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STATIONARY SOLUTIONS OF KELLER–SEGEL-TYPE
CROWD MOTION AND HERDING MODELS:

MULTIPLICITY AND DYNAMICAL STABILITY

JEAN DOLBEAULT, GASPARD JANKOWIAK AND PETER MARKOWICH

In this paper we study two models for crowd motion and herding. Each of the
models is of Keller–Segel type and involves two parabolic equations, one for the
evolution of the density and one for the evolution of a mean field potential. We
classify all radial stationary solutions, prove multiplicity results, and establish
some qualitative properties of these solutions, which are characterized as critical
points of an energy functional. A notion of variational stability is associated with
such solutions.

Dynamical stability in the neighborhood of a stationary solution is also stud-
ied in terms of the spectral properties of the linearized evolution operator. For
one of the two models, we exhibit a Lyapunov functional which allows us to
make the link between the two notions of stability. Even in that case, for certain
values of the mass parameter, with all other parameters taken in an appropriate
range, we find that two dynamically stable stationary solutions exist. We further
discuss the qualitative properties of the solutions using theoretical methods and
numerical computations.

1. Introduction

The Keller–Segel model in chemotaxis has attracted lots of attention over recent
years. However, most of the theoretical results have been obtained either in a
parabolic-elliptic setting or when the coefficients, such as the chemosensitivity co-
efficient, are independent of the solution. Models used in biology usually involve
coefficients which depend on the solution itself, thus making the problems far more
nonlinear, and also far less understood. The crowd motion and herding models
considered here are two problems in the same class, where the main additional
features, compared to the standard version of the Keller–Segel model, are the
limitation (the prevention of overcrowding) of drift for the mass density in both
models, and the limitation of the source in the equation for the chemoattractant
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in one of the two models. Such limitations have important consequences: there
are multiple solutions for a given mass, in certain regimes; plateau-like solutions
have an interesting pattern for modeling issues; and the flux limitation forbids
concentration and guarantees nice solution properties, but also raises nontrivial
stability issues concerning the set of stationary solutions, which we investigate
numerically. The two models can be considered as test cases for the understanding
of a very large class of parabolic-parabolic systems with the property of having
several attractors. The fact that radial solutions are bounded and can be fully
parametrized in relatively simple terms makes the study tractable. Most of the
difficulties come from the complicated dependence of the solutions on the total
mass, which is the crucial parameter in the two cases. Numerically, the difficulty
comes from the parameters of the model, which have to be chosen in ranges that
make the problem rather stiff.

1.1. Description of the models. We consider herding and crowd motion models
describing the evolution of a density ρ of individuals subject to a drift ∇D and
confined to a bounded, open set �⊂ Rd . The evolution equation for ρ is given by

∂tρ =1ρ−∇ · (ρ(1− ρ)∇D), (1)

where ρt stands for the derivative of ρ with respect to time t and ρ(1−ρ) includes
the term for the prevention of overcrowding. For an isolated system, it makes sense
to introduce a no-flux boundary condition, that is,

(∇ρ− ρ(1− ρ)∇D) · ν = 0 on ∂�, (2)

which guarantees the conservation of the number of individuals (or conservation
of mass), namely that ∫

�

ρ dx = M (3)

is independent of t . In the models considered in this paper, we shall assume that
the potential D solves a parabolic equation

∂t D = κ1D− δD+ g(ρ) (4)

and is subject to homogeneous Neumann boundary conditions

∇D · ν = 0 on ∂�. (5)

We restrict our purpose either to model (I), when

g(ρ)= ρ(1− ρ), (6)

or to model (II), when
g(ρ)= ρ. (7)
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In this paper, our purpose is to characterize stationary solutions and determine their
qualitative properties.

1.2. Motivations. Human crowd motion models are motivated by the desire to pre-
vent stampedes in public places, mainly by implementing better walkway design.
Most crowd motion models do not convey herding effects well enough, that is,
loosely speaking, when people bunch up and try to move in the same direction, as
typically occurs in emergency situations.

In an effort to improve herding and crowd motion models, Burger et al. [2011]
have derived models (I) and (II) as the continuous limits of a microscopic cellular
automaton model introduced in [Kirchner and Schadschneider 2002]. This takes
the form a parabolic-parabolic system for a density of people ρ and for field D,
where D is a mean field potential which carries the herding effects. Basically,
people are subject to random motion, with a preference for moving in the direction
others are following. Random effects are taken into account by a diffusion, while
a drift is created by the potential D, which accounts for locations that are or were
previously occupied. To account for the packing of the people, empty spaces are
preferred, which explains the role of the (1− ρ) term in front of the drift, with
1 being the maximal density. Such a correction is referred to as prevention of
overcrowding in the mathematical literature.

Both quantities ρ and D undergo diffusion, which happens much faster for ρ,
this point being reflected by the fact that the constant κ is assumed to be small.
The potential D decays over time with rate δ > 0 and increases proportionally to
the density ρ, but only if the density is not too high in the case of model (I); this is
taken into account by the source term g(ρ) given either by (6) or (7). As we shall
see, interesting phenomena also occur when δ is small.

