
NISSUNA UMANA INVESTIGAZIONE SI PUO DIMANDARE VERA SCIENZIA
S’ESSA NON PASSA PER LE MATEMATICHE DIMOSTRAZIONI

LEONARDO DAVINCI

Mathematics and Mechanics
of

Complex Systems

msp

vol. 3 no. 2 2015

MARCO BENINI

RELATIVE CAUCHY EVOLUTION FOR THE VECTOR POTENTIAL
ON GLOBALLY HYPERBOLIC SPACETIMES





MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS
Vol. 3, No. 2, 2015

dx.doi.org/10.2140/memocs.2015.3.177
MM ∩

RELATIVE CAUCHY EVOLUTION FOR THE VECTOR POTENTIAL
ON GLOBALLY HYPERBOLIC SPACETIMES

MARCO BENINI

The dynamics of the electromagnetic vector potential is analyzed in full detail
in view of the principle of general local covariance of Brunetti, Fredenhagen
and Verch. Exploiting this result, the relative Cauchy evolution for the vector
potential is introduced and its relation with the energy-momentum tensor is es-
tablished, extending the well known results for Klein–Gordon and Dirac fields.

1. Introduction

The principle of general local covariance of Brunetti, Fredenhagen and Verch
[Brunetti et al. 2003] provides a very satisfactory framework to deal with quantum
field theory on curved spacetimes. The success of the axiomatic approach of gen-
eral local covariance relies on its capability to establish how a quantum field theory
is expected to behave on different spacetimes and in particular what kind of relation
one should expect between the observables defined on two spacetimes when one of
them is isometrically embedded into the other. An effective way being available to
relate via embeddings quantum field theories on different curved spacetimes, the
way is paved to tackle the question of the sensitivity of the model under small fluc-
tuations of the background geometry. This is what the relative Cauchy evolution is
meant for, namely to provide information about the modification induced on any
observable by a small change in the metric of the background spacetime where the
dynamics of the quantum field takes place.

The core idea of the relative Cauchy evolution can be traced back to the fact that
a normally hyperbolic equation which rules the dynamics of a field on a globally
hyperbolic spacetime admits a well-posed initial value problem; see for example
[Bär et al. 2007, Section 3.2]. This means that all information about the field is
determined by suitable initial data specified on a Cauchy surface, thus enabling us
to sketch the behavior of the relative Cauchy evolution in terms of initial data only.
One can consider a perturbation of the spacetime metric supported in a compact
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region, say K , and a set of initial data on a Cauchy surface lying in the past of K .
Propagating such initial data to a Cauchy surface in the future of K both in the
presence of the metric perturbation and without it, one is able to compare the two
different outcomes of the dynamical evolution (one when the background geometry
is perturbed and the other when this is not the case). This procedure allows one to
quantify the effect induced on the dynamics of the field by suitable modifications
of the background geometry.

The aim of the present paper is to study the relative Cauchy evolution for the
gauge field theory of the electromagnetic vector potential. Given a globally hyper-
bolic spacetime, the dynamics of the field A ∈�1(M) is ruled by the nonhyperbolic
equation δ d A= 0, d and δ being respectively the differential and the codifferential
defined for forms over M . The gauge symmetry of the vector potential is specified
by the equivalence relation

A ∼ A′ ⇐⇒ ∃χ ∈ C∞(M) : A′ = A+ dχ .

Although the sketch of the relative Cauchy evolution presented above cannot be
directly applied to the case of interest, the dynamics being nonhyperbolic, we can,
following [Dimock 1992; Fewster and Pfenning 2003; Pfenning 2009; Dappiaggi
2011; Sanders et al. 2014], exploit the gauge symmetry to recover hyperbolicity
in the gauge-fixed dynamics. This eventually leads us to the fulfillment of (almost
all) requirements of the generally covariant locality principle. In particular, we are
allowed to introduce the relative Cauchy evolution for the vector potential A and
analyze its properties, the main result consisting of the extension of a fact which
is known to hold for Klein–Gordon and Dirac fields [Brunetti et al. 2003; Sanders
2010], namely the relation between the relative Cauchy evolution of a field and its
quantized energy-momentum tensor.

Such a relation between the relative Cauchy evolution and the quantized energy-
momentum tensor is relevant when one is dealing with the semiclassical Einstein
equation (see [Wald 1994, Section 4.6] for an introduction to this topic) in the
presence of a quantized electromagnetic vector potential. As a matter of fact, in
this case one is supposed to equal the Einstein tensor with the expectation value of
the quantized energy-momentum tensor of electromagnetism in order to account
for the back reaction effect on the spacetime metric induced by the presence of a
quantized electromagnetic field, whose dynamics is in turn affected by the space-
time geometry. Fortunately, one can access the behavior of the quantized energy-
momentum tensor in relation to suitable changes of the background metric by
means of the relative Cauchy evolution. Therefore an important step towards a
consistent approach to the solution of the semiclassical Einstein equation in the
presence of a quantized electromagnetic field consists of a detailed analysis of the
relative Cauchy evolution for the electromagnetic field as well as of its relation
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with the quantized energy-momentum tensor. This fact motivates our interest in
analyzing the relative Cauchy evolution of the vector potential.

The paper is organized in the following way: Section 2 is intended to provide
the background information and notation which are needed in the rest of the paper.
Some aspects of Lorentzian geometry are briefly discussed in Section 2A, focus-
ing on global hyperbolicity in particular. A short collection of the most relevant
properties of Green-hyperbolic linear differential operators follows in Section 2B.
We recall the notion of a locally covariant quantum field theory and of its relative
Cauchy evolution in Section 2C. Section 2 is completed with the description of a
quantization procedure based on the Borchers–Uhlmann construction and recalling
the notion of an algebraic state. In Section 3 we analyze the dynamics of the vector
potential providing a convenient characterization of the space of solutions for the
equation δdA = 0. This leads in Section 4 to the assignment of a suitable space of
observables for the vector potential and its quantization. This section ends recalling
the definition of a Hadamard state for the vector potential, together with references
to the literature where positive results about the existence of such a state can be
found. The core of the paper is Section 5, where the relative Cauchy evolution
for the vector potential is computed and its relation with the quantized energy-
momentum tensor is established, thus extending a result which was already known
to hold for Klein–Gordon [Brunetti et al. 2003] and Dirac fields [Sanders 2010].

2. Preliminaries

In this section we collect the background material and, at the same time, we intro-
duce some notation needed later. First, we will briefly recall few notions about
Lorentzian geometry focusing the attention on globally hyperbolic spacetimes,
whose physical relevance is related to initial value problems for hyperbolic linear
partial differential equations. As a matter of fact, globally hyperbolic spacetimes
provide a sufficiently general setting for proving existence and uniqueness theo-
rems for solutions of partial differential equations of hyperbolic type once proper
initial data are given; see [Bär et al. 2007, Chapter 3]. This leads us to the second
part of the present section, which is devoted to differential operators. We will focus
the attention on the class of Green-hyperbolic operators, being characterized by the
existence of retarded and advanced Green functions. We will take the chance to
recollect from the literature few fundamental results, which will turn out to be
useful throughout the rest of the paper. In the third part of this section, we first
provide the framework for the relative Cauchy evolution, namely we introduce
general local covariance following [Brunetti et al. 2003] and in particular the
time slice axiom, and then we define it using a simple geometrical construction.
Since in the end we are interested in the quantization of our model, we recall an
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algebraic procedure to assign canonical commutation relations, we define states
from an algebraic perspective and we make contact with the usual Hilbert space
representation of quantum field theory via the Gelfand–Naimark–Segal theorem.

2A. Lorentzian geometry. We recall here few basic notions of Lorentzian geom-
etry, global hyperbolicity in particular, and we take the chance to introduce some
notation. For a detailed analysis of these topics, the reader should refer to the
literature; see, e.g.,[Beem et al. 1996; Bär et al. 2007; Waldmann 2012].

In the following all manifolds and functions between manifolds are considered
to be smooth, unless otherwise stated. Sometimes we will also restrict ourselves to
manifolds of finite type, namely manifolds admitting a finite good cover. This will
enable us to fully recover full Poincaré duality; see [Bott and Tu 1982, Chapter 1,
Section 5].

A Lorentzian manifold (M,g,o) is a d-dimensional, orientable, connected, second-
countable, Hausdorff manifold endowed with a Lorentzian metric g and a choice
of orientation o. We adopt the convention −+ · · ·+ for the signature of g. This
structure already enables us to distinguish among timelike, lightlike (all together
causal) and spacelike tangent vectors 0 6= v ∈ Tx M at a point x ∈M according to the
negative, null or positive value of g(v, v). Moreover, the choice of an orientation
o, together with the metric g, uniquely identifies a volume form vol on M , which
is used to integrate functions defined M .

In order to account for the dynamical evolution of a physical system, proper
notions of future and past are required. This is achieved taking a time-orientable
Lorentzian manifold and fixing a time-orientation specified by a timelike vector
field t, which is used as a reference to distinguish between future- and past-directed
causal tangent vectors v according to the sign of g(t, v) (future for negative val-
ues). The quadruple (M, g, o, t) defines a spacetime, where the notion of causal
future/past of O ⊆ M , J±M(O), is available. J±M(O) is defined as the set of points
in M that can be reached via a future-/past-directed causal curve in M emanating
from O , namely a curve whose tangent vector field is everywhere causal and future-
/past-directed. If we take into account only timelike curves in the last definition, we
obtain the chronological future/past of O , I±M(O). With the notion of causal future
and past at hand, we can characterize subregions of M which are compatible with
the causal structure of (M, g, o, t), as well as maps between spacetimes preserving
causal structures. Specifically, a region S ⊆ M is called causally compatible pro-
vided that J±S (x)= J±M(x)∩ S regardless of the choice of x ∈ S.1 Furthermore, a
causal embedding f between the spacetimes (M1, g1, o1, t1) and (M2, g2, o2, t2)

is defined as an embedding f : M1→ M2 such that f ∗g2 = g1, which preserves

1Note that in the definition of J±S (x) only curves which never leave S are taken into account.
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both the orientations and the time-orientations, whose image f (M1) is open and
causally compatible as a subset of M2.

