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ON THE APPROXIMATION THEOREM
FOR STRUCTURED DEFORMATIONS FROM BV(�)

MIROSLAV ŠILHAVÝ

This note deals with structured deformations introduced by Del Piero and Owen.
As treated in the present paper, a structured deformation is a pair (g, G) where
g is a macroscopic deformation giving the position of points of the body and G
represents deformations without disarrangements. Here g is a map of bounded
variation on the reference region �, and G is a Lebesgue-integrable tensor-
valued map. For structured deformations of this level of generality, an approx-
imating sequence gk of simple deformations is constructed from the space of
maps of special bounded variation on �, which converges in the L1(�) sense
to (g, G) and for which the sequence of total variations of gk is bounded. The
condition is optimal. Further, in the second part of this note, the limit relation
of Del Piero and Owen is established on the above level of generality. This
relation allows one to reconstruct the disarrangement tensor M of the structured
deformation (g, G) from the information on the approximating sequence.

1. Introduction and results

This paper deals with the geometry of deformation of nonclassical continua mod-
eled as media capable of (first-order) structured deformations introduced by Del
Piero and Owen [1993; 1995].1 The main objective of the theory of structured
deformations is to describe how a continuous body with microstructure will deform
under the applied forces.

In the original setting [Del Piero and Owen 1993; 1995], a structured deforma-
tion is a triplet (K, g, G) of objects whose nature will now be roughly described.
The set K, the crack site, is a subset of vanishing Lebesgue measure of the ref-
erence region �, the map g : � ∼ K→ R3, the deformation map, is piecewise
continuously differentiable and injective, and G is a piecewise continuous map
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from �∼ K to the set of invertible second-order tensors describing deformation
without disarrangements. The following “accommodation inequality” is assumed:

0< m ≤ det G ≤ det Da g

in � ∼ K, with m a suitable constant, where Da g is the classical derivative of g
where it exists.2 Within this context, a classical deformation is the triplet (K, g,Dg)
with g a continuously differentiable injective deformation function and with G :=
Dg = Da g the deformation gradient, where D denotes the derivative (gradient)
operation on differentiable maps. A more general class of structured deformations
is provided by simple deformations, which are triples (K, g,Da g) where g is only
piecewise-smooth injective with jump discontinuities describing partial or full sep-
aration of pieces of the body and G := Da g. In view of these classes, where G
coincides with the deformation gradient, in the general case, the tensor of deficit

M = Da g− G (1)

measures the departure of (K, g, G) from the simple deformation (K, g,Da g).
A substantial step towards a concrete interpretation of the tensor G is offered

by the approximation theorem [Del Piero and Owen 1993, Theorem 5.8]. That
theorem shows that each structured deformation (K, g, G) is a limit of a suitable
sequence of simple deformations (Kk, gk,Da gk) in the sense that

Kk→ K, gk→ g, and Da gk→ G (2)

with suitably defined convergences of the objects in (2). I note that the nontrivial
feature of the proof of the approximation theorem lies in proving the injectivity
of gk . Moreover, Del Piero and Owen [1993] prove the following the limit relation
for the tensor M:

M(x)= lim
ρ→0

lim
k→∞

(4π/3)−1ρ−3
∫

J (gk)∩B(x,ρ)
[gk]⊗ nk dH2, (3)

valid for any sequence (not just the one constructed in the proof of the approxi-
mation theorem) (Kk, gk,Da gk) satisfying (2) and any x ∈�∼ K, where B(x, ρ)
is the open ball of center x and radius ρ, J (gk) is the set of all points of (jump)
discontinuity of gk , [gk] is the jump of gk at the points of J (gk), nk is the normal
to J (gk), and H2 is the area measure.

To apply the relaxation techniques of the calculus of variations, Choksi and
Fonseca [1997] later enlarged the space of structured deformations to contain all

2 Later we shall identify Da g with the absolutely continuous part of the derivative of a map g of
bounded variation.
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pairs (g, G) where g is in3 SBV(�,Rm) and G is in L1(�,Mm×n). Here m and n
are positive integers, the dimensions of the spaces Rm and Rn of dependent and
independent variables, respectively. Thus, in addition to weaker regularity, the
authors relax the injectivity requirement and put the crack site K equal to ∅. (The
cracks are described by the omnipresent discontinuities of g.)