In many aspects, these models are quite similar to the Keller–Segel model used
in chemotaxis. The prevention of overcrowding has already been considered in
several papers, either in the parabolic-elliptic case [Burger et al. 2008; 2010]
or the parabolic-parabolic case [Di Francesco and Rosado 2008] (with diffusion-
dominated large-time asymptotics) and [Burger et al. 2010] (where, additionally,
the case of several species and cross-diffusion was taken in to account). In these
papers the emphasis was put on asymptotic behaviors, with a discussion of the
possible asymptotic states and behaviors depending on nonlinearities in [Burger
et al. 2006] and a study of plateau-like quasistationary solutions and their motion
in [Burger et al. 2008]. This of course makes sense when the domain is the en-
tire space, but a classification of the stationary solutions in bounded domains and
in particular plateau-like solutions is still needed, as it is strongly suggested by
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[Burger et al. 2011] that such solutions have interesting properties, for instance, in
terms of stability.

Because of the (1− ρ) factor in front of the drift, the transport term vanishes in
our models as ρ approaches 1, so that for any initial data bounded by 1 the density
remains bounded by 1. Hence blow-up, which is a major difficulty for the analysis
of the usual Keller–Segel system for masses over 8π (see, for instance, [Blanchet
et al. 2006]), does not occur here. In contrast with the parabolic-elliptic Keller–
Segel model with prevention of overcrowding studied in [Burger et al. 2010], mod-
els (I) and (II) are based on a system of coupled parabolic equations. This has
interesting consequences for the evolution problem as, for example, it introduces
memory effects. It also has various consequences for the dynamical stability of
the stationary states. In model (I), the source term in the equation for D involves
ρ(1−ρ) instead of ρ. This nonlinear source term introduces additional difficulties:
for instance, no Lyapunov functional is known.

1.3. Main results. Let us summarize some of the main results of this paper, in the
cases of models (I) and (II), when � is a ball, as far as radial nonnegative stationary
solutions are concerned. As we shall see below the stationary solutions of interest
are either constants or monotone functions, which are then plateau-like.

Theorem 1. Let � be a ball and consider solutions of models (I) and (II) subject
to boundary conditions (2) and (5). Then the masses of the radial nonnegative
stationary solutions as defined by (3) range between 0 and |�| and we have:

(i) Nonconstant stationary solutions exist only for M in a strict subinterval (0, |�|).

(ii) Constant solutions are variationally and dynamically unstable in a strictly
smaller subinterval.

(iii) There is a range of masses in which only nonconstant stationary solutions are
stable, given by the condition that κλ1+ δ is small enough, where λ1 denotes
the lowest positive eigenvalue of −1 in � subject to Neumann homogeneous
boundary conditions.

(iv) For any given mass, variationally stable stationary solutions with low energy
are either monotone or constant; in the case of model (II), monotone, plateau-
like solutions are then stable and attract all low-energy solutions of the evolu-
tion problem in a certain range of masses.

Much more can be said on stationary solutions, as we shall see below, and some
of our results are not restricted to radial solutions on a ball. The natural parameter
for the solutions of models (I) and (II) is M , but it is much easier to parametrize the
set of solutions by an associated Lagrange multiplier; see Section 2. In particular,
stationary solutions are then critical points of an energy defined in Section 3, and
there is a notion of variational stability associated with this energy. Taking into
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account the mass constraint, as done in Section 4, makes the problem more difficult.
To study the evolution problem, one can rely on a Lyapunov functional introduced
in Section 5, but only in the case of model (II). Dynamical stability is studied
through the spectrum of the linearized evolution operator in Section 6 and the
interplay between notions of variational and dynamical stability is also studied in
detail. How to harmonize the two points of view on stability is a question that
models (I) and (II) share with all parabolic-parabolic models of chemotaxis. In
the case of model (II), results are summarized in Theorem 26. The issue of the
stability of monotone — constant or nonconstant — solutions is a subtle question
and most of this paper is devoted to this point. Precise definitions of variational
and dynamical stability will be given later on.

Numerical results go beyond what can be proved rigorously. Because we use
the parametrization by the Lagrange multiplier, we are able to compute all radial
solutions. In practice, we shall focus on the role of constant and monotone plateau-
like solutions. A list of detailed qualitative results is provided at the beginning of
Section 7. Theoretical and numerical results are discussed in Section 8.

1.4. Some references. The two models considered in this paper have been intro-
duced in [Burger et al. 2011] at the partial differential equation level. Considera-
tions on the stability of constant solutions can be found therein as well. Models (I)
and (II) involve a system of two parabolic equations, like the so-called parabolic-
parabolic Keller–Segel system, for which we primarily refer to [Calvez and Corrias
2008]. In such a model, stationary solutions have to be replaced by self-similar
solutions, which also have multiplicity properties (see [Biler et al. 2011]). How the
parabolic-parabolic model is related to the parabolic-elliptic case has been studied
in [Biler and Brandolese 2009; Calvez and Corrias 2008]. The parabolic-elliptic
counterpart of model (I) is known: for plateau solutions and the coarsening of
the plateaus, we refer to [Burger et al. 2008] (also see [Burger et al. 2006; 2010];
related models can be found in the literature labeled as Keller–Segel models with
logistic sensitivity or congestion models).

