagum models are introduced, one has to resort to numerics. Thus, while the intro-
duction of fractal and Hurst effects brings more reality into models of randomness
in time and space domains, it results in more challenging analyses.

Further research is needed in order to evaluate the impact of the proposed frame-
work in terms of the fractal dimension and Hurst effect for the resulting stochastic
structures. Analytically, this is not an easy task. From a statistical viewpoint, it
would be of interest to follow along the lines of [Gneiting and Schlather 2004;
Mateu et al. 2007]: first, simulating Gaussian random processes under the covari-
ances obtained in the present paper, then estimating the fractal dimension and Hurst
effect, and inspecting whether there is any tendency toward decoupling. This will
be an important issue to address in the future.
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