Choksi and Fonseca [1997, Theorem 2.12] prove the following version of the ap-
proximation theorem, which is stated here in a slightly rephrased form as explained
below:

Theorem 1.1. Let �⊂ Rn be a bounded open set, and let (g, G) ∈ L1(�,Rm)×

L1(�,Mm×n). Then there exists a sequence gk in SBV(�,Rm) such that

gk→ g in L1(�,Rm) and Da gk = G over �. (4)

Here Da gk is the absolutely continuous part of the generalized derivative of gk .
The statement of [Choksi and Fonseca 1997, Theorem 2.12] is narrower since (a)
the authors assume, in accord with the overall framework of their paper, that g is in
SBV(�,Rm) and (b) since they replace the equality (4)2 by the weak∗ convergence
in the sense of measures (although they say that they will prove the equality). Their
proof also shows that g ∈ L1(�,Rm) suffices.

In connection with this generality, the question arises: what additional informa-
tion beyond (4) can be imposed on the sequence gk if it is known that g belongs to
the smaller space BV(�,Rm) or even to SBV(�,Rm)? An answer, one of the two
goals of this note, given in the subsequent theorem, is proved for reference regions
represented by admissible domains (which is a mild restriction on �, satisfied, e.g.,
by all open sets with lipschitzian boundary).4

Theorem 1.2 (approximation theorem). If � is an admissible domain in Rn and
(g, G)∈BV(�,Rm)×L1(�,Mm×n), then there exists a sequence gk∈SBV(�,Rm)

such that in addition to (4) the total variation M(Dgk) of gk satisfies

sup{M(Dgk) : k = 1, . . . }<∞; (5)

hence, we have the following convergence (without passing to a subsequence):

Dgk ⇀
∗ Dg in M(�,Mm×n). (6)

3 I use the standard notations for function spaces throughout this introduction: thus, BV(�,Rn)
and SBV(�,Rn) are spaces of Rm -valued maps on � of bounded variation and of special bounded
variation, and L1(�,Rm) and L1(�,Mm×n) are spaces of (Lebesgue-)integrable Rm - or Mm×n-
valued maps on �. M(�,Mm×n) is the space of Mm×n-valued measures on �. The reader is
referred to Sections 2 and 3 below for detailed definitions.

4 See Lemma 5.1 on page 93.
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Thus, the extra information stemming from the inclusion g ∈ BV(�,Rm) is (5).
It is easy to see that, conversely if (g, G)∈ L1(�,Rm)×L1(�,Mm×n) is a pair sat-
isfying (4) and (5) with gk ∈ SBV(�,Rm), then necessarily g ∈ BV(�,Rm); in this
sense, (5) is optimal. (Both directions are very intuitive.) The proof of the bound-
edness in the approximation theorem is based on the observation in Lemma 5.1
below, but otherwise the construction of the sequence essentially follows that of
Choksi and Fonseca.5

The second goal of the present note is to give an analog to the limit relation (3)
in the setting of maps of bounded variation.

Theorem 1.3 (the limit relation). Let � be a bounded open subset of Rn , let
(g, G) ∈ BV(�,Rm)× L1(�,Mm×n), and let gk ∈ SBV(�,Rm) be a sequence
satisfying

gk→ g in L1(�,Rm), Da gk→ G in L1(�,Mm×n), (7)

and (6) (in particular, let gk be the sequence from Theorem 1.2). Then there exists
a subsequence of gk (not relabeled) such that the tensor M (see (1)) satisfies

M(x)= ess lim
ρ→0

lim
k→∞

κ−1
n ρ−n

∫
J (gk)∩B(x,ρ)

[gk]⊗ nk dHn−1 (8)

for almost every point x of �.

Here ess limρ→0 is the essential limit as ρ → 0, i.e., the limit neglecting an
exceptional set of ρ’s of vanishing Lebesgue measure.6 Further, κn is the volume
of the unit ball in Rn , J (gk) is the set of all points of jump discontinuity of gk ,
[gk] is the jump of gk at the points of J (gk), nk is the normal to J (gk), and Hn−1

is the (n− 1)-dimensional Hausdorff measure.7

The Appendix to the present paper also outlines a proof of a weaker version of
the approximation theorem that does not use Alberti’s theorem mentioned above.
In that version, the equality (4)2 is replaced by the convergence (7)2.

2. Preliminaries, notation, and measures

Throughout, n is a positive integer, the dimension of the underlying space Rn , and
m is a positive integer, the dimension of the target space Rm . We denote by a · b the
scalar product in both these spaces and by | · | the euclidean norm. Further, Mm×n

is the set of all linear transformations from Rn to Rm . The value of A ∈ Mm×n

on x ∈ Rn is denoted by Ax. We denote by A · B := tr(ABT) the scalar product

5 In particular, Alberti’s theorem [1991] (Theorem 3.7 below) is used in the same way as in
[Choksi and Fonseca 1997].

6 See the definition in Section 2 below.
7 See Section 3 for precise definitions of these notions.
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in Mm×n , where AT
∈Mn×m is the transpose of A and tr denotes the trace. We

further denote by |A| =
√

A · A the associated euclidean norm.
If f is a map with domain any set M and if N ⊂ M , then f |N denotes the

restriction of f to N .
The interior, closure, and boundary of a set M ⊂ Rn is denoted by int M , cl M ,

and bdry M . As in the introduction, B(x, ρ) denotes the open ball in Rn of center x
and radius ρ. The symbol κn denotes the volume of B(0, 1).