In order to provide appropriate initial data for Cauchy problems a Cauchy sur-
face is needed; see, for example, [Bär et al. 2007, Section 3.2]. This is a subset 6 of
a spacetime (M, g, o, t) which meets exactly once each inextensible future-directed
timelike curve. Cauchy surfaces provide a definition of globally hyperbolic space-
times. As a matter of fact, a spacetime (M, g, o, t) is called globally hyperbolic
when it admits a Cauchy surface. In the following we will denote globally hyper-
bolic spacetimes with M , the metric g, the orientation o, and the time-orientation t

being understood.
For later purposes, we introduce here some nomenclature for spacetime sub-

regions. Following [Bär 2013; Sanders 2013], we call a subset S of a globally
hyperbolic spacetime M :

• spacelike-compact (sc) if it is closed and there exists K ⊆ M compact such
that S ⊆ JM(K )= J+M(K )∪ J−M(K );

• past-compact / future-compact (pc / fc) if S ∩ J∓M(K ) is compact for each com-
pact subset K of M .

If a region S ⊆ M is both pc and fc, we call it timelike-compact (tc). If it is
both pc / fc and sc, we say that it is strictly past-compact / strictly future-compact
(spc / sfc).

2B. Green-hyperbolic differential operators. Following the definitions in [Bär
and Ginoux 2012a; 2012b; Bär 2013], this is a class of linear differential operators
admitting retarded and advanced Green functions on globally hyperbolic space-
times. This class includes, of course, all wave operators, such as the d’Alembert
operator �∇ = gµν∇µ∇ν defined out of any connection ∇ on a vector bundle, but
from a physical perspective it has the advantage of encompassing other relevant
cases, such as the Dirac and Proca equations.

Here we briefly review the definitions of retarded and advanced Green functions.
At the same time we recall few fundamental results for the so-called causal prop-
agator. For a detailed discussion, as well as proofs of the forthcoming statements,
the reader may refer to the papers just cited, as well as [Bär et al. 2007]. A review,
with some physically relevant examples, is available in [Benini et al. 2013].

Definition 2.1. Let V and W be vector bundles over a globally hyperbolic space-
time M and consider a linear differential operator P : 0(V ) → 0(W ) defined
between the corresponding spaces of sections. We call retarded/advanced Green
operator for P a linear map G± :0c(W )→0(V ) such that the following conditions
hold for each σ ∈ 0c(W ) and τ ∈ 0c(V ):

PG±σ = σ , G±Pτ = τ , supp(G±σ)⊆ J±M(supp(σ )). (2-1)
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If we endow V with a nondegenerate inner product on the fibers, denoted by
〈 · , · 〉V : V × V → M × R, and taking into account the volume form vol of M ,
we can introduce an inner product ( · , · )V on the corresponding space of sections.
This is defined according to

(σ, τ )V =

∫
M
〈σ, τ 〉V vol, (2-2)

for each σ, τ ∈0(V )with compact overlapping supports, namely such that supp(σ )∩
supp(τ ) is compact.

Given a linear differential operator P : 0(V )→ 0(W ) as in Definition 2.1 and
assuming that both V and W are endowed with nondegenerate inner products, we
can introduce the formal adjoint P∗ : 0(W )→ 0(V ) of P by setting

(P∗σ, τ)V = (σ, Pτ)W , (2-3)

for each σ ∈ 0(W ) and τ ∈ 0(V ) with compact overlapping support. We are now
ready to define linear differential operators of Green-hyperbolic type.

Definition 2.2. Let V,W be vector bundles over a globally hyperbolic spacetime
M endowed with nondegenerate inner products. A linear differential operator
P : 0(V )→ 0(W ) is of Green-hyperbolic type if it admits retarded and advanced
Green operators, together with its formal adjoint P∗ : 0(W )→ 0(V ).

The fact that P∗ is the formal adjoint of P entails a relation between the corre-
sponding Green functions:

(G∗
±
σ, τ)W = (σ,G∓τ)V , (2-4)

for each σ ∈ 0c(V ) and τ ∈ 0c(W ). As a consequence, retarded and advanced
Green operators for both P and P∗ are unique.

Moreover, Green functions for Green-hyperbolic operators admit unique contin-
uous extensions to larger spaces of sections; see [Bär 2013, Section 3] and [Sanders
2013, Section 5]. With a slight abuse of notation, we denote with G± also the
extended Green operators for P:

G+ : 0pc(W )→ 0(V ), G− : 0fc(W )→ 0(V ), (2-5)

the subscripts “pc” and “fc” referring to the supports of sections, which are past-
compact in the first case and future-compact in the second; see Section 2A. Ex-
tended Green operators share the same properties of the original ones, but in a
broader sense: For each σ ∈ 0pc(W ) and τ ∈ 0pc(V ), we have

PG+σ = σ , G+Pτ = τ , supp(G+σ)⊆ J+M(supp(σ )). (2-6)
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Replacing pc and + with fc and −, we get the properties of the extended Green
function G−. Similarly, the Green operators G∗

±
for the formal adjoint P∗ admit

unique extensions.
Introducing the causal propagator G = G+−G− : 0c(W )→ 0(V ) for a Green-

hyperbolic operator P : 0(V )→ 0(W ) as the difference between the retarded and
the advanced Green operators and taking into account the support properties of
Green operators (see Definition 2.1), we realize that G maps to 0sc(V ), the space
of sections with spacelike-compact support. We get the following exact sequence
of vector spaces:

0−→ 0c(V )
P
−→ 0c(W )

G
−→ 0sc(V )

P
−→ 0sc(W )−→ 0 . (2-7)

The proof of this fact easily follows from (2-6) and can be found, e.g., in [Bär
et al. 2007, Section 3.4], except for surjectivity of P : 0sc(V )→ 0sc(W ), which
is shown by the following argument; see also [Khavkine 2014b, Proposition 2.1].
Given τ ∈ 0sc(W ) and taking a partition of unity {χ+, χ−} on M such that χ+ = 1
in a past-compact region, while χ− = 1 in a future-compact one, we deduce that
supp(χ+τ) is strictly past-compact, while supp(χ−τ) is strictly future-compact.
Exploiting the extended Green operators, we are able to introduce a section

σ = G+(χ+τ)+G−(χ−τ) ∈ 0sc(V )

such that Pσ = τ . This is a direct consequence of (2-6).
An exact sequence similar to (2-7) holds true for the causal propagator G∗ of

the formal adjoint P∗ as well.
Extended Green operators provide also an extension of the causal propagator

G : 0tc(W )→ 0(V ). Minor modifications to the proof of (2-7) give the following
exact sequence:

0−→ 0tc(V )
P
−→ 0tc(W )

G
−→ 0(V )

P
−→ 0(W )−→ 0 . (2-8)

This sequence is particularly useful to characterize the space of solutions to the
equation Pσ = 0 for σ ∈ 0(V ), that is to say ker(P), the kernel of P . As a matter
of fact, (2-8) entails that G induces an isomorphism from 0tc(W )/P(0tc(V )) to
ker(P).

Following [Bär et al. 2007, Section 4.3], one can also relate Green operators over
different globally hyperbolic spacetimes provided that the corresponding differen-
tial operators are related by vector bundle maps covering a causal embedding be-
tween the bases. Specifically, suppose we are given vector bundle maps C : V1→ V2

and D : W1 → W2 preserving the inner products of the relevant vector bundles
and which cover a causal embedding f : M1→ M2 between globally hyperbolic
spacetimes. Exploiting invertibility of vector bundle maps when restricted to a
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fiber, we can define maps between spaces of sections:

C0
: 0(V2)→ 0(V1) , σ2 7→ C−1

◦ σ2 ◦ f , (2-9)

C0c : 0c(V1)→ 0c(V2) , τ1 7→ C ◦ τ1 ◦ f −1 , (2-10)

and similarly for D. Furthermore, consider Green-hyperbolic differential operators
Pi :0(Vi )→0(Wi ), i ∈ {1, 2}, such that P1C0

= D0P2. This simply means that C
and D are compatible with the differential operators P1 over M1 and P2 over M2.
Denoting the retarded/advanced Green operators for Pi with Gi ± :0c(Wi )→0(Vi ),
we can introduce H1± = C0G2±D0c : 0c(W1)→ 0(V1) and compare it with G1±.
Exploiting the fact that f is a causal embedding, it is easy to check that H1±

fulfills the requirements in Definition 2.1, hence it is a retarded/advanced Green
operator for P1. By uniqueness, we conclude that H1± = G1±. Therefore, we have
established a relation between G1± and G2±, namely

C0G2±D0c = G1± . (2-11)

2C. General local covariance. We recall here the definition of a locally covariant
quantum field theory according to [Brunetti et al. 2003] and briefly provide some
motivation for this axiomatic approach to quantum field theory on curved space-
times. This requires some basic notions coming from category theory, which can
be found, e.g., in [MacLane 1971, Chapter 1].

We first introduce the relevant categories. As a source, we take a category
GHyp having globally hyperbolic spacetimes M as objects and causal embeddings
f : M → N as morphisms; see Section 2A. This category provides the physical
background where it is possible to sensibly discuss field theory, essentially be-
cause objects in this category possess a structure which is rich enough to make
sense of initial value problems for hyperbolic partial differential equations, while
morphisms are sufficiently well-behaved to allow us to relate Cauchy problems
defined on different objects; see the end of Section 2B. The target category Alg is
an algebraic one. Objects are unital ∗-algebras and morphisms are unit-preserving
∗-homomorphisms. Originally, morphisms in Alg where required to be injective,
however we give up this assumption for reasons which will be clear later on. Ob-
jects in Alg are interpreted as the algebras of observables of a quantum field theory,
while morphisms provide relations between different algebras arising from causal
embeddings between globally hyperbolic spacetimes.

Definition 2.3. A locally covariant quantum field theory (LCQFT) is a functor
A : GHyp→ Alg fulfilling both causality and the time slice axiom.

Causality axiom: For each f1 : M1 → N and f2 : M2 → N in GHyp such that
f1(M1) ∩ JN ( f2(M2)) = ∅, we have [A( f1)a1,A( f2)a2] = 0 for each a1 ∈

A(M1) and a2 ∈A(M2).
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Time slice axiom: For each f : M→ N in GHyp such that f (M) includes a space-
like Cauchy surface for N , A( f ) :A(M)→A(N ) is an isomorphism in Alg.

The functor A is interpreted in the following way: for each spacetime M , A

assigns an algebra of observables A(M) defining the quantum field theory on M .
Furthermore, whenever we have a causal embedding f : M → N , A provides a
∗-homomorphism A( f ) relating observables on the spacetime M to their counter-
parts on N .