One of the technical but crucial issues for a complete classification of all so-
lutions is how to parametrize the set of solutions. Because Lyapunov or energy
functionals are not convex, this is a far more difficult issue than in the repulsive
case, for which we refer to [Dolbeault et al. 2001]. The lack of convexity makes it
difficult to justify but, at a formal level, the evolution equations in model (II) can be
interpreted as gradient flows with respect to some metric involving a Wasserstein
distance (see [Blanchet et al. 2015] in the case of the Keller–Segel model and
[Blanchet and Laurençot 2013] for a more general setting; also see [Laurençot and
Matioc 2013] for an earlier result in the same spirit). To be precise, one has to
consider the Wasserstein distance for ρ and a L2 distance for D as in [Calvez and
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Carrillo 2012]. The difficulty comes from the fact that the Lyapunov functional is
not displacement convex (see, for instance, [Blanchet et al. 2008] and subsequent
papers in the parabolic-elliptic case of the Keller–Segel system). Using methods
introduced in [Matthes et al. 2009] this may eventually be overcome, but it is still
open at the moment, as far as we know.

2. Radial stationary solutions

2.1. A parametrization of all radial stationary solutions. Any stationary solution
of (1) solves

∇ρ− ρ(1− ρ)∇D = 0 on �,

which means
ρ =

1
1+ e−φ

, (8)

where φ = D−φ0 and φ0 ∈ R is an integration constant determined by the mass
constraint (3); φ0 is the unique real number such that∫

�

1
1+ eφ0−D dx = M. (9)

Taking into account boundary conditions (5), (4) now amounts to

−κ1φ+ δ(φ+φ0)− f (φ)= 0 on � (10)

with boundary conditions

∇φ · ν = 0 on ∂�. (11)

The functions f and F are defined by f = F ′ and

F(φ)= ρ =
1

1+ e−φ
and f (φ)= ρ(1− ρ)=

e−φ

(1+ e−φ)2
in the model (I) case,

F(φ)= log(1+ eφ) and f (φ)= ρ =
1

1+ e−φ
in the model (II) case.

The crucial observation for our numerical computation is based on the following
result.

Proposition 2. If � is the unit ball in Rd , d ≥ 2, all radial solutions of (10) and
(11) with f as above are smooth and can be found by solving the shooting problem

−κ
(
ϕ′′a +

d−1
r
ϕ′a

)
+ δ(ϕa +φ0)− f (ϕa)= 0, ϕ′a(0)= 0, ϕa(0)= a,

as a function of the parameter a ∈ R. The shooting criterion is ϕ′a(1)= 0.
If d = 1, all solutions in �= (0, 1) are given by the above ordinary differential

equation (ODE).
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Proof. The proof presents no difficulty and is left to the reader. �

2.2. Constant solutions. Determining φ such that δ(φ+φ0)− f (φ)= 0, that is,

k(φ) := 1
δ

f (φ)−φ = φ0, (12)

exactly amounts to determining the (possibly multivalued) function φ0 7→ k−1(φ0).
The following result is not restricted to the special case of f as defined in model (I)
or (II).

Lemma 3. Let δ > 0. Assume that f ∈C1(R) is bounded and limφ→±∞ f ′(φ)= 0.
Then the function φ 7→ k ′(φ)= (1/δ) f ′(φ)−1 has 2` zeros for some `∈N and (12)
has at most 2`+ 1 solutions. Moreover, for |φ0| large enough, (12) has one and
only one solution, which is such that ρ given by (8) converges to 0 as φ0→+∞

and to 1 as φ0→−∞.

If |φ0| is large, we observe that k(φ) ∼ −φ. Other properties are elementary
consequences of the intermediate values theorem and are left to the reader. A plot
is shown in Figure 1.

With f = F ′ and f corresponding either to model (I) or (II), all assumptions of
Lemma 3 are satisfied with `= 0 or 1. For use later, let us define

φ−(φ0) :=min k−1(φ0) and φ+(φ0) :=max k−1(φ0)
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Figure 1. Plot of φ 7→ δ(φ+φ0)− f (φ)= δ(φ+φ0)− F ′(φ)=
δ(φ0− k(φ)) for various values of φ0. Each zero of the function
provides a constant stationary solution of (1)–(5). The plot shown
here corresponds to model (I), with δ = 10−3.



218 JEAN DOLBEAULT, GASPARD JANKOWIAK AND PETER MARKOWICH

and emphasize that φ± depend on φ0. The set k−1(φ0) is reduced to a point if and
only if φ−(φ0)= φ+(φ0). From Lemma 3, we also know that

φ−0 := inf{φ0 ∈R :φ−(φ0)<φ+(φ0)} and φ+0 := sup{φ0 ∈R :φ−(φ0)<φ+(φ0)}

are both finite.
Instead of parametrizing solutions by φ0, it is interesting to think in terms of

mass. Here is a first result (see Figure 2) in this direction, which follows from the
property that k ′(φ±(φ0)) < 0 for any φ0 ∈ R.

Lemma 4. Under the assumptions of Lemma 3, φ0 7→ φ±(φ0) is monotone de-
creasing, and the corresponding masses are also monotone decreasing as functions
of φ0.