Throughout, let � be an open subset of Rn , later to be restricted by additional
requirements. Let Z be a finite-dimensional inner-product space.

We denote by Ln the Lebesgue measure in Rn [Federer 1969, §2.6.5], and if k
is an integer, 0 ≤ k ≤ n, we denote by Hk the k-dimensional Hausdorff measure
in Rn [ibid., §§2.10.2–2.10.60]; recall that Hn

= Ln . If A ⊂ Rn is a Borel set, we
denote by Hk A the restriction of Hk to A, which is the measure defined by

(Hk A)(B)=Hk(A∩ B) (9)

for each Borel set B ⊂ Rn . If A ⊂ Rn is a Borel set and f a Z -valued Borel
map defined Hk almost everywhere on A, integrable with respect to Hk on A, then
fHk A denotes the Z -valued measure on Rn defined by

( fHk A)(B)=
∫

A∩B
f dHk (10)

for each Borel set B ⊂ Rn . The definitions (9) and (10) also apply to k = n, i.e., to
Ln
≡Hn , resulting in Ln A and fLn A.
We denote by L1(�, Z) the set of all (classes of equivalence of) Lebesgue-

integrable maps on�with values in Z ; we write | · |L1(�,Z) for the norm on L1(�, Z),
defined by

| f |L1(�,Z) =

∫
�

| f | dLn

for each f ∈ L1(�, Z). We denote by C∞0 (�, Z) the set of all of indefinitely
differentiable Z -valued maps f on Rn with compact support contained in �.

We denote by M(�, Z) the set of all (finite) Z -valued measures on �. If µ ∈
M(�, Z), we denote by |µ| the total variation (measure) of µ, i.e., the smallest
nonnegative measure on � such that |µ(B)| ≤ |µ|(B) for each Borel subset B of �.
We denote by M(µ) the mass of µ, defined by M(µ)= |µ|(�). A standard result
is that

M(µ)= sup
{∫

�

f · dµ : f ∈ C∞0 (�, Z), | f | ≤ 1 on �
}
. (11)
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We say that a measure µ∈M(�, Z) is supported by a Borel set A⊂� if µ(B)= 0
for every Borel set B ⊂ � such that A ∩ B = ∅. The reader is referred to [Am-
brosio et al. 2000, Chapter 1] for further details of measures with values in finite-
dimensional inner-product spaces.

If f is a Z -valued map defined L1 almost everywhere in an interval (0, ε) where
ε > 0, we say that a ∈ Z is an essential limit of f at 0 and write

a = ess lim
ρ→0

f (ρ) (12)

if there exists an L1 null set N ⊂ (0, ε) such that

a = lim
ρ→0

ρ∈(0,ε)∼N

f (ρ),

where the last limit is the ordinary limit relative to a subset of (0, ε). Note that, un-
like the set N , the value a is uniquely determined, which justifies the notation (12).

3. Maps of bounded variation, sets of finite perimeter,
and admissible domains

We state some basic definitions and properties of the space BV of maps of bounded
variation, of the space SBV of special maps of bounded variation, of sets of finite
perimeter, and of admissible domains that will be needed in the sequel. For more
details, see [Ambrosio et al. 2000; Evans and Gariepy 1992; Ziemer 1989; Federer
1969].

Definition 3.1. We denote by BV(�,Rm) the set of all g ∈ L1(�,Rm) such that
there exists a measure Dg ∈M(�,Mm×n) satisfying∫

�

g ·div T dLn
=−

∫
�

T · dDg (13)

for each T ∈ C∞0 (�,Rm×n). Here div T is an Rm-valued map on � such that

a · div T = tr(D(T Ta))

for each a ∈ Rm , where D(T Ta) denotes the classical derivative of the map T Ta.
The elements of BV(�,Rm) are called maps of bounded variation; the measure Dg
is uniquely determined by g and is called the weak (or generalized) derivative of g.
We denote by M(Dg) the mass of the measure Dg as defined in Section 2 and
call M(Dg) the total variation of g. Equations (11) and (13) provide

M(Dg)=sup
{∫

�

g· div T dLn
:T ∈C∞0 (�,Rm×n), |T | ≤ 1 on �

}
. �
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The choice of T represented by a matrix function with only the (i, j) element
different from 0, where i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, reduces (13) to the usual
index definition of BV as in, e.g., [Ambrosio et al. 2000, Equation (3.2)].