The original restriction to injective morphisms in Alg (not considered here) was
meant to interpret globally hyperbolic subregions of a given spacetime as subsys-
tems at the algebraic level (this property is often called isotony). Actually, even
for those examples where the requirement of injectivity is violated [Dappiaggi
and Lang 2012; Sanders et al. 2014; Benini et al. 2014a], one can recover the
Haag–Kastler axioms [Haag and Kastler 1964; Dimock 1980; Benini et al. 2013]
(and their interpretation in terms of subsystems) regarding a fixed spacetime as the
full system and regions of this spacetime as subsystems; see [Benini et al. 2014a,
Section 5].

As we will see later, injectivity does not hold in the case of the vector potential
too. For this reason in the present context we refrain from requiring injectivity for
the morphisms in Alg.

Causality entails that observables in causally disjoint regions can be tested inde-
pendently. This condition implements the requirement that no physical information
can propagate faster than light, hence a measurement localized in some region
cannot affect other measurements which are localized in causally disjoint regions.

To conclude, the time slice axiom can be interpreted as a statement about the
content of the algebra of observables on a given spacetime. It means that all observ-
ables on a given spacetime N can be equivalently described by taking a globally
hyperbolic neighborhood M of any spacelike Cauchy surface in N . This behavior
mimics the one of an initial value problem, where each solution is completely
determined by its values in the vicinity of some spacelike Cauchy surface.

For the last part of this subsection we focus the attention on the relative Cauchy
evolution. For a locally covariant quantum field theory, such a construction is
made possible by the time slice axiom. The notion was introduced in [Brunetti
et al. 2003, Section 4], where its relation with the quantized energy-momentum
tensor was explicitly computed in the case of the Klein–Gordon field.

Suppose a locally covariant quantum field theory A : GHyp → Alg is given.
Exploiting the time slice axiom, one can define the relative Cauchy evolution. We
follow here the approach of [Fewster and Verch 2012, §3.4], where the construction
presented below is described in full detail.

Given a globally hyperbolic spacetime (M, g, o, t), we introduce the set of hy-
perbolic perturbations hp(M) of M as the set of compactly supported symmetric
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covariant 2-tensors h on M such that gh = g+ h is a time-orientable Lorentzian
metric on M and (M, gh, o, th) is a globally hyperbolic spacetime, where th is the
unique time-orientation for gh agreeing with the original time-orientation t outside
supp(h).

Remark 2.4. As shown in [Beem et al. 1996, Section 7.1], hp(M) contains an
open neighborhood of the zero section in the space of compactly supported covari-
ant symmetric 2-tensors endowed with the test function topology. In particular it
makes sense to endow hp(M) with the topology induced as a subset of the space
of compactly supported covariant symmetric 2-tensors.

Given a globally hyperbolic spacetime M and a perturbation h ∈ hp(M), we
indicate with M̃ the globally hyperbolic spacetime obtained perturbing the metric
of M as above. Denoting with K the support of h, we introduce two globally
hyperbolic spacetimes M± = M \ J∓M(K ), which will act as intermediaries between
M and M̃ at the algebraic level, making it possible to account for the effect of the
metric perturbation h on the space of observables A(M) associated to the original
spacetime.

The construction proceeds observing that M± can be causally embedded in both
M and M̃ according to the following diagram:

M

M−

i−
==

j−   

M+

i+
aa

j+~~

M̃

(2-12)

This construction is pictorially represented in Figure 1. Spacelike Cauchy surfaces
for M± are spacelike Cauchy surfaces for M and M̃ too, as it can be checked
directly from the definition of a Cauchy surface. Therefore the causal embeddings
i± and j± fulfill the hypotheses in the statement of the time slice axiom, hence,
applying the functor A to the diagram in (2-12), we get isomorphisms in Alg. This
fact gives us the opportunity to define a special automorphism of A(M), namely
the relative Cauchy evolution associated to the perturbation h ∈ hp(M):

Rh =A(i−)A( j−)−1A( j+)A(i+)−1
:A(M)→A(M). (2-13)

Rh is interpreted as the automorphic action induced by the metric perturbation h
on the space of observables A(M), which is assigned to the globally hyperbolic
spacetime M .

In some sense, the relative Cauchy evolution provides the feedback at the level of
observables induced by a modification of the metric localized in a compact region.
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M Σ+

Σ′

+

Σ′

−

Σ−

M̃

K

Σ+

Σ′

+

Σ′

−

Σ−

M+

J−

M
(K)

Σ+

Σ′

+

M−

J+

M
(K)

Σ′

−

Σ−

i+i−

j+j−

Figure 1. Pictorial representation of the globally hyperbolic space-
times involved in the definition of the relative Cauchy evolution.

This is realized via M± in the following way. An observable on M is mapped to M̃
via M+ exploiting the time slice axiom. In M̃ the observable is propagated through
the region where the metric is perturbed, hence it is affected by the perturbation
itself. This operation is performed in order to go back to the original spacetime
M via M−, instead of following the same path in the opposite direction via M+
(which leads to a trivial result). Once back to the unperturbed spacetime M , one
can compare the original observable with the one given by the relative Cauchy
evolution in order to evaluate the effect of the metric perturbation.

2D. ∗-algebras and states. As stated in the previous subsection, locally covariant
quantum field theories are functors taking values in an appropriate category of
∗-algebras.

However, as we will see in the case of the vector potential, such a functor can
be obtained quantizing a classical analogue of a locally covariant quantum field
theory. This operation is performed introducing a quantization functor.

For the case we are interested in, we use a Alg-valued quantization functor Q

defined on the category PSym of presymplectic spaces. Objects of this category are
pairs (V, σ ), where V is a vector space and σ is a presymplectic form on V , that is
to say a (possibly degenerate) antisymmetric bilinear form on V ; while morphisms
L : (V1, σ1)→ (V2, σ2) are linear maps L : V1→ V2 preserving the presymplectic
structures σ1 and σ2, namely such that σ2(Lv, Lv′)= σ1(v, v

′) for each v, v′ ∈ V1.
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Given a presymplectic space (V, σ ), we define a unital ∗-algebra Q(V, σ ) using
the Borchers–Uhlmann construction ([Borchers 1962; Uhlmann 1962]; see also
[Brunetti et al. 2003, §2.6] or [Benini et al. 2014c, Appendix A]). To each element
v ∈ V , we assign a hermitian symbol φ(v) = φ(v)∗. Then we take the unital ∗-
algebra F freely generated over the field C by the symbols φ(v), v ∈ V , and 1, the
unit of the resulting algebra F . Singling out the ∗-ideal generated by elements of
the form

φ(av+ bw)− aφ(v)− bφ(w) , v,w ∈ V , a, b ∈ C , (2-14)

φ(v)φ(w)−φ(w)φ(v)− iσ(v,w)1 , v, w ∈ V , (2-15)

from the freely generated ∗-algebra F , we get Q(V, σ ), the algebra of canonical
commutation relations associated to the presymplectic space (V, σ ).

Remark 2.5. Note that (2-14) entails linearity of the implicitly defined quantiza-
tion map

φ : (V, σ )→ Q(V, σ ) , v 7→ φ(v), (2-16)

while (2-15) is used to enforce the usual canonical commutation relations for
bosonic field theories, which is also the case for the vector potential of electro-
magnetism.

A morphism L : (V1, σ1)→ (V2, σ2) induces a unit-preserving ∗-homomorphism
at the level of the freely generated ∗-algebras. This is specified on generators by
setting φ(v1) 7→ φ(Lv1) for v1 ∈ V1, and 11 7→ 12. The obtained ∗-homomorphism
naturally descends to the quotients by the ∗-ideals generated by (2-14) and (2-15);
therefore we get a morphism Q(L) : Q(V1, σ1)→ Q(V2, σ2) in Alg.

One can easily check that Q : PSym → Alg is a covariant functor, namely
Q(id(V,σ )) = idQ(V,σ ) for each object (V, σ ) in PSym and Q(L ′L) = Q(L ′)Q(L)
for each pair of composable morphisms L , L ′ in PSym.

Remark 2.6. No topological information has been taken into account in the present
construction. Actually, endowing a presymplectic space (V, σ ) with a topology
(coherently, the presymplectic form σ has to be continuous), one can consider on
the ∗-algebra Q(V, σ ) the topology induced by the construction above. The freely
generated algebra F is a direct limit; therefore it carries the topology canonically
induced from that of V , thus becoming a topological ∗-algebra. That done, one
should consider the quotient by the topological closure of the ∗-ideal generated by
(2-14) and (2-15) in order to get a topological ∗-algebra Q(V, σ ).

Let us mention that one might also adopt other quantization procedures, leading
to much more regular algebras such as C∗-algebras. This works even in the case
of arbitrary presymplectic groups; see [Manuceau et al. 1973].
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A ∗-algebra is not enough for the physical description of a quantum field theory.
One needs also an algebraic notion of state in order to evaluate the expectation
value of an observable.

Definition 2.7. A state ω on a unital ∗-algebra A is a normalized positive linear
functional on A, namely ω : A→ C is a linear map such that ω(a∗a)≥ 0 for each
a ∈ A and ω(1)= 1.

A detailed analysis about algebraic states and their properties in relation to quantum
field theory can be found, e.g., in [Bratteli and Robinson 1987; Bär et al. 2007; Bär
and Becker 2009]. We would like to stress only one feature of algebraic states, that
is the capability of reconstructing the usual Hilbert space representation of a quan-
tum field theory exploiting the Gelfand–Naimark–Segal (GNS) theorem. Here we
briefly recall this construction for a ∗-algebra without paying attention to topology.
Some details for the case of topological ∗-algebras can be found in [Benini et al.
2013], while for the richer case of C∗-algebras see the references mentioned above.

Theorem 2.8. Let A be a ∗-algebra and consider a state ω on A. Then there exist
a Hilbert space H , a dense subspace D ⊆ H , a vector � ∈ D with norm 1 and
a ∗-representation π of A by (possibly unbounded) linear maps on H such that
π(A)� = D and 〈�,π(·)�〉 = ω, where 〈 · , · 〉 denotes the inner product on H.
Moreover, the triple (D, π,�) with the properties mentioned above, called a GNS
triple, is unique up to unitary equivalence.