The proof is elementary and left to the reader. If φ is a constant solution, it is
a monotone increasing function of the mass according to (8). Hence the mass of
a constant extremal solution φ = φ±(φ0) is a monotone decreasing function of φ0.
Moreover, we have

f ′(φ)= ρ(1− ρ)h(ρ),

0 50 100 150 200 250
φ0

−30

−20

−10

0

10

20

φ
(0
)

Branch of constant solutions

Branch of monotone
solutions
Branch of monotone
solutions

1

2

3

4

Figure 2. Parametrization by φ0 of the branches of solutions in
the case of model (I), d = 1, with δ = 10−3, κ = 5× 10−4, and
�= (0, 1). There are either one or three constant solutions for a
given value of φ0. Strictly monotone solutions correspond to the
bold curve. Notice that on the upper part of the graph the two
branches are close but distinct.
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with ρ given by (8), h(ρ)= 1− 2ρ in the case of model (I), and h(ρ)= 1 in the
case of model (II). A simple computation shows that m :=maxρ∈[0,1] ρ(1−ρ)h(ρ)
is equal to 1/(6

√
3) and 1/4 in the cases of models (I) and (II), respectively. As a

consequence, with the notation of Lemma 3, ` = 0 if either δ ≥ m or δ < m and
φ0 ∈ R \ (φ−0 , φ

+

0 ). If δ <m we find that `= 1 if φ0 ∈ (φ
−

0 , φ
+

0 ); there are exactly
three constant solutions.

In the case of models (I) and (II), the (unique) constant solution taking values in
(φ−(φ0), φ+(φ0)) is monotone increasing as a function of φ0 (when it exists), thus
defining a range of masses in which Theorem 1(iii) holds, as we shall see below.

3. Unconstrained energy and constant solutions

In this section we consider the problem for fixed φ0. On the space H1(�), let us
define the energy functional by

Eφ0[φ] :=
κ

2

∫
�

|∇φ|2 dx + δ
2

∫
�

|φ+φ0|
2 dx −

∫
�

F(φ) dx . (13)

It is clear from (3) that stationary solutions of models (I) and (II) are critical points
of Eφ0 (see Lemma 5) for some given Lagrange multiplier φ0. Moreover, for a
given φ0, we know how to compute all radial solutions as explained in Section 2.
Hence we shall first fix φ0, study the symmetry of the minimizers of Eφ0 , and
clarify the role of constant solutions.

3.1. Critical points.

Lemma 5. Assume that F is Lipschitz continuous and � is bounded with C1,α

boundary for some α > 0. With φ0 kept constant, φ is a solution of (10) and (11)
if and only if it is a critical point of Eφ0 in H1(�).

It is straightforward to check that Eφ0 has a minimizer for any given φ, but
such a minimizer is actually constant as we shall see in Corollary 8. Nonconstant
solutions are therefore not minimizers of Eφ0 , for fixed φ0. The regularity of the
solution of (10) and (11) depends on the regularity of F , but when it is smooth
as in the case of models (I) and (II), the standard elliptic theory applies and φ is
smooth up to the boundary. We refer, for instance, to [Brezis 2011] as a standard
reference book. Details are left to the reader and we shall assume without further
notice that solutions are smooth from now on.

Notice that our original problem is not set with φ0 fixed, but with mass constraint
(3). Understanding how results for a given φ0 can be recast into problems with M
fixed is a major source of difficulties and will be studied in particular in Section 4.
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3.2. Linearized energy functional. Consider the linearized energy functional

lim
ε→0

Eφ0[φ+ εψ] −Eφ0[φ]

2ε2 =

∫
�

ψ(Eφψ) dx,

where φ is a stationary solution, ψ ∈ H2(�), and Eφψ := −κ1ψ + δψ − F ′′(φ)ψ .
Notice that with ρ given by (8), we have

Eφψ =−κ1ψ + δψ − ρ(1− ρ)h(ρ)ψ, (14)

with h(ρ)= 1− 2ρ in the case of model (I) and h(ρ)= 1 in the case of model (II).

3.3. Stability and instability of constant solutions. Denote by (λn)n∈N the se-
quence of all eigenvalues of −1 with homogeneous Neumann boundary conditions,
counted with multiplicity. The eigenspace corresponding to λ0 = 0 is generated
by the constants. Three constant solutions coexist when constant solutions φ take
their values in k ◦ (k ′)−1(0,+∞), that is, when

δ− ρ(1− ρ)h(ρ) < 0.

A constant solution (ρ, D = φ+φ0) is variationally unstable if Eφ has a negative
eigenvalue, that is, if

κλ1+ δ− ρ(1− ρ)h(ρ) < 0. (15)

When such a condition is satisfied, the constant solution φ cannot be a local min-
imizer of Eφ0 . Dynamical stability of the constant solutions with respect to the
evolution governed by (1)–(5) will be studied in Section 6; in the case of con-
stant solutions, such an instability is also determined by (15), as we shall see in
Proposition 18.

Condition (15) is never satisfied if κλ1 + δ ≥ m := maxρ∈[0,1] ρ(1− ρ)h(ρ).
Otherwise, this condition determines a strict subinterval of (0, 1) in terms of ρ,
and hence an interval in φ. This proves Theorem 1(ii). A slightly more precise
statement goes as follows.

Lemma 6. Let δ > 0. The set of values of φ0 for which there are constant solutions
of (10) which satisfy (15) with ρ given by (8) is contained in (φ−0 , φ

+

0 ). Moreover, if
there exists a constant, variationally unstable solution, then there is also a constant,
variationally stable solution of (10) for the same value of φ0, but with lower energy.

The proof of Lemma 6 requires some additional observations. It will be com-
pleted in Section 3.6.

3.4. Numerical range. Cases of numerical interest studied in this paper are the
following.
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(1) In dimension d = 1 with �= (0, 1), the first unstable mode is generated by
x 7→ cos(πx) and corresponds to λ1 = π

2
≈ 9.87.