The set BV(�,Rm) is a Banach space under the norm

|g|BV(�,Rm) := |g|L1(�,Rm)+M(Dg).

Definition 3.2. Let g ∈ L1(�,Rm). We say that g has an approximate limit at
x ∈� if there exists a ∈ Rm such that

lim
ρ→0

κ−1
n ρ−n

∫
B(x,ρ)

|g− a| dLn
= 0.

The value a is uniquely determined and is called the approximate limit of g at x.
The complement S(g) ⊂ � in � of the set of all x ∈ � where the approximate
limit of g exists is called the approximate discontinuity set of g. �

Definition 3.3. Let g ∈ L1(�,Rm). We say that x ∈ � is an approximate jump
point of g if there exist a, b ∈ Rm , a 6= b, and n ∈ Rn with |n| = 1 such that

lim
ρ→0

κ−1
n ρ−n

∫
B+(x,ρ,n)

|g− a| dLn
= 0,

lim
ρ→0

κ−1
n ρ−n

∫
B−(x,ρ,n)

|g− b| dLn
= 0.

(14)

Here
B±(x, ρ, n)= { y ∈ B(x, ρ), ±( y− x) · n> 0}.

The triplet (a, b, n), if it exists, is uniquely determined to within the interchange
of a and b and a simultaneous change of the sign of n. In any case, the product

[g]⊗ n, (15)

occurring frequently below, is uniquely determined, where

[g] = a− b

is the jump of g at x. We denote by J (g) the set of all approximate jump points
of g and call any ±n the normal of J (g) at x. �

The following result describes the relationship between the sets S(g) and J (g):

Theorem 3.4. If g ∈ BV(�,Rm), then:

(i) J (g)⊂ S(g) and Hn−1(S(g)∼ J (g))= 0.

(ii) J (g) is countably (Hn−1, n− 1)-rectifiable in the sense that Hn−1 almost all
of J (g) can be covered by countably many class-1 surfaces Ck , k = 1, . . . , of
dimension n− 1 in Rn .
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The derivative of a map of bounded variation has the following well known
structure. The subsequent treatment uses especially the jump and the absolutely
continuous parts of the derivative to be introduced now.

Theorem 3.5. If g ∈ BV(�,Rm), then:

(i) The derivative Dg has a unique decomposition

Dg = Da g Ln �+Dc g+Dj g,

where Da g, the absolutely continuous part of Dg, is a map in L1(�,Mm×n);
Dc g, the Cantor part of Dg, is a measure on � singular with respect to Ln and
diffuse with respect to Hn−1, i.e., Dc g is supported by a set of null Lebesgue
measure in Rn and Dc g(B) = 0 for each Borel subset B of � of finite Hn−1

measure; and Dj g, the jump part of Dg, is a measure absolutely continuous
with respect to Hn−1.

(ii) The jump part Dj g is supported by J (g), and in fact,

Dj g = [g]⊗ nHn−1 J (g),

where, for every point x of J (g), the value [g]⊗ n is the product (15).

(iii) For Ln almost every point x of �, we have

Da g(x)= lim
ρ→0

κ−1
n ρ−nD(B(x, ρ)). (16)

Definition 3.6. We denote by SBV(�,Rm) the set of all g ∈ BV(�,Rm) with
Dc g=0. The elements of SBV(�,Rm) are called special maps of bounded variation.

�

SBV(�,Rm) is a closed subspace of BV(�,Rm) under the norm | · |BV(�,Rm).

Theorem 3.7 [Alberti 1991]. If � is bounded, then for any G ∈ L1(�,Mm×n),
there exists a g ∈ SBV(�,Rm) such that Da g= G; moreover, there exists a constant
c ∈ R depending only on � such that the map g as above can be chosen to satisfy

M(g)≤ c|G|L1(�,Mm×n).

We conclude this section with basic information on sets of finite perimeter and
on admissible domains. Sets of finite perimeter fall in the framework of BV as
will be explained below. For a subset of the class of sets of finite perimeter called
admissible domains (see below), we shall establish the approximation theorem.
The distinguishing feature of admissible domains � is that maps from BV(�,Rm)

have well defined boundary values.