Proof. It is possible to define a positive semidefinite sesquilinear form on A (here
regarded as a vector space only) exploiting positivity of the state:

〈 · , · 〉 : A× A→ C , (a, b) 7→ ω(b∗a).

Yet, 〈 · , · 〉 is degenerate if N = {a ∈ A : ω(a∗a) = 0} 6= {0}. Hermiticity follows
from the fact that ω((a + λb)∗(a + λb)) ≥ 0 is a real number for each a, b ∈ A
and λ ∈ C (choose λ= 1 and λ= i). In particular, a Cauchy–Schwarz inequality
for 〈 · , · 〉 can be established, namely |〈a, b〉|2 ≤ 〈a, a〉〈b, b〉 for each a, b ∈ A. We
deduce that 〈a, a〉 = 0 entails 〈a, b〉 = 0 for each b ∈ A. Therefore,

N = {a ∈ A : 〈a, b〉 = 0, ∀b ∈ A}

is a vector subspace of A and we can consider the vector space D = A/N . By
definition of N , the form 〈 · , · 〉 descends to the quotient D as a positive definite
sesquilinear form. Thus D becomes a pre-Hilbert space. We denote its completion
with H , which is a Hilbert space.

Notice that N is left-invariant, namely aN ⊆ N for each a ∈ A. This follows
from 〈an, b〉 = ω(b∗an) = 〈n, a∗b〉 = 0 for each a, b ∈ A and n ∈ N . This fact
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makes it possible to represent elements of A by linear maps on H :

π : A→ L(H) , π(a)[b] = [ab] , ∀a, b ∈ A .

It is easy to check the identities π(1)= idH and π(ab)= π(a)π(b). Furthermore,
〈[a∗b], [c]〉 = 〈[b], [ac]〉 entails that π(a∗) defines the adjoint of π(a), thus proving
that π is a ∗-representation of A on H .

The unit 1 ∈ A defines a distinguished vector � = [1] ∈ H of norm 1, which
allows us to reconstruct the algebraic state, 〈�,π(a)�〉 = ω(a) for each a ∈ A.
Moreover, π(A)�= D by definition.

Suppose that another triple (D′, π ′, �′) satisfying the same properties is given.
We define U : D → D′ by Uπ(a)� = π ′(a)�′ for each a ∈ A. The following
identity, which holds true for each a, b ∈ A, entails that U is well-defined as a
linear map and preserves the scalar product:

〈π ′(a)�′, π ′(b)�′〉′ = ω(b∗a)= 〈π(a)�, π(b)�〉 .

In particular, this entails that U is bounded and thus it has a unique extension to the
completions. In this way, we obtain U : H → H ′, which is linear and continuous.
Similarly, one can define V : D′→ D as Vπ ′(a)�′ = π(a)� for each a ∈ A. Then,
V has the same properties as U . In particular, it preserves the scalar products and it
admits a unique linear and continuous extension V : H ′→ H . From the definitions
of U and V , it is easy to check that V is the inverse of U on the dense subspaces
D and D′; hence the same is true everywhere on H and H ′. We conclude that
U : H → H ′ is a unitary equivalence such that Uπ(·)= π ′(·)U . �

Remark 2.9. Even though the GNS construction can be carried out for ∗-algebras
without any topology or taking into account a noncontinuous state, it turns out that
operators representing elements of the ∗-algebra might be unbounded. This is not
the case for more regular algebras (such as C∗-algebras) and continuous states.

Algebraic states provide the correct tool to evaluate expectation values of quan-
tum observables. A quite large number of states is available for the algebra of
a quantum field theory, yet not all of them exhibit a reasonable behavior from a
physical perspective. A good criterion to select physically sensible states might be
to mimic the properties shared by states for quantum field theories on Minkowski
spacetime. Just to mention the most prominent states in this context, one encoun-
ters the vacuum, associated multi-particle states, coherent states and thermal equi-
librium states as well. All these states share a peculiar behavior at very short
distances, which plays a central role in the construction of Wick polynomials
(which, in turn, provide an essential tool both to define physical quantities such
as the quantized energy-momentum tensor and to discuss interacting models in a
perturbative fashion). Therefore such short distance behavior seems to be vital for
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quantum field theory on Minkowski spacetime. An ultraviolet behavior of this kind
is mathematically described by the so-called Hadamard condition. Fortunately, this
condition on the high frequency part of the 2-point correlation function associated
to a state has a natural counterpart on curved spacetimes, even though there is
no coordinate independent notion of the Fourier transform. Seminal papers about
this topic are [Radzikowski 1996a; 1996b], where tools from microlocal analysis
[Hörmander 2003, Chapter 8] were employed in order to circumvent the lack of
a good notion of Fourier transform. Since then, several techniques to construct
Hadamard states on globally hyperbolic spacetimes for various field theoretical
models were developed. We refer the reader to the very rich literature cited in
[Benini et al. 2013, §4.3], where a concise review of the Hadamard condition, as
well as a rich collection of distinguished examples of Hadamard states, can be
found.

3. Dynamics for the vector potential

In this section we describe the classical field theory of the electromagnetic vector
potential over a d-dimensional globally hyperbolic spacetime M . An approach
similar to the one presented below can be found in [Fewster and Pfenning 2003;
Dappiaggi 2011; Benini 2014].

The relevant vector bundles for this model are the exterior tensor powers
∧k T ∗M

of the cotangent bundle T ∗M . For each k ∈N,
∧k T ∗M can be canonically endowed

with a nondegenerate inner product induced by the metric and the orientation of
M . Denoting the exterior product with ∧ :

∧k T ∗M ×
∧k′T ∗M→

∧k+k′T ∗M and
introducing the Hodge dual ∗ :

∧k T ∗M→
∧d−k T ∗M using the background metric

g and the orientation o, we get a nondegenerate inner product 〈 · , · 〉 = ∗−1( · ∧ ∗·)

on
∧k T ∗M .
As is customary, we denote the space of sections of

∧k T ∗M (i.e., k-forms
over M) by �k(M)= 0(

∧k T ∗M), The inner product 〈 · , · 〉 on the vector bundle∧k T ∗M , together with the volume form vol= ∗1, defines an inner product ( · , · )
on k-forms. Explicitly, we have

(α, β)=

∫
M
α∧∗β , (3-1)

for α, β ∈�k(M) with compact overlapping supports.
On k-forms one has the differential d :�k(M)→�k+1(M) and the codifferential

δ= (−1)k ∗−1 d ∗ :�k(M)→�k−1(M). It is important to notice that dd= 0, hence
δδ = 0, too. Moreover, one can directly check that δ is the formal adjoint of d with
respect to ( · , · ).

Using d and δ, one can introduce the Laplace–de Rham operator �= δd+ dδ
on k-forms, which is a differential operator of Green-hyperbolic type. It is easy
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to check that � is formally self-adjoint with respect to ( · , · ) on account of the
properties of d and δ. This means that �∗ = �, hence a similar relation holds
true for the corresponding retarded/advanced Green operators, namely G∗

±
= G±.

Therefore one also has

(G+α, β)= (α,G−β), (3-2)

for each k-form α with past-compact support and each k-form β with strictly future-
compact support. A similar result can be obtained by interchanging future and past.
From dd= 0 and δδ = 0, the identities for the Laplace–de Rham operator � and
the Green operators G± follow:

�d= d�, �δ = δ�, (3-3)

dG± = G±d, δG± = G±δ , (3-4)

where we use the same symbols to denote the operators acting on forms of different
rank. As an example, we show how to prove the first identity involving Green
operators. Take any α ∈�k

pc(M) and any β ∈�k+1
c (M) and compute (dG+α, β),

exploiting the properties of the Green operators, formal self-adjointness of � as
well as the identity �d= d�:

(dG+α, β)= (dG+α,�G−β)= (�dG+α,G−β)

= (d�G+α,G−β)= (dα,G−β)= (G+dα, β).

Hence dG+ = G+d, since α ∈�k
pc(M) and β ∈�k+1

c (M) are arbitrary.
The Lagrangian density of electromagnetism L is expressed in terms of the

Faraday tensor, F ∈�2(M):

L= ∗〈F, F〉 = F ∧∗F . (3-5)

The Euler–Lagrange equations derived from L state that F is a closed and coclosed
2-form; that is to say, dF = 0 and δF = 0. In the following we consider only exact
Faraday tensors, namely we assume there exists a vector potential A ∈�1(M) such
that dA = F . As a consequence, the first equation dF = 0 automatically holds
true. The second equation remains to be checked, thus providing the dynamics
of the vector potential, namely δdA = 0. Nevertheless, since the relevant object
in electromagnetism is the Faraday tensor, we are forced to consider equivalence
classes of vector potentials. As a matter of fact, two vector potentials A and A′

differing by dϕ, ϕ ∈ C∞(M), give rise to the same Faraday tensor F = dA. For
this reason, we consider gauge classes of vector potentials defined according to the
equivalence relation

A ∼ A′ ⇐⇒ ∃ϕ ∈ C∞(M) such that A′ = A+ dϕ ; (3-6)
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that is, A, A′ ∈�1(M) are considered the same whenever they differ by an exact
1-form.

Let us mention that there are several other approaches to electromagnetism on
curved spacetimes. This model was analyzed directly from the perspective of the
Faraday tensor in [Dappiaggi and Lang 2012]. In [Dappiaggi and Siemssen 2013]
and [Fewster and Lang 2014] the approaches are similar to the present one, except
for the notion of gauge equivalence, which is provided there by closed 1-forms
instead of exact ones. The present setting is adopted in [Sanders et al. 2014], where
also external source currents are dealt with. Some arguments can be found there
to motivate our choice of gauge symmetry (3-6). A more geometrical perspective,
much in the spirit of Yang–Mills theory, can be found in [Benini et al. 2014b],
subsequently refined in [Benini et al. 2014a], in order to correctly address the
Aharonov–Bohm effect as well as magnetic monopoles.