(2) In dimension d = 2, the first positive critical point of the first Bessel function
of the first kind J0, that is, r0 :=min{r > 0 : J ′0(r)= 0}, is such that r0 ≈ 3.83
so that λ0,1 = r2

0 ≈ 14.68 is an eigenvalue associated with the eigenspace
generated by r 7→ J0(rr0). Applied to (15), this determines the range of radial
variational instability. Recall that J0 is the solution of J ′′0 + (1/r)J ′0+ J0 = 0.

Notice that nonradial instability actually occurs in a larger range, since the
first positive critical point of the second Bessel function of the first kind J1,
that is, r1 :=min{r > 0 : J ′1(r)= 0}, is such that r1 ≈ 1.84 so that λ1,0 = r2

1 ≈

3.39 is an eigenvalue associated with the eigenspace generated by r 7→ J1(rr1),
and λ1 = λ1,0 < λ0,1. Applied to (15), this determines the range of variational
instability. Recall that J1 is the solution of J ′′1 + (1/r)J ′1− (1/r2)J ′1+ J1 = 0.

The values of maxρ∈[0,1] ρ(1− ρ)h(ρ) are in practice also rather small, namely
1/(6
√

3)≈ 0.096 and 1/4= 0.25 in the cases of models (I) and (II), respectively,
which in practice, in view of the values of λ1, makes the numerical computations
rather stiff. In this paper we are interested in the qualitative behavior of the solu-
tions and the role of the dimension, but not so much in the role of the surrounding
geometry; hence we shall restrict our study to radial solutions. One of the advan-
tages of dealing only with radial solutions is that we can use accurate numerical
packages for solving ODEs and rely on shooting methods, thus getting a precise
description of the solution set. Taking into account the effects of the geometry is an-
other challenge but is, in our opinion, secondary compared to establishing all qual-
itative properties that can be inferred from our numerical computations. Another
reason for restricting our study to radially symmetric functions is Proposition 2:
using the shooting method, we have the guarantee of the description of all solutions,
with additional information like the knowledge of the range in which to adjust the
shooting parameter, as a consequence of the observations of Section 2.2 (see also
Proposition 9). Within the framework of radial solutions, we can henceforth give a
thorough description of the set of solutions, which is clearly out of reach in more
general geometries. However, inasmuch as we deal with theoretical results, we
will not assume any special symmetry of the solutions unless necessary.

In practice, the numerical computations of this paper are done with δ = 10−3

and κ ranging from 5×10−4 to 10−2. Such small values are dictated by (15). They
are also compatible with the computations and modeling considerations found in
[Burger et al. 2011]. See Figure 2 for a plot corresponding to a rather generic
diagram representing constant solutions for model (I) in dimension d = 1. Numer-
ically, our interest lies in the nonconstant radial solutions that bifurcate from the
constant solutions φ at threshold values for condition (15), that is, for values of φ0
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such that κλ1 + δ − ρ(1− ρ)h(ρ) = 0, with λ1 = π
2, in dimension d = 1, and

λ1 = λ0,1 when d = 2. We shall take φ0 as the bifurcation parameter and compute
the mass of the solution only afterwards, thus arriving at a simple parametrization
of all solutions. Our main results are therefore a complete description of branches
of solutions bifurcating from constant ones and giving rise to plateau solutions. See
Figure 3 for some plots of the solutions. We notice that in the range considered
for the parameters, the transition from high to low values is not too sharp. The
numerical study will be confined to radial monotone solutions, but we will briefly
explain in Section 4.3 (at least when d = 1) what can be expected for a solution
with several plateaus. Concerning stability issues, decomposition on appropriate
basis sets will be required, as will be explained in Section 7.

3.5. Qualitative properties of the stationary solutions.

Lemma 7. Let � be a bounded open set in Rd with C2 boundary and assume that
k : R→ R is Lipschitz continuous with

lim inf
u→−∞

k(u) > 0 and lim sup
u→+∞

k(u) < 0.

Assume that all zeros of k are isolated and denote them by u1 < u2 < · · · < uN

for some N ≥ 1. Then any solution of class C2 of 1u+ k(u) = 0 in � satisfying
∇u · x = 0 on ∂� takes values in [u1, uN ].

Proof. Let x∗ ∈� be a maximum point of u. We know that −1u(x∗)= k(u(x∗))≥
0, even if x∗ ∈ ∂�, because of the boundary conditions. By assumption, we find
that u(x)≤ u(x∗)≤ uN for any x ∈�. Similarly, one can prove that u ≥ u1. �

Applying Lemma 7 to (10) and (11) has straightforward but interesting conse-
quences.
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Figure 3. In the case of model (I), d = 1, δ = 10−3, we consider
various profiles for x 7→ φ(x) with x ∈ (0, 1)=� either (left) as
φ0 varies and κ = 5× 10−4, or (right) as κ varies, with φ(0)= 1.
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Corollary 8. Under the assumptions of Lemma 3, for any given φ0 ∈ R, if φ is a
solution of (10) and (11), then we have that

φ−(φ0)≤ φ(x)≤ φ+(φ0), ∀ x ∈�.

The minimum of Eφ0 is achieved by a constant function. Moreover, if (12) has only
one solution φ, then (10) and (11) also have only one solution, which is constant,
and φ ≡ φ− = φ+.