Definition 3.8. A set E ⊂ Rn is said to have a finite perimeter if 1E ∈ BV(Rn,R),
where 1E denotes the characteristic function of E . The perimeter of E is M(D1E).
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The measure-theoretic boundary of E is the set S(1E) that differs from the reduced
boundary bdry∗(E) := J (1E) by a set of Hn−1 measure 0. �

Theorem 3.9. If E is a set of finite perimeter, then for every x ∈ bdry∗(E), the
triplet (a, b, n) as in Definition 3.3 can be chosen to be (0, 1, n(x)); with this
choice, n(x) is uniquely determined and is called the measure-theoretic normal
to E at x. Equations (14) then imply the following well known formulas:

lim
ρ→0

κ−1
n ρ−nLn(E ∩B+(x, ρ, n))= 0,

lim
ρ→0

κ−1
n ρ−nLn(B−(x, ρ, n)∼ E))= 0,

where n= n(x). One has

D1E = nHn−1 bdry∗ E .

Thus, even 1E ∈ SBV(Rn,R).

Definition 3.10 [Ziemer 1989, Definition 5.10.1]. A bounded open set �⊂ Rn is
said to be an admissible domain if it has a finite perimeter and the following two
conditions are satisfied:

(i) Hn−1(bdry B ∼ bdry∗ B)= 0.

(ii) There exists a constant M , and for each x ∈ bdry�, there is a ball B(x, r)
with

Hn−1(bdry∗ E ∩ bdry∗�)≤ MHn−1(�∩ bdry∗ E)

whenever E ⊂ cl�∩B(x, r) is a set of finite perimeter. �

Each open bounded set with lipschitzian boundary is an admissible domain
[Ziemer 1989, Remark 5.10.2]. The following two theorems describe the main
virtues of admissible domains:

Theorem 3.11 (see [Ziemer 1989, Section 5.10]). If � is an admissible domain
and g ∈ BV(�,Rm), then there exist an Hn−1-measurable map gbdry� on bdry�
such that ∫

�

g · div T dLn
+

∫
�

T · dDg =
∫

bdry(�)
T n · gbdry� dHn−1

for every class-1 map T on � with values in Mm×n that has a continuous extension
(again denoted by T ) to cl�, where n is the measure-theoretic normal to �. There
exists a c ∈ R depending only on � such that∫

bdry�
|gbdry�| dHn−1

≤ c|g|BV(�,Rm).
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The map gbdry� is determined to within a change on a set of Hn−1-measure 0 and
is called the trace of g. One has

lim
r→0

κ−1
n r−n

∫
B( y,r)∩�

|g− gbdry�( y)| dLn
= 0 (17)

for Hn−1 almost every point y of bdry�.

Theorem 3.12 (cf. [Ziemer 1989, Lemma 5.10.4]). If � is an admissible domain
and g ∈ BV(�,Rm), then the extension g0 of g to Rn equal to 0 outside � satisfies
g0 ∈ BV(Rn,Rm),

Dg0 = Dg− gbdry�⊗ nHn−1 bdry�,

and there exists a c ∈ R depending only on � such that

|g0|BV(Rn,Rm) ≤ c|g|BV(�,Rm).

4. The BV setting of structured deformations

For the purpose of the approximation theorem and the limit relation (as stated in
Section 1), we enlarge the set SBV(�,Rm)× L1(�,Mm×n) of structured deforma-
tions of Choksi and Fonseca [1997] to form the set BV(�,Rm)× L1(�,Mm×n).
We furthermore interpret the elements g ∈ SBV(�,Rm) as the macroscopic de-
formations of the body � with macroscopic crack site J (g). We note that the
space of structured deformations (K, g, G) of Del Piero and Owen [1993] as de-
scribed in Section 1 with K = ∅ is a subset of SBV(�,Rm)× L1(�,Mm×n) ⊂

BV(�,Rm)× L1(�,Mm×n). In a general, (g, G) ∈ BV(�,Rm)× L1(�,Mm×n),
the map g is the possibly discontinuous macroscopic displacement, of the body �
and G is a microscopic disarrangement as explained in the introduction and in
accord with the original papers by Del Piero and Owen [1993; 1995].

5. Proof of the approximation theorem

The proof of the Approximation Theorem is based on the decomposition of Rn

into the disjoint union of sufficiently small cubes of equal edge length and with
faces parallel to the natural coordinate planes in Rn . Various maps involved in the
construction are then approximated by (generally) discontinuous maps constant on
the cubes (as in the present section) or by discontinuous maps linear on the cubes
(as in the Appendix below).