In Section 2B we collected much of the material needed to characterize spaces
of solutions for Green-hyperbolic equations in terms of Green operators. However
this is not enough in the present setting for two reasons. First, the linear differen-
tial operator δd ruling the dynamics of the vector potential is not Green-hyperbolic.
Second, we have to deal with gauge equivalence too. To overcome such hindrances,
we are going to exploit gauge symmetry in order to show that equivalence classes
of vector potentials satisfying the dynamics, δdA = 0, can be represented adopting
the Lorenz gauge, that is to say δA= 0. Later, exploiting the fact that �= δd+dδ is
Green-hyperbolic and realizing that on-shell vector potentials in the Lorenz gauge
satisfy �A = 0, we provide a characterization of the space of gauge equivalence
classes of solutions via the causal propagator G = G+−G− for �, slightly extend-
ing a result in [Dappiaggi 2011]. A more systematic treatment of gauge theories
can be found in [Hack and Schenkel 2013].

Lemma 3.1. Let M be a globally hyperbolic spacetime. Denote the space of solu-
tions to the equation ruling the dynamics of the vector potential by

S= ker(δd :�1(M)→�1(M)).

Moreover, use G= dC∞(M) to denote the space of gauge transformations. Then
for each gauge class of solutions [A] ∈ S/G, there exists a representative Â ∈ [A]
in the Lorenz gauge; that is to say δ Â = 0.

Proof. Let A ∈ [A] be any representative and consider the equation �ϕ+ δA = 0
for ϕ ∈ C∞(M). We can easily write down a solution of this equation by fixing a
partition of unity {χ+, χ−} such that χ± = 1 in a past- or future-compact region.
With such a partition of unity, we get a solution ϕ =−G+(χ+δA)−G−(χ−δA).
Introducing Â = A+ dϕ, we conclude that δd Â = 0 and δ Â = δA+�ϕ = 0 since
�= δd on C∞(M). �
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Since δG± = G±δ and taking into account (2-8) too, we realize that each co-
closed α ∈�1

tc(M) gives rise to a solution A = Gα ∈ S in the Lorenz gauge. This
gives us a hint how to represent the space S/G of gauge classes of solutions. Note
that in the next proof we will extensively make use of the exact sequence (2-8).

Theorem 3.2. Let M be a globally hyperbolic spacetime and set

kerk
tc δ = ker(δ :�k

tc(M)→�k−1
tc (M)).

Then the causal propagator G for �= δd+ dδ induces the following isomorphism
of vector spaces:

I :
ker1

tc(δ)

δd(�1
tc(M))

→
S

G
, [α] 7→ [Gα] .

Proof. As mentioned before the statement of the theorem, G maps ker1
tc(δ) to S.

Given β ∈�1
tc(M), Gδdβ = G(�− dδ)β = dG(−δβ) ∈ G. Therefore G induces a

linear map from ker1
tc(δ)/δd(�

1
tc(M)) to S/G.

This map is surjective on account of Lemma 3.1. Given [A] ∈ S/G, we find
Â ∈ [A] such that δ Â= 0. Since � Â= 0, using (2-8) we find α̂ ∈�1

tc(M) such that
Gα̂= Â. From δ Â= 0, (2-8) entails there exists ψ ∈C∞tc (M) such that δα̂=�ψ =
δdψ . We deduce that α = α̂−dψ ∈ ker1

tc(δ). Moreover, [Gα] = [ Â−dGψ] = [A].
Given α∈ker1

tc(δ), it remains only to check that [Gα]=0 entails α∈ δd(�1
tc(M)).

By definition, we find ϕ ∈ C∞(M) such that dϕ = Gα, which entails �ϕ = 0.
Therefore there exists ψ ∈ C∞tc (M) such that Gψ = ϕ. Hence (2-8) ensures the
existence of β ∈ �1

tc(M) such that �β = α − dψ . Applying δ to both sides of
the last identity, we get �δβ = −�ψ , hence δβ = −ψ . From this we conclude
α = δdβ ∈ δd(�1

tc(M)). �

Remark 3.3. One might be interested to solutions supported inside a spacelike
compact region, namely consider Ssc = {A ∈�1

sc(M) : δdA = 0}. In this case the
corresponding notion of gauge symmetry is specified by Gsc= d�1

sc(M). Following
the same arguments used above, but using the exact sequence (2-7) in place of
(2-8), one gets an isomorphism of vector spaces similar to the one presented in
Theorem 3.2:

Isc :
ker1

c(δ)

δd(�1
c(M))

→
Ssc

Gsc
, [α] 7→ [Gα], (3-7)

where kerk
c (δ)= ker(δ :�k

c(M)→�k−1
c (M)). In the next section we will encounter

ker1
c(δ)/δd(�

1
c(M)) (enriched with more structure) as the space of classical ob-

servables for the vector potential. Hence, via Isc, one can interpret Ssc/Gsc as the
space of observables of the theory. This approach was adopted in [Dimock 1992;
Pfenning 2009].
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4. Observables and quantization

In this section we first introduce a suitable observables for the vector potential at
a classical level. Then we quantize the obtained space of observables adopting the
scheme presented in Section 2D.

In order to define observables for the vector potential, we follow the spirit of
[Brunetti et al. 2012], where observables are defined as functionals on field con-
figurations. In the case under analysis it is sufficient to take into account only
linear functionals, the dynamics being linear. For this reason our approach mimics
the one in [Benini et al. 2014c], even though the situation is even simpler, the
underlying bundle being a vector bundle. For the first part of this section it is
enough to consider M to be a spacetime. When needed, we will also explicitly
introduce the assumption of global hyperbolicity.

We start introducing a special class of linear functionals defined on the space of
kinematically allowed field configurations, that is to say �1(M):

Oα :�
1(M)→ R , Oα(A)= (α, A),

where α ∈ �1
c(M). We denote the space of such functionals with Ekin

' �1
c(M).

The isomorphism α 7→ Oα will be often used as an identification of Ekin with
�1

c(M). Since vector potentials differing by a gauge transformation are regarded
to be equivalent, only gauge invariant functionals are relevant. For this reason we
consider

Einv
= {Oα ∈ Ekin

: Oα(dϕ)= 0, ∀ϕ ∈ C∞(M)} .

Since (α, dϕ) = (δα, ϕ) for each α ∈ �1
c(M) and ϕ ∈ C∞(M), we conclude that

Einv
= ker1

c(δ). Up to now, no dynamical information is encoded in the space
of gauge invariant functionals. As a matter of fact, Einv provides gauge invariant
functionals defined on all kinematically allowed field configurations, regardless
of the equation of motion δdA = 0. In order to the encode dynamics in a dual
fashion on gauge invariant functionals, we proceed as follows. First, we consider
the formal adjoint of the equation of motion operator δd, which is formally self-
adjoint since (δdα, A)= (α, δdA) for each A ∈�1(M) and each α ∈�1

c(M). Then,
we take the quotient of Einv by the image of (δd)∗ = δd :�1

c(M)→�1
c(M). In this

way we obtain the vector space

E=
Einv

δd(�1
c(M))

,

which is interpreted as a space of classical observables for the vector potential,
the interpretation being motivated by the fact that E comprises gauge invariant
functionals which can be evaluated only on on-shell field configurations [A] ∈ S/G.
In fact, the evaluation of [α] ∈E on [A] ∈S/G can be performed choosing arbitrary
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representatives in the equivalence classes. Such evaluation is well-defined because
each A ∈ [A] is on-shell, namely such that δdA = 0, and each α ∈ [α] is gauge
invariant.

The following theorem shows that E contains sufficiently many elements in order
to distinguish vector potentials up to gauge. Moreover, if M admits a finite good
cover, there are no redundant elements of E, namely two different elements cannot
take the same values on all field configurations. Therefore E is optimal in the
sense of [Benini 2014] as a space of linear classical observables for the model we
are considering (under the assumption of existence of a finite good cover for the
spacetime M). This result is a special case of [Benini 2014, Theorem 7.6]. For a
different, yet equivalent, approach to causally restricted de Rham cohomology, see
[Khavkine 2014a].

Theorem 4.1. Let M be a spacetime and let [α], [α′] ∈ E and [A], [A′] ∈ S/G.

(1) If O[β]([A])= O[β]([A′]) for each [β] ∈ E, then [A] = [A′].

(2) If M admits a finite good cover and O[α]([B])= O[α′]([B]) for each [B] ∈S/G,
then [α] = [α′].

In view of our quantization prescription (see Section 2D) we want to endow E

with a presymplectic structure. Assuming the spacetime M to be globally hyper-
bolic and denoting the causal propagator for � with G, we define

τ : E×E→ R, τ ([α], [β])= (α,Gβ), (4-1)

where α and β are representatives of [α] and respectively [β]. The bilinear map
( · ,G · ) :�1

c(M)×�
1
c(M)→ R is antisymmetric:

(α,Gβ)=−(Gα, β)=−(β,Gα), ∀α, β ∈�1
c(M).

Moreover, for each α ∈ ker1
c(δ) and ω ∈�1

c(M), one has

(α,Gδdω)= (α,G(�− dδ)ω)=−(δα,Gδω)= 0 .

This shows that τ is well-defined by (4-1), thus providing a presymplectic form on
E.

Remark 4.2. The presymplectic form τ is actually degenerate on certain globally
hyperbolic spacetimes. Suppose that β lies in δ(�2

c(M)∩ d�1
tc(M)) \ δd�

1
c(M).

This means that there exists γ ∈�1
tc(M) such that δdγ = β and dγ has compact

support, but there is no ω ∈ �1
c(M) such that δdω = β. Hence [β] 6= 0 in E;

however, by also exploiting (2-8), for each [α] ∈ E we have

τ([α], [β])= (α,Gδdγ )= (α,G(�− dδ)γ )=−(δα,Gδγ )= 0,

where the last equality follows from δα = 0.
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Obviously, for a globally hyperbolic spacetime with compact Cauchy surfaces
such an α cannot exist, timelike compact regions being compact too. However,
it is relatively easy to cook up examples of globally hyperbolic spacetimes with
noncompact Cauchy surfaces where δ(�2

c(M)∩d�1
tc(M))\δd�

1
c(M) is not empty;

see [Benini et al. 2014b, Remark 3.9].

Now we want to show that general local covariance (without injectivity) holds
true for the field theoretical model considered here. This result will be achieved in
two steps. First, we will construct a classical counterpart of a (noninjective) gener-
ally covariant quantum field theory for the vector potential. Then our quantization
scheme will automatically provide a LCQFT according to Definition 2.3.