Proof. We simply observe that, according to the definition (13), we have

Eφ0[φ] ≥
δ

2

∫
�

|φ+φ0|
2 dx −

∫
�

F(φ) dx

and critical points of φ 7→ (δ/2)|φ+φ0|
2
−F(φ) are precisely the constant solutions

of (12) with f = F ′. �

In the cases which are numerically studied in this paper, there is an additional
property which is of particular interest.

Proposition 9. Consider either model (I) or model (II). Then there exists a con-
stant unstable solution only if φ0 ∈ (φ

−

0 , φ
+

0 ).

Proof. This is an easy consequence of the properties of f = F ′. The details are
left to the reader. �

3.6. A monotonicity result. For a given φ0 ∈ R, nonmonotone radial functions
always have higher energy Eφ0 than radial monotone functions. We can state this
observation as a slightly more general result as follows.

Proposition 10. Assume that � is the unit ball in Rd , d ≥ 2, and let G ∈W 1,∞(�).
Then the functional G[φ] := 1

2

∫
�
|∇φ|2 dx −

∫
�

G(φ) dx is bounded from below
and for any radial nonmonotone function φ ∈ C2(�) satisfying (11), with a finite
number of critical points, there exists a radial monotone function φ̃ which satisfies
(11) and coincides with φ on a neighborhood of 0 such that G[φ̃]< G[φ].

Proof. With a slight abuse of notation, we consider φ as a function of r = |x | ∈ [0, 1]
and assume that it is a solution of

φ′′+G ′(φ)=−d−1
r
φ′.

Multiplying by φ′, we find that

d
dr

(1
2
φ′

2
+G(φ)

)
=−

d−1
r
φ′

2
< 0.

Unless φ is constant, assume that for some r0 ∈ (0, 1) we have φ′(r0)= 0, and let
G0 := G(φ(r0)). Integrating on (r0, r), r > r0, we find that

1
2 φ
′2
+G(φ) < G0 on (r0, 1),
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and then 1
2 φ
′2
−G(φ) > φ′2−G0 >−G0 on (r0, R). Hence we have that

G[φ]

|�|
=

∫ r0

0

(1
2
φ′

2
−G(φ)

)
rd−1 dr +

∫ 1

r0

(1
2
φ′

2
−G(φ)

)
rd−1 dr >

G[φ̃]

|�|
,

where φ̃ is defined by φ̃ ≡ φ on (0, r0) and φ̃ ≡ φ(r0) on (r0, 1). �

Proposition 10 shows at the ODE level why radial minimizers of the functional
G have to be monotone. It is also preparation for Lemma 16.

Proof of Lemma 6. A constant solution which satisfies (15) cannot be a global
minimizer for φ0 fixed. According to Corollary 8, there exists another constant so-
lution under the assumptions of Lemma 6, which incidentally proves that φ−(φ0) <

φ+(φ0) with the notation of Section 2.2. The fact that there is a constant stable solu-
tion with an energy lower than the energy of the unstable solution is a consequence
of Proposition 10. �

Summarizing, for a given φ0 ∈ R, only constant solutions are to be considered
for the minimization of Eφ0 . However, the relevant problem in terms of modeling
is the problem with a mass constraint, at least in view of the evolution problem,
and it is not as straightforward as the problem with a fixed Lagrange multiplier.

4. Energy minimizers under mass constraint

4.1. Existence and qualitative properties of minimizers. In this section, we as-
sume that M > 0 is fixed and consider φM

0 [D] = φ0 uniquely determined by (9).
Let us define the functional

D 7→ FM [D] :=
κ

2

∫
�

|∇D|2 dx + δ
2

∫
�

|D|2 dx −
∫
�

F(D−φM
0 [D]) dx .

In such a case, φ0 can be seen as a Lagrange multiplier associated with the mass
constraint and FM [D] = Eφ0[D−φ0].

Proposition 11. Assume that F is a continuous function with a subcritical growth.
If � is bounded with C1,α boundary for some α > 0, then for any M > 0, the
functional FM has at least one minimizer D = φ+φ0 with φ0 = φ

M
0 [D] in H 1(�),

which is such that FM [D] = Eφ0[φ], and D is of class C∞(�) if F is of class C∞.

Proof. It is straightforward to check that FM has at least one minimizer in H 1(�)

because any minimizing sequence converges up to the extraction of subsequences
to a minimum D = φ+ φ0 by compactness and lower semicontinuity. Then φ is
a critical point of Eφ0 and regularity is a standard result of elliptic theory (see, for
example, [Brezis 2011]) and bootstrapping methods. �

In models (I) and (II), we, respectively, have |F(φ)|< 1 and F(φ)∈ [0, log(2)+
max(0, φ)] so the assumptions of Proposition 11 are satisfied. Notice that it is
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not implied anymore that minimizers of FM under mass constraint are constant
functions and hence they might not be minimizers of Eφ0 .

Lemma 12. The mass of the density associated with nonconstant solutions of (10)
and (11) is bounded away from 0 and |�|.

Proof. Any nonconstant solution of (10) and (11) has mass

M =
∫
�

1
1+ e−φ

dx

associated with its density, according to (8) and (9). Corollary 8 gives the bounds

M−(φ0) :=
|�|

1+ e−φ+(φ0)
≤ M ≤

|�|

1+ e−φ−(φ0)
=: M+(φ0).