For each positive integer k, consider the decomposition of Rn into the system of
cubes

C(k, p) := C/k+ p, p ∈ Zn/k, (18)
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where C := [0, 1)n , C/k := {x/k : x ∈ C}, Zn is the set of n tuples of integers, and
Zn/k := {z/k : z ∈ Zn

}.
Let e1, . . . , en be the natural orthonormal basis in Rn .

Lemma 5.1. Let k be a positive integer, let f ∈ C∞0 (R
n,Rm), and let p, q ∈ Zn/k

be such that P := C(k, p) and Q := C(k, q) are two adjacent cubes sharing
the common face F := cl P ∩ cl Q 6= ∅ of normal n pointing from P to Q. Let
m : P ∪ Q→ Rm be defined by

m(x)=
{

a if x ∈ P,
b if x ∈ Q,

where

a = kn
∫

P
f dLn and b= kn

∫
Q

f dLn (19)

are the averages of f over the two cubes. Then m ∈ SBV(int(P ∪ Q),Rm),

Dm = (b− a)⊗ nHn−1 F, Dam = 0, (20)

and

M(Dm)≤
∫

P∪Q
|Dn f | dLn, (21)

where Dn f is the directional derivative of f in the direction n.

Proof. We only prove (21) since the other assertions of the lemma are immediate.
Let x ∈ P be arbitrary, and denote y(x) := x+ n/k so that y(x) ∈ Q. Then

f ( y(x))− f (x)= k−1
∫ 1

0
Dn f (x+ tn) dt,

and hence,

| f ( y(x))− f (x)| ≤ k−1
∫ 1

0
|Dn f (x+ tn)| dt. (22)

We have

U :=
∣∣∣∣∫

Q
f dLn

−

∫
P

f dLn
∣∣∣∣= ∣∣∣∣∫

P
f ( y(x)) dLn(x)−

∫
P

f (x) dLn(x)
∣∣∣∣

≤

∫
P
| f ( y(x))− f (x)| dLn(x).

Consequently, integrating (22) over P , we obtain
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U ≤ k−1
∫ 1

0

∫
P
|Dn f (x+ tn)| dLn(x) dt = k−1

∫ 1

0

∫
P+tn
|Dn f | dLn dt

≤ k−1
∫ 1

0

∫
P∪Q
|Dn f | dLn dt

= k−1
∫

P∪Q
|Dn f | dLn

;

the last inequality above follows from P + tn⊂ P ∪ Q for each t ∈ [0, 1]. Multi-
plying the just proved inequality∣∣∣∣∫

Q
f dLn

−

∫
P

f dLn
∣∣∣∣≤ k−1V, V :=

∫
P∪Q
|Dn f | dLn,

by kn , we obtain
|b− a| ≤ kn−1V,

and a combination with (20)1 provides that the total variation (measure) |Dm| sat-
isfies

|Dm| = |b− a|Hn−1 F ≤ kn−1VHn−1 F.

Integrating over Rn , we obtain

M(Dm)= |Dm|(Rn)≤ kn−1VHn−1(F)= V,

which is (21). �

Proposition 5.2. Let f ∈C∞0 (R
n,Rm). There exists a sequence mk ∈ SBV(Rn,Rm)

such that

mk→ f in L1(Rn,Rm), (23)

Damk = 0 on Rn for all k = 1, . . . , (24)

and

M(Dmk)≤ 2n
∫

Rn
|D f | dLn. (25)

Proof. For each positive integer k, consider the decomposition of Rn into the system
of cells as in (18). Let mk : Rn

→ Rn be defined by

mk(x)= f (k, p) (26)

for each x ∈ Rn , where p ∈ Zn/k is uniquely determined by the requirement that
x ∈ C(k, p) and where

f (k, p)= kn
∫

C(k, p)
f dLn.
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Then mk is piecewise constant, with all points of jump discontinuity contained in
the union

n⋃
i=1

⋃
l∈Z/k

Pk,i,l,

where

Pk,i,l = {x ∈ Rn
: x · ei = l}

for any l ∈ Z/k. Here for each i = 1, . . . , n, the system

Sk,i = {Pk,i,l : l ∈ Z/k}

forms an equidistant system of parallel planes perpendicular to ei .
We now fix k = 1, . . . and i = 1, . . . , n and denote by Sk,i ⊂ Rn the union of the

system Sk,i of planes perpendicular to ei . Next we apply Lemma 5.1 to each pair
of adjacent cubes C(k, p) and C(k, q) with p, q ∈ Zn/k sharing a common face
perpendicular to ei . Summing the inequality (21) over all such pairs, we obtain

M(Dmk Sk,i )≤ 2
∫

Rn
|Dei f | dLn,

where Dei f is the directional derivative of f in the direction ei . Summing over all i ,
we obtain (25). Relation (23) follows immediately from the well known properties
of the piecewise-constant approximations on system of cubes of decreasing edge
length. Finally (24) follows from the piecewise-constant character of mk . �

Proof of the approximation theorem. By Alberti’s theorem (Theorem 3.7), there
exists h ∈ SBV(�,Rm) such that

Dah = G on �. (27)

Put l := g − h, which is an element of BV(�,Rm). Since � is an admissible
domain, the extension l0 of l to Rn equal to 0 outside � satisfies l0 ∈ BV(Rn,Rm)

by Theorem 3.12. Let fk be a sequence of mollifications of l0 on Rn with the
mollification parameter tending to 0 so that fk ∈ C∞0 (R

n,Rm),∫
Rn
|D fk | dLn

≤M(Dl0), (28)

fk→ l0 in L1(Rn,Rm),

and hence in particular

fk |�→ l in L1(�,Rm). (29)
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Applying Proposition 5.2 with f replaced by fk , we find that for each k there exists
an mk ∈ SBV(Rn,Rm) such that

|mk − fk |L1(Rn,Rm) < 1/k, (30)

Damk = 0 on Rn, (31)

and

M(Dmk)≤ 2n
∫

Rn
|D fk | dLn. (32)

We put
gk = mk |�+ h

for k = 1, . . . so that gk ∈ SBV(�,Rm). Equations (29) and (30) imply

mk |�→ l in L1(�,Rm) as k→∞,

and hence, we have (4)1. Further, (31) and (27) imply (4)2. Finally, (32), (28), and
h ∈ SBV(�,Rm) imply (5). Assertion (6) then follows by an easy argument that
is left to the reader. �

6. Proof of the limit relation

Lemma 6.1. Let � be bounded, let g be a map (not a class of equivalence)
in BV(�,Rm), let x ∈�, and let ε > 0 be such that B(x, ε)⊂�. Then for L1 almost
every ρ ∈ (0, ε), g| bdry B(x, ρ) is the trace of g|B(x, ρ) ∈ BV(B(x, ρ,Rm).

Proof. By the Lebesgue differentiation theorem, there exists a Borel set E ⊂ �
with Ln(E)= 0 such that for every y ∈�∼ E we have

lim
r→0

κ−1
n r−n

∫
B( y,r)∩�

|g− g( y)| dLn
= 0. (33)

Since by Fubini’s theorem

0= Ln(E)=
∫
∞

0
Hn−1(E ∩ bdry B(x, ρ)) dL1(ρ),

we see that for L1 almost every ρ > 0 we have

Hn−1(E ∩ bdry B(x, ρ))= 0.

For every such a ρ ∈ (0, ε), we have (33) for Hn−1 almost every y ∈ bdry B(x, ρ)
and hence in particular also

lim
r→0

κ−1
n r−n

∫
B( y,r)∩B(x,ρ)

|g− g( y)| dLn
= 0
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since B(x, ρ)⊂�. A comparison with (17) of Theorem 3.11 written for� replaced
by B(x, ρ) shows that g( y) coincides with the trace of g|B(x, ρ) for Hn−1 almost
every y ∈ bdry B(x, ρ). �

Proof of the limit relation. Let us extend g and gk by 0 outside �. We first
note that by (7)1 we may pass to a subsequence of gk (not relabeled) such that
|g− gk |L1(�,Rm) < 2−k so that the function

ϕ(x)=
∞∑

k=1

|g(x)− gk(x)|

satisfies ∫
�

ϕ dLn
≤ 1. (34)

Let x ∈� be fixed, and let ε > 0 be any number satisfying B(x, ε)⊂�. Since∫
∞

0

∫
bdry B(x,ρ)

ϕ dHn−1 dρ =
∫
�

ϕ dLn
≤ 1

by (34), there exists a subset N1 of (0, ε) with L1(N1)= 0 such that∫
bdry B(x,ρ)

ϕ dHn−1
≡

∞∑
k=1

∫
bdry B(x,ρ)

|g− gk | dHn−1 <∞ (35)

for every ρ ∈ (0, ε)∼ N1. Hence, for every ρ ∈ (0, ε)∼ N1, we have∫
bdry B(x,ρ)

|g− gk | dHn−1
→ 0

and hence

gk→ g (36)

in the Lebesgue space L1(bdry B(x, ρ),Hn−1) on bdry B(x, ρ) relative to the mea-
sure Hn−1. By Lemma 6.1, for every k = 1, . . . , there exists a subset Mk of (0, ε)
with L1(Mk) = 0 such that for every ρ ∈ (0, ε) ∼ Mk the restriction of the map
gk | bdry B(x, ρ) is the trace of gk |B(x, ρ) ∈ BV(B(x, ρ),Rm). Let