To each globally hyperbolic spacetime M we assign the presymplectic space
F(M) = (EM , τM) as defined above (note that we included a subscript to keep
track of the underlying spacetime). Given a causal embedding f : M → N , we
consider the pullback f ∗ :�k(N )→�k(M) for k-forms and the pushforward f∗ :
�k

c(M)→�k
c(N ) for compactly supported k-forms. f∗ intertwines the differential

dM for forms on M with the differential dN for forms on N , namely f∗dM =

dN f∗. Moreover, since f is an isometry, f∗δM = δN f∗ as well. Therefore f∗
induces a map F( f ) : EM → EN between the spaces of observables associated
to M and N . It remains only to check that F( f ) preserves the corresponding
presymplectic structures τM and τN . This follows from the last part of Section 2B.
Taking into account the present setting, from Section 2B we deduce f ∗G N ± f∗ =
G M ±, where G M ± and G N ± denote the retarded/advanced Green operators for
�M and respectively �N . Given [α], [β] ∈ EM , we compute

τN (F( f )[α],F( f )[β])= ( f∗α,G N f∗β)N = (α, f ∗G N f∗β)M

= (α,G Mβ)M = τM([α], [β]).

This shows that F( f ) : F(M)→ F(N ) is a morphism in PSym. One can easily
check that F(idM) = idF(M) for each object M in GHyp and that F( f ◦ f ′) =
F( f ) ◦F( f ′) for each pair of composable morphisms f, f ′ in GHyp. Therefore
we conclude that F : GHyp→ PSym is a functor.

Theorem 4.3. The functor F : GHyp→ PSym fulfills the classical counterparts
of the causality and time slice axioms that are stated below. Yet injectivity of
morphisms fails, namely there are morphisms f in GHyp for which F( f ) is not
injective.

Causality axiom: For each f1 : M1 → N and f2 : M2 → N in GHyp such that
f1(M1) ∩ JN ( f2(M2)) = ∅, we have τN (F( f1)[α1],F( f2)[α2]) = 0 for each
[α1] ∈ F(M1) and [α2] ∈ F(M2).

Time slice axiom: For each f : M→ N in GHyp such that f (M) includes a space-
like Cauchy surface for N , F( f ) : F(M)→ F(N ) is an isomorphism in PSym.
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Proof. A counterexample to injectivity is provided in Remark 5.6 of [Benini et al.
2014b]. In fact, taking into account only the linear part of the classical observables
defined in the reference just cited for the case G = R as structure group, one gets
the same space of classical observables which is considered here.

The causality property is a trivial consequence of the support properties of the
causal propagator. Under the assumptions of the statement, we have the inclusion

supp( f1 ∗α1)∩ JN (supp( f2 ∗α2))⊆ f1(M1)∩ JN ( f2(M2))=∅;

hence the supports of f1 ∗α1 and G N f2 ∗α2 do not overlap. This shows that τN

vanishes when evaluated on the pair (F( f1)[α1],F( f2)[α2]) ∈ EM ×EM .
To prove the time slice axiom we take f : M→ N as in the statement and we

look for an inverse of F( f ).
As a preparatory step, we introduce a special partition of unity. Let 6 be a

spacelike Cauchy surface for N included in f (M). Since f is a causal embedding,
f (M) is a globally hyperbolic spacetime with 6 as a spacelike Cauchy surface.

According to [Bernal and Sánchez 2005], we can foliate N as R×6 and regard
f (M) as an open neighborhood of {0}×6 in N . In particular, there are spacelike
Cauchy surfaces 6+, 6− for N of the form {t}×6 which are contained in f (M)
and lie respectively inside the chronological future I+M(6) and the chronological
past I−M(6) of 6. We take a partition of unity {χ+, χ−} on N such that χ± = 1 in
J±N (6±).

Using {χ+, χ−}, we define a map I : EN → EM according to the following
procedure. Given [β] ∈ EN and fixing a representative β ∈ [β], we can consider
the 1-form δd(χ±G±β) = β − δd(χ∓G±β) and realize its support is compact.
Here we exploited the compact support of β and the past-compact/future-compact
support of χ±, together with δβ = 0 and Definition 2.1. Moreover, note that the
left side vanishes in J∓N (6∓). We can also consider the 1-form β̂ = δd(χ+Gβ)=
−δd(χ−Gβ) (the second equality follows from δβ = 0 and �Gβ = 0). As it can be
easily checked, β̂ has compact support inside the time slab J+N (6−)∩ J−N (6+)⊆
f (M). Setting ω = (χ−G+β + χ+G−β) ∈ �1

c(N ), by a direct computation we
find β̂ + δdω = β. Hence β̂ is a representative of [β] and, as we already proved,
its support lies inside f (M) allowing us to introduce α = f ∗β̂ ∈�1

c(M) such that
δα = 0. The same argument for another representative β+ δdγ of [β], γ ∈�1

c(M),
would give β̂ + δd(χ+Gδdγ ). Taking into account G�γ = 0, one gets

δd(χ+Gδdγ )=−δd(χ+dδGγ )=−δ(dχ+ ∧ dδGγ )= δd(dχ+ ∧ δGγ ),

where γ̂ = dχ+ ∧ δGγ has compact support in J+N (6−)∩ J−N (6+)⊆ f (M). This
fact follows from dχ+ =−dχ− being supported inside a timelike compact region
and supp(Gω) being spacelike compact. Introducing θ = f ∗γ̂ ∈�1

c(M), we con-
clude that, when starting from β + δdγ , the procedure above provides α + δdθ .
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Since [α+ δdθ ] = [α] in EM , we can define the linear map

I : EN → EM , [β] 7→ [ f ∗δd(χ+Gβ)] . (4-2)

One can directly check that I is actually the inverse of F( f ) taking [α] ∈ EM

and [β] ∈ EN and computing I F( f )[α] and F( f )I [β]. In the first formula below
we introduce subscripts on G to stress that both the causal propagators for � on
M and for � on N are involved.

I F( f )[α] = I [ f∗α] = [ f ∗δd(χ+G N f∗α)] = [δd(( f ∗χ+)G Mα)]

= [δd(( f ∗χ+)G Mα)+ δd(( f ∗χ+)G M −α)+ δd(( f ∗χ−)G M +α)]

= [δd(G M +α)] = [α],

F( f )I [β] = F( f )[ f ∗δd(χ+Gβ)] = [δd(χ+Gβ)] = [β] .

For the first computation we exploited the fact that ( f ∗χ±)G M ∓α is a compactly
supported 1-form on M , while the second follows from the fact that δd(χ+Gβ) is
a representative of [β] with support inside f (M), as already shown above. Auto-
matically I preserves the relevant presymplectic forms:

τM(I [β], I [β ′])= τN (F( f )I [β],F( f )I [β ′])= τN ([β], [β
′
]),

for each [β], [β ′] ∈ EN . This shows that I : F(N ) → F(M) is the inverse of
F( f ) : F(M)→ F(N ) in PSym; therefore F( f ) is an isomorphism in PSym. �

The last part of this section is devoted to the quantization of the functor F

describing the classical field theory of the vector potential. This result is achieved
composing F : GHyp→ PSym with the quantization functor Q : PSym→ Alg for
canonical commutation relations presented in Section 2D.

Theorem 4.4. The functor A= Q◦F : GHyp→ Alg is a locally covariant quantum
field theory according to Definition 2.3.

Proof. A is defined by the composition of the covariant functors Q : PSym→

Alg and F : GHyp→ PSym; therefore it is a covariant functor from GHyp to Alg.
Causality holds true on account of its classical counterpart fulfilled by F and the
canonical commutation relations implemented by Q. The time slice axiom for A

follows from the corresponding property of F and the fact that Q is a functor, thus
sending isomorphisms of PSym to isomorphisms of Alg. �

Remark 4.5. Up to now, neither F(M) nor A(M) were intended as topological
spaces. Actually, one can endow F(M) with the topology induced by the test func-
tion topology on �1

c(M), F(M) being the quotient by δd(�1
c(M)) of the closed

subspace Einv of �1
c(M). At least whenever M admits a finite good cover, the

second statement of Theorem 4.1 means that the image of δd :�1
c(M)→�1

c(M)
coincides with the intersection of the kernels of the maps

∫
M( · )∧∗A :�1

c(M)→R,
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A ∈ ker1(δd). Since these maps are continuous, δd(�1
c(M)) is a closed subspace of

�1
c(M). This entails that the topology induced on F(M) by the quotient is Haus-

dorff at least when M admits a finite good cover. Continuity of the push-forward
along a smooth map and of the Green functions (see [Bär et al. 2007, Section 3.4])
entails that all our conclusions up to this point are compatible with the topological
structure presented above, in particular F is a functor taking values in the category
of topological presymplectic spaces. Therefore, Remark 2.6 entails that the functor
A can be regarded as taking values in the category of unital topological ∗-algebras.

Theorem 4.4 provides a satisfactory description of the quantum field theory
of the vector potential on each globally hyperbolic spacetime. One still needs
Hadamard states for this model. A constructive result in this direction can be
found in [Dappiaggi and Siemssen 2013] for asymptotically flat globally hyperbolic
spacetimes at future null infinity. Furthermore, the existence of Hadamard states
can be argued exploiting a deformation arguments involving ultrastatic spacetimes
[Fulling et al. 1978; Fulling et al. 1981], where a complete timelike Killing vector
field makes it possible to cook up Hadamard states by means of Fourier transform
techniques. This approach was followed in [Fewster and Pfenning 2003]. An
extension of the Gupta–Bleuler formalism to curved spacetimes is available too;
see [Finster and Strohmaier 2013].

We recall the notion of a quasifree Hadamard state for the vector potential ac-
cording to [Fewster and Pfenning 2003].

Definition 4.6. For a globally hyperbolic spacetime M , a state ω on the field al-
gebra A(M) is quasifree and Hadamard if there exists a distribution w ∈�1

c(M
2)′

fulfilling the requirements listed below.

(1) w is a �-bisolution, i.e., w(�α, β)= 0= w(α,�β) for each α, β ∈�1
c(M).

(2) w(α, β)−w(β, α)= iτ([α], [β]) for each α, β ∈ Einv.

(3) The wavefront set of w has the form

W F(w)=
{
(x, k; x ′,−k ′) ∈ Ṫ ∗M2

: (x, k)∼ (x ′, k ′), k ∈ V+x
}
,

where Ṫ ∗ denotes the cotangent bundle with the zero section removed, V+x is
the closed cone of lightlike covectors at x and (x, k)∼ (x ′, k ′) means that x
is joined to x ′ by a lightlike geodesic γ , k is the cotangent vector at x of γ
and k ′ is the parallel transport of k along γ .