Let M (−)
:= min{M−(φ0) : φ0 ∈ (φ

−

0 , φ
+

0 )} and M (+)
:= max{M+(φ0) : φ0 ∈

(φ−0 , φ
+

0 )}. Since φ0 7→ M±(φ0) is a continuous function on R, we know from
Lemma 6 that (M (−),M (+)) is compactly included in (0, |�|). From Lemma 4,
we deduce that M (±)

= M±(φ∓0 ). �

Notice that Lemma 12 proves Theorem 1(i).

Corollary 13. With the above notation, we have 0 < M (−)
≤ M (+) < 1 and min-

imizers of FM are constant functions if M ∈ (0,M (−)) ∪ (M (+), 1). There is a
subinterval of (M (−),M (+)) in which minimizers of FM are nonconstant func-
tions.

Whether minimizers of FM are constant solutions or not for some M ∈ (M (−),

M (+)) will be investigated numerically. For small masses, or masses close to the
maximal mass |�| corresponding to the limit density ρ = 1, we can state one more
result.

Corollary 14. Under the assumptions of Lemma 3, with M (±)
∈ (0, |�|) defined as

above, there is one and only one solution φ of (1)–(5), with mass M ∈ (0,M (−))∪

(M (+), |�|). This solution is constant, and given by φ =− log(|�|/M − 1).

4.2. A partial symmetry result.

Lemma 15. Assume that d = 2. If � is a disk, minimizers of FM are symmetric
under reflection with respect to a line which contains the origin.

Proof. The proof of this lemma is inspired by [Lopes 1996]. Assume that � is the
unit disk centered at the origin and denote by (x1, x2) cartesian coordinates in R2.
Let us also define the open upper half-disk �+ := {x ∈ � : x = (x1, x2), x1 > 0}.
If φ is a minimizer of FM , we define φ̃ by φ̃(x1, x2) = φ(|x1|, x2), so that φ̃ is
symmetric with respect to the line x1 = 0. Up to a rotation, we can assume that �+
accounts for exactly half of the mass, that is,

∫
�+
(1+ e−φ)−1 dx = M/2, so that
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�
(1+ e−φ̃)−1 dx = M . Then, up to a reflection, we can assume that �+ accounts

for at most half of the value of FM :

κ

2

∫
�+

|∇φ|2 dx + δ
2

∫
�+

|φ+φ0|
2 dx −

∫
�+

F(φ) dx ≤ 1
2

FM [φ].

It is then clear that φ̃ is a minimizer of FM such that the mass constraint (3) is
satisfied. As such, φ̃ also solves the Euler–Lagrange equations, with the same
Lagrange multiplier φ0 because φ and φ̃ coincide on �+. Then w := φ− φ̃ solves
the equation

−κ1w+ hw = 0, with h :=
δ(φ− φ̃)+ F ′(φ̃)− F ′(φ)

φ− φ̃
,

on �. Since F ∈ C∞ and φ and φ̃ are continuous, h is bounded. According
to [Hörmander 1976, Theorem 8.9.1], Hörmander’s uniqueness principle applies.
Since w≡ 0 on �+, we actually have w≡ 0 on the entire disk �, and so φ = φ̃. �

In higher dimensions, when � is a ball, the method can be extended and shows
the symmetry of the solutions with respect to hyperplanes, thus proving a result of
so-called Schwarz foliated symmetry. The method also applies to the functional
Eφ0 with fixed φ0 and shows that a minimizer is radially symmetric, but this is
useless as we already know that the minimum is achieved among constant solutions.

4.3. One-dimensional minimizers are monotone. A one-dimensional stationary
solution solves an autonomous ODE. This has several interesting consequences.

Lemma 16. Let d = 1 and M > 0. Then minimizers of FM are monotone, either
increasing or decreasing.

Proof. Assume that φ is a minimizer of FM and �= (0, 1). If φ is not monotone,
it has a finite number of extremal points 0 = r0 < r1 < · · · < rN = 1 for some
N > 1. By uniqueness of the solution of the initial value problem, with φ(ri ) given
and φ′(ri ) = 0, we conclude that φ(ri − s) = φ(ri + s) as long as 0 ≤ ri − s and
ri + s ≤ 1, so that ri = i/N , that is, φ is 1/N-periodic. With φ̃(r) := φ(r/N ),
r ∈ (0, 1), we find that∫ 1

0
|φ̃′|2 dr = 1

N

∫ 1/N

0
|φ′|2 dr =

1
N 2

∫ 1

0
|φ′|2 dr <

∫ 1

0
|φ′|2 dr,

thus proving that Eφ0[φ̃] < Eφ0[φ] while
∫ 1

0 (1 + e−φ̃) dr =
∫ 1

0 (1 + e−φ) dr , a
contradiction. �

From the scaling in the above proof, it is now clear that all nonmonotone one-
dimensional solutions can be built from monotone ones by symmetrizing them with
respect to their critical points, duplicating them, and scaling them. The intuitive
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idea is simple but giving detailed statements is unnecessarily complicated, so we
will focus on monotone, or one-plateau, solutions.

5. A Lyapunov functional

In the case of model (II), let us consider the functional

L[ρ, D] :=
∫
�

[ρ log ρ+(1−ρ) log(1−ρ)−ρD] dx+κ
2

∫
�

|∇D|2 dx+ δ
2

∫
�

D2 dx .