N = N1 ∪

∞⋃
k=1

Mk,

so that L1(N )= 0. For every ρ ∈ (0, ε)∼ N , we have∫
bdry B(x,ρ)

ϕgk ⊗ n dHn−1
=

∫
B(x,ρ)

gk ⊗Dϕ dLn
+

∫
B(x,ρ)

ϕ dDgk (37)
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for all k = 1, . . . and for any ϕ ∈ C∞0 (R
n) where n is the normal to B(x, ρ). The

limit using (36), (7)1, and (6) then gives∫
bdry B(x,ρ)

ϕg⊗ n dHn−1
=

∫
B(x,ρ)

g⊗Dϕ dLn
+

∫
B(x,ρ)

ϕ dDg, (38)

and hence, g| bdry B(x, ρ) is the trace of g|B(x, ρ) ∈ BV(B(x, ρ),Rm) for every
ρ ∈ (0, ε)∼ N . In particular, for ϕ ≡ 1 on Rn , we obtain from (37) and (38)

Dgk(B(x, ρ))→
∫

bdry B(x,ρ)
g⊗ n dHn−1

= Dg(B(x, ρ)),

i.e.,

Dgk(B(x, ρ))→ Dg(B(x, ρ))

as k→∞ for each ρ ∈ (0, ε)∼ N .8 Combining with (7)2, we then obtain

(Dgk −Da gk Ln �)(B(x, ρ))→ (Dg− G Ln �)(B(x, ρ)) (39)

as k→∞; noting that

Dgk −Da gk Ln �= [gk]⊗ nkHn−1 J (gk),

where [gk] is the jump of gk on J (gk) and nk is the normal to J (gk), we see that
(39) reads

lim
k→∞

∫
J (gk)∩B(x,ρ)

[gk]⊗ nk dHn−1
= Dg(B(x, ρ))−

∫
B(x,ρ)

G dLn (40)

for every ρ ∈ (0, ε)∼ N . This holds for every x ∈� where N = N (x). Dividing
(40) by κnρ

n and using that (16) and

G(x)= lim
ρ→0

κ−1
n ρ−n

∫
B(x,ρ)

G dLn

hold simultaneously for Ln almost every x ∈ �, we see that for every such an x
we have

lim
ρ→0

ρ∈(0,ε)∼N

lim
k→∞

∫
J (gk)∩B(x,ρ)

[gk]⊗ nk dHn−1
= Da g− G(x),

i.e., (8) holds. �

8 This is otherwise not a direct consequence of (6).
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Appendix: Elementary proof of a weaker form
of the approximation theorem

We here outline a proof of the following form of the approximation theorem without
using Alberti’s theorem:

Theorem A.1. If � is an admissible domain and

(g, G) ∈ BV(�,Rm)× L1(�,Mm×n),

then there exist two sequences mk, hk ∈ SBV(�,Rm) such that

mk→ g in L1(�,Rm) and Damk = 0 over �, (1)

hk→ 0 in L1(�,Rm) and Dahk→ G in L1(�,Mm×n), (2)

and

sup{M(Dmk) : k = 1, . . . }<∞ and sup{M(Dhk) : k = 1, . . . }<∞; (3)

consequently, the sequence gk = mk + hk ∈ SBV(�,Rm) satisfies

gk→ g in L1(�,Rm) and Da gk→ G in L1(�,Mm×n) (4)

and

sup{M(Dgk) : k = 1, . . . }<∞ and Dgk ⇀
∗ Dg in M(�,Mm×n).

Proof outline. We denote by g0 the extension of g to Rn equal to 0 outside �.
Since � is an admissible domain, we have g0 ∈ BV(Rn,Rm) by Theorem 3.12. Let
fk be a sequence of mollifications of g0 on Rn with the mollification parameter
tending to 0. Applying Proposition 5.2 in the same way as in the proof of the
approximation theorem (Section 1), we find a sequence mk ∈ SBV(Rn,Rm) such
that | fk−mk |L1(Rn,Rm)< 1/k. The sequence mk |� (again denoted mk) then satisfies
(1) and (3)1.

Next, let G0 be the extension of G to Rn equal to 0 outside �, and put

hk(x)= G(k, p)(x− x(k, p))

for any x ∈ Rn where p ∈ Zn/k is uniquely determined by the requirement x ∈
C(k, p), x(k, p) is the barycenter of C(k, p), and

G(k, p)= kn
∫

C(k, p)
G dLn.

Then hk is easily seen to satisfy (2) and (3)2. �
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