(4) The two-point function of the state ω is given by w, that is to say, for each
α, β ∈ Einv,

ω(φ([α])φ([β]))= w(α, β).
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(5) All n-point functions vanish for n odd, while for n even they are completely
determined by two-point function, namely, for α1, . . . , αn ∈ Einv,

ω
(
φ([α1]) · · ·φ([αn])

)
=

∑
π∈Pn

n/2∏
i=1

ω
(
φ([απ(2i−1)])φ([απ(2i)])

)
,

where Pn denotes the set of permutations π of {1, . . . , n} such that π(2i−1)<
π(2i + 1) and π(2i − 1) < π(2i) for each i ∈ {1, . . . , n/2}.

5. Relative Cauchy evolution

In this section we relate the relative Cauchy evolution to the energy-momentum
tensor of the vector potential, thus extending a result which was originally estab-
lished for the Klein–Gordon field in [Brunetti et al. 2003] and later shown to hold
in the Dirac case as well; see [Sanders 2010].

As a starting point, we fix a globally hyperbolic spacetime M and we consider
a representation π of the field algebra A(M) (meant here as a unital topological
∗-algebra according to Remark 4.5) on a Hilbert space H such that it makes sense to
consider the functional derivative of the relative Cauchy evolution Rh with respect
to the perturbation h. This is to be intended in the following sense: there exists a
dense subspace S of H and a dense unital ∗-subalgebra B of A(M) such that, for
each θ ∈ S and b ∈ B, there exists a symmetric contravariant 2-tensor t satisfying
the following condition:∫

M

( d
ds

∣∣∣
0
hs µν

)
tµν vol= d

ds

∣∣∣
0

〈
θ, π(Rsb)θ

〉
, (5-1)

for each compact set K ⊆ M and each smooth 1-parameter family s ∈ (−1, 1) 7→
hs ∈ hp(M) of globally hyperbolic perturbations of M with support inside K , where
Rs stands for Rhs .

2 Uniqueness of t follows from Remark 2.4. This allows us to
introduce

(θ, b) ∈ S× B 7→
〈
θ,
(
δ

δh
π(Rhb)

)
θ
〉
.
= t ,

which implicitly defines, for each b ∈ B, the functional derivative δπ(Rhb)/δh of
the relative Cauchy evolution as a quadratic form on V via the representation π .

As noted in [Brunetti et al. 2003], the GNS representation πω induced by a
quasifree Hadamard state ω on the field algebra A(M) fulfills all requirements
listed above for defining the functional derivative of the relative Cauchy evolution.

Remark 5.1. Using general arguments, in [Brunetti et al. 2003, Theorem 4.2]
it is shown that δπ(Rhb)/δh is divergence-free with respect to the Levi–Civita

2We will use this notation whenever it is clear from the context which family of perturbations is
being taken into account.



202 MARCO BENINI

connection for the unperturbed metric g. This is a consistency check for the main
theorem of this section since the final result consists of an equality between the
functional derivative of the relative Cauchy evolution and a term involving the
energy-momentum tensor of the electromagnetic field, which is divergence-free.

For convenience, we first state the final result and then we proceed step by step
preparing the tools needed later for the proof.

Theorem 5.2. Let M be a globally hyperbolic spacetime and consider a quasifree
Hadamard state ω for the field algebra A(M) of the vector potential. Consider the
GNS triple (Dω, πω, �ω) associated to ω. Then the equality stated below holds
true for each [α] ∈ F(M) in the sense of quadratic forms on Dω:

δ

δhµν
πω
(
Rhφ([α])

)
=

i
2
[
T̂ µν, φω([α])

]
, (5-2)

where φω([α])= πω
(
φ([α])

)
is a generator of the field algebra A(M) represented

via πω and T̂ µν is the quantized energy-momentum tensor (indices are raised us-
ing the background metric) obtained via point-splitting in the GNS representation
induced by ω.

Remark 5.3. Instead of using the point-splitting prescription in order to quantize
the classical energy-momentum tensor Tµν of the electromagnetic field, defined
as the functional derivative of the action with respect to the background metric,
one could consider more refined quantization procedures, but the conclusions of
Theorem 5.2 would not be affected. For details see the remarks after [Brunetti et al.
2003, Theorem 4.3].

5A. Energy-momentum tensor and point-splitting. As a starting point, we write
down the classical energy-momentum tensor as the functional derivative with re-
spect to the spacetime metric of the action S for the vector potential A, which is
defined out of the Lagrangian (3-5):

Tµν =
2√
|det g|

δS
δgµν

= FµρF ρ
ν −

1
4 gµνFρσ Fρσ , (5-3)

where indices are raised with respect to the spacetime metric g. The result is a
divergence-free symmetric covariant 2-tensor T , as one can easily check taking
into account the identities F = dA and δdA = 0.

In Theorem 5.2 the quantized energy-momentum tensor T̂ appears. This is ob-
tained from the classical one, namely T , applying the point-splitting prescription
[Wald 1994, Section 4.6]:

(1) Separate products of classical fields at the same spacetime point p ∈ M in-
troducing an auxiliary base point q ∈ M . This is to be intended in the limit
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where the two points are close enough. To be more precise, one should con-
sider a point q 6= p in a normal neighborhood of p. This way there exists a
unique geodesic connecting p to q . The product at different spacetime points
is then properly defined in terms of the parallel transport operator Y along
such geodesic;

(2) Replace products of classical fields with matrix elements of products of quan-
tum fields in a Hilbert space representation;

(3) Deal with all computations in the point-split form. Only in the end take the
coincidence limit, provided no singularity arises.

To start with, one has to define matrix elements for products of quantum fields in
the GNS representation πω induced by a quasifree Hadamard state ω. According
to Definition 4.6, we note that, given ξ, η ∈ Dω and α1, . . . , αn ∈ Einv, the matrix
element of a product of n fields 〈ξ, φω([α1]) · · ·φω([αn])η〉 can be written as a
sum of products of a suitable bidistribution w evaluated on some test-sections in
Einv, among which one finds α1, . . . , αn . Therefore, using w, one can define a n-
distribution 〈ξ, Â(p1) · · · Â(pn)η〉∈�

1
c(M

n)′ satisfying, for each α1, . . . , αn ∈Einv,
the identity∫

Mn

〈
ξ, Âµ1(p1) · · · Âµn (pn)η

〉
α
µ1
1 (p1) · · ·α

µn
n (pn) vol

=
〈
ξ, φω([α1]) · · ·φω([αn])η

〉
, (5-4)

where the integral denotes evaluation of a distribution on a test section and indices
are raised with respect to g.

However,
〈
ξ, Â(p1) · · · Â(pn)η

〉
is not the only distribution satisfying (5-4). Since

only elements of Einv
⊆�1

c(M) can enter
〈
ξ, φω([α1]) · · ·φω([αn])η

〉
, one can add

exact n-distributions to
〈
ξ, Â(p1) · · · Â(pn)η

〉
without affecting the identity (5-4).

This ambiguity does not affect the quantization of T since only F = dA enters
(5-3), and therefore Theorem 5.2 is not affected as well.

Remark 5.4. For n = 1, 〈ξ, Âµ(p)η〉 is a distribution generated by a smooth func-
tion, as observed in [Brunetti et al. 2003, p. 60].

Using (5-4), from items (1)–(2) above we get matrix elements for the quantized
energy-momentum tensor:

〈ξ, T̂µν(p, q)η〉

= gρσ (p)Y ν
′σ ′

νσ (p, q)

×
[
∇

p
µ∇

q
ν′

〈
ξ, Âρ(p) Âσ ′(q)η

〉
− (ν ′↔σ ′)− (µ↔ρ)+ (µ↔ρ and ν ′↔σ ′)

]
−

1
2 gµν(p)gρσ (p)gτυ(p)Y σ

′υ ′

συ (p, q)

×
[
∇

p
ρ∇

q
σ ′

〈
ξ, Âτ (p) Âυ ′(q)η

〉
− (σ ′↔υ ′)

]
. (5-5)
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Here the superscript on a covariant derivative indicates the spacetime dependence
of the section upon which the covariant derivative is applied; µ↔ρ stands for a
term equal to the one explicitly written before, with indices µ and ρ interchanged.
Setting η = φω([α])θ, ξ = θ and then ξ = θ, η = φω([α])θ in (5-5) and taking the
difference between the two outcomes, one gets

〈
θ,
[
T̂µν(p, q), φω([α])

]
θ
〉
, which

is the relevant term for Theorem 5.2. A closer look at (5-5) shows that this term can
be evaluated once

〈
θ,
[
Âµ(p) Âν′(q), φω([α])

]
θ
〉

is known. This can be obtained
from the term

〈
θ,
[
φω([β])φω([γ ]), φω([α])

]
θ
〉

by extracting a (nonunique) bidis-
tribution as above. Using the canonical commutation relations (2-15), we obtain〈
θ,
[
Âµ(p) Âν′(q), φω([α])

]
θ
〉
= i(Gα)µ(p)〈θ, Âν′(q)θ〉+ i(Gα)ν′(q)〈θ, Âµ(p)θ〉 .

As above, the one on the right side is not the only possible choice of a bidistribution
representing the left side, yet this ambiguity amounts to an exact bidistribution, and
therefore it disappears as soon as we take the appropriate derivatives in order to
evaluate

〈
θ,
[
T̂µν(p, q), φω([α])

]
θ
〉
. Already at this stage one realizes no singular-

ity appears in the coincidence limit p→ q . Defining A=Gα, F = dA, Ã=〈θ, Âθ〉
and F̃ = d Ã, one is led to〈
θ,
[
T̂µν(p), φω([α])

]
θ
〉
= igρσ(p)

(
Fµρ(p)F̃νσ(p)+ F̃µρ(p)Fνσ(p)

)
−

i
2 gµν(p)gρσ(p)gτυ(p)Fρτ(p)F̃συ(p). (5-6)

5B. Classical relative Cauchy evolution. This subsection is devoted to finding a
convenient formula for the relative Cauchy evolution at the classical level. This is
defined replacing A in (2-13) with F, the functor describing the classical field
theory of the vector potential. This can be done on account of the time slice
axiom Theorem 4.3. In view of the proof of Theorem 5.2, given a globally hy-
perbolic spacetime M , we fix a compact region K ⊆ M and a 1-parameter family
s ∈ (−1, 1) 7→ hs ∈ hp(M) supported inside K . For each s ∈ (−1, 1), recall-
ing the construction of Section 2C, we consider the globally hyperbolic space-
time M̃ s , obtained perturbing M with hs . Moreover, we take spacelike Cauchy
surfaces 6+, 6′+ for M+ = M \ J−M(K ) and 6′

−
, 6− for M− = M \ J+M(K )

such that 6′
+
⊆ I−M+(6+) and 6′

−
⊆ I+M−(6−); see Figure 1. Consider now

the diagram in (2-12). For each causal embedding in this diagram, the functor
F provides a morphism in PSym, which can be inverted according to the time
slice axiom. In particular, we are interested in F(i+)−1

: F(M)→ F(M+) and
F( j−)−1

: F(M̃ s) → F(M−). These maps can be explicitly defined following
the proof of the time slice axiom in Theorem 4.3; see (4-2). For i+ consider the
spacelike Cauchy surfaces 6+, 6′+ and a partition of unity {χ+, χ ′+} on M such
that χ+ = 1 in J+M(6+), while χ ′

+
= 1 in J−M(6

′
+
). To define j− consider instead

6′
−
, 6−, together with a partition of unity {χ ′

−
, χ−} on M̃ s such that χ ′

−
= 1 in
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J+
M̃s
(6′
−
) and χ−= 1 in J−

M̃s
(6−). Explicit formulas for F( j+) :F(M+)→F(M̃ s)

and F(i−) : F(M−)→ F(M) are obtained simply via pushforward on compactly
supported 1-forms as it is explained before Theorem 4.3.

We recall here the explicit form of the maps involved in the definition of the
classical relative Cauchy evolution rs : F(M)→ F(M) for the perturbation hs :

F(i+)−1
: F(M)→ F(M+), [α] 7→ [i∗

+
δd(χ+Gα)],

F( j+) : F(M+)→ F(M̃ s), [α] 7→ [ j+∗α],

F( j−)−1
: F(M̃ s)→ F(M−), [α] 7→ [− j∗

−
δsd(χ−Gsα)],

F(i−) : F(M−)→ F(M), [α] 7→ [i−∗α],

where the subscript s means that the perturbation hs plays a role. For example Gs

is the causal propagator for �s = δsd+ dδs , where hs enters δs via the Hodge dual
on M̃ s , which is defined out of the perturbed metric gs = g+hs and the orientation
of the underlying manifold. Composing the maps above, one gets a formula for
the classical relative Cauchy evolution:

rs : F(M)→ F(M) , [α] 7→ [−δsd(χ−Gsδd(χ+Gα))] (5-7)

Remark 5.5. We are dealing with a family hs of perturbations; therefore the above
construction should be performed for each s. In particular, for each value of s, one
should consider appropriate spacelike Cauchy surfaces. However, supp(hs)⊆ K
for each s. Having under control the support of the whole family of perturbations
hs , it is possible to choose spacelike Cauchy surfaces and partitions of unity which
do the job for each s. 6±, 6′± were chosen exactly in this spirit.

For the proof of Theorem 5.2 we are interested in the functional derivative of
Rs = Q(rs). Having this in mind, we compute drs[α]/ds

∣∣
0 for an arbitrary, but

fixed, [α] ∈ F(M). This makes sense at least whenever the topology on F(M) is
Hausdorff;3 see Remark 4.5. Equation (5-7) and the Leibniz rule entail that

d
ds

rs[α]
∣∣
0 =

[
−

d
ds
δsd
(
χ−Gδd(χ+Gα)

)∣∣
0−

d
ds
δd
(
χ−Gsδd(χ+Gα)

)∣∣
0

]
.

Since supp(hs) ∩ supp(χ−) ⊆ K ∩ M− = ∅, the argument of the first derivative
is constant in s. We deduce that the first contribution vanishes. Decomposing
Gs in Gs+−Gs− and noting that χ−Gs+δd(χ+Gα) and χ ′

−
Gs−δd(χ+Gα) have

compact supports, we get

3This property ensures uniqueness of limits; therefore drs [α]/ds|0 is uniquely defined as the limit
for s→ 0 of

(
rs [α] − [α]

)
/s.
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d
ds

rs[α]
∣∣
0 =

[
−

d
ds
δd
(
χ−Gs+δd(χ+Gα)

)∣∣
0+

d
ds
δd
(
χ−Gs−δd(χ+Gα)

)∣∣
0

]
=

[ d
ds
δdGs−δd(χ+Gα)

∣∣
0

]
=

[
−

d
ds
δdGs−�(χ

′

+
Gα)

∣∣
0

]
, (5-8)

due to the fact that δd�1
c(M) is identified with 0 in F(M), dGs− = Gs−d on

�k
c(M) and �(χ+Gα)=−�(χ ′

+
Gα). On account of the properties of the Green

operators (2-6), and exploiting the Leibniz rule, one obtains the identity

d
ds

Gs−�(χ
′

+
Gα)

∣∣
0+G−

d
ds

�s(χ
′

+
Gα)

∣∣
0 =

d
ds

Gs−�s(χ
′

+
Gα)

∣∣
0 = 0,

which can be plugged into (5-8). Keeping in mind that supp(hs) does not meet
supp(χ+), one concludes that �s(χ+Gα) = �(χ+Gα) for each s. Thus, taking
into account also that �(χ+Gα)=−�(χ−Gα) has compact support, we get the
equality

d
ds

rs[α]
∣∣
0 =

[
δdG−

d
ds

�s(χ
′

+
Gα)

∣∣
0

]
=

[
δdG−

d
ds
δsdGα

∣∣
0

]
. (5-9)

From δsδs = 0, the Leibniz rule and δα = 0 we deduce that

δ
d
ds
δsdGα

∣∣
0 =

d
ds
δδsdGα

∣∣
0+

d
ds
δsδdGα

∣∣
0 =

d
ds
δsδsdGα

∣∣
0 = 0 .

Taking into account this information, from (5-9) we come to the conclusion:

d
ds

rs[α]
∣∣
0 =

[
�G−

d
ds
δsdGα

∣∣
0

]
=

[ d
ds
δsdGα

∣∣
0

]
. (5-10)

Explicitly, introducing F = dGα, one reads( d
ds
δs F

∣∣
0

)
ρ
=−

d
ds

gµνs ∇s µFνρ
∣∣
0 (5-11)

= ḣµν∇µFνρ +
1
2(F

µ
ρ∇

ν ḣµν − Fµν∇
ν ḣµρ) ,

where ∇ and ∇s are the Levi–Civita connections respectively for the unperturbed
metric g and the perturbed one gs . All indices in the result are raised using g
and ḣ denotes dhs/ds|0. This result follows from the subsequent identities, which
are trivial consequences of gµνs being the inverse of gs µν and ∇ (∇s) being the
Levi–Civita connection for g (respectively gs):

d
ds

gµνs

∣∣
0 =−gµρgνσ ḣρσ , (5-12)

d
ds
(∇s µXρ

−∇µXρ)
∣∣
0 =

1
2 Xνgρσ∇µḣνσ , (5-13)

for each vector field X on M .
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5C. Proof of Theorem 5.2. According to the hypotheses, let us consider a glob-
ally hyperbolic spacetime M and a quasifree Hadamard state ω on A(M) with
associated GNS triple (Dω, πω, �ω). Fixing [α] ∈ F(M), θ ∈ Dω, K compact in
M , a 1-parameter family s ∈ (−1, 1) 7→ hs ∈ hp(M) supported inside K and taking
into account Section 5A and Section 5B, the claim of the theorem boils down to
the identity below:〈

θ, φω

( d
ds

rs[α]
∣∣
0

)
θ
〉
=

i
2

∫
M

〈
θ,
[
T̂ µν, φω([α])

]
θ
〉
ḣµν vol, (5-14)

where ḣ stands for dhs/ds|0. We rewrite the left side using (5-4) for n = 1, together
with eqs. (5-10) and (5-11), and introducing the notation A = Gα, F = dA and
Ã = 〈θ, Âθ〉. For the right side we consider (5-6), keeping in mind that ḣµν = ḣνµ
and defining F̃ = d Ã. This turns (5-14) into the following identity:

L .
=

∫
M

Ãρ
[
ḣµν∇µFνρ

1
2(F

µ
ρ∇

ν ḣµν − Fµν∇
ν ḣµρ)

]
vol

=−
1
2

∫
M

ḣµν(2Fµρ F̃νρ −
1
2 gµνFρσ F̃ρσ ) vol .= R . (5-15)

The proof will be complete as soon as one manages to check this identity.
We start by considering the right side. Here we integrate by parts all covariant

derivatives acting on Ã. Note that several terms arising from partial integration
vanish on account of δF = δdGα = 0. On account of the symmetry of ḣ and the
antisymmetry of F , the result is

R =
∫

M
ḣµν Ãρ∇νFµρ vol+

∫
M

Fµρ( Ãρ∇ν ḣµν − Ãν∇ρ ḣµν) vol

+
1
2

∫
M

gµνFρσ Ãρ∇σ ḣµν vol .

Comparing R with the left side of (5-15), one reads

R = L + 1
2

∫
M

Fµρ( Ãρ∇ν ḣµν − Ãν∇ρ ḣµν) vol + 1
2

∫
M

gµνFρσ Ãρ∇σ ḣµν vol

= L + 1
2

∫
M

Fρσ Ãρ(gµν∇σ ḣµν −∇ν ḣσν) vol − 1
2

∫
M

ÃνFµρ∇ρ ḣµν vol

.
= L + 1

2

∫
M

Fρσ ÃρXσ vol − 1
2

∫
M

ÃνYν vol,

X and Y being defined by

Xσ = gµν∇σ ḣµν −∇ν ḣσν , Yν = Fµρ∇ρ ḣµν .

The rest of the proof is devoted to showing that both X and Y vanish everywhere
on M . (5-13) entails that
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d
ds
0ρs µν

∣∣
0 =

1
2 gρσ∇µḣνσ ,

0s being the Christoffel symbols for the connection ∇s . As a consequence, ∇µḣνσ
is symmetric upon the interchange of µ and ν. Taking into account that F is
antisymmetric, we get X = 0 and Y = 0, thus concluding the proof.
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