Proposition 17. The functional L is a Lyapunov functional for model (II) and if
(ρ, D) is a solution of (1)–(5) and (7), then

d
dt

L[ρ(t, ·), D(t, ·)]=−
∫
�

|∇ρ−ρ(1−ρ)∇D|2

ρ(1−ρ)
dx−

∫
�

|−κ1D+δD−ρ|2 dx≤0.

As a consequence, any critical point of L under the mass constraint (3) is a station-
ary solution of (1)–(5) and (7), and any solution converges to a stationary solution.
If � is a ball and if the initial datum is radial, then the limit is a radial stationary
solution.

Proof. An elementary computation shows that

d
dt

L[ρ(t, ·), D(t, ·)]=−
∫
�

[
log
(
ρ

1−ρ

)
−D

]
Dt dx−

∫
�

(−κ1D+δD−ρ)Dt dx

and the expression of
d
dt

L[ρ(t, ·), D(t, ·)]

follows from (1)–(5). Let ρn(t, x) := ρ(t+n, x) and Dn(t, x) := D(t+n, x). Since
L is bounded from below, we have that

lim
n→∞

∫ 1

0

(∫
�

|∇ρn − ρn(1− ρn)∇Dn|
2

ρn(1− ρn)
dx+

∫
�

|−κ1Dn+δDn−ρn|
2 dx

)
dt = 0,

which proves that (ρn, Dn) strongly converges to a stationary solution. Other de-
tails of the proof are left to the reader. �

Proposition 18. Let M > 0 and consider model (II). For any D ∈ H1(�), let φ0

be the unique real number determined by the mass constraint (9). Then for any
nonnegative ρ ∈ L1(�) satisfying the mass constraint (3), we have

L[ρ, D] ≥ Eφ0[D−φ0],

where equality holds if and only if ρ is given by (8), that is, ρ = 1/(1+ e−φ), with
φ = D − φ0. As a consequence, for any minimizer (ρ, D) of L satisfying (3), ρ
is given by (8) with φ = D− φ0, φ0 satisfying the mass constraint (9), and φ is a
minimizer of Eφ0[φ] = L[ρ, D].



228 JEAN DOLBEAULT, GASPARD JANKOWIAK AND PETER MARKOWICH

Proof. We only need to notice that the minimum of L[ρ, D] with respect to ρ
under the mass constraint (3) satisfies

log
(
ρ

1−ρ

)
= D−φ0.

The completion of the proof follows from elementary computations which are left
to the reader. �

6. The linearized evolution operator

6.1. Dynamical instability of constant solutions. Assume that (ρ, D) is a sta-
tionary solution of (1)–(5). Because of (8) and (9), the solution is fully deter-
mined by D. Let us consider a time-dependent perturbed solution of the form
(ρ+ εu, D+ εv). Up to higher-order terms, u and v are solutions of the linearized
system {

ut =∇ · (∇u− (1− 2ρ)u∇D− ρ(1− ρ)∇v),

vt = κ1v− δv+ h(ρ)u,
(16)

with h(ρ)= 1− 2ρ in the case of model (I) and h(ρ)= 1 in the case of model (II).
For later use, we introduce the notation HD for the linear operator corresponding
to the right-hand side, so we write

(u, v)t = HD(u, v)=

(
H(1)

D (u, v)

H(2)
D (u, v)

)
,

with

H(1)
D (u, v)=∇ ·

[
ρ(1− ρ)∇

( u
ρ(1−ρ)

− v
)]
,

H(2)
D (u, v)= κ1v− δv+ h(ρ)u.

Dynamical instability of constant solutions can be studied along the lines of
[Burger et al. 2011]. Let us state a slightly more general result. We are interested
in finding the lowest possible µ in the eigenvalue problem

−HD(u, v)= µ(u, v), (17)

where H(1)
D (u, v) now takes a simplified form, using the fact that ρ is a constant:

H(1)
D (u, v)=1u− ρ(1− ρ)1v.

The condition µ < 0 provides a dynamically unstable mode. As in Section 3.3,
let us denote by (λn)n∈N the sequence of all eigenvalues of −1 with homoge-
neous Neumann boundary conditions, counted with multiplicity, and by (φn)n∈N

an associated sequence of eigenfunctions. If u =
∑

n∈N αnφn and v =
∑

n∈N βnφn ,
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problem (17) can be decomposed into

−λnαn + ρ(1− ρ)λnβn =−µnαn,

−κλnβn − δβn + h(ρ)αn =−µnβn,

for any n ∈ N, that is,

(µn − λn)αn + ρ(1− ρ)λnβn = 0,

h(ρ)αn + (µn − κλn − δ)βn = 0,

which has nontrivial solutions αn and βn if and only if the discriminant condition

(µn − λn)(µn − κλn − δ)− ρ(1− ρ)h(ρ)λn = 0

is satisfied. This determines µn for any n ∈ N, and the spectrum of HD is then
given by (µn)n∈N. Collecting these observations, we can state the following result.

Proposition 19. With the above notation, infn≥1 µn < 0 if and only if (15) holds.

Proof. The discriminant condition can be written as

µ2
n − [(κ + 1)λn + δ]µn + λn[κλn + δ− ρ(1− ρ)h(ρ)] = 0,

so that there is a negative root if λn(κλn+ δ−ρ(1−ρ)h(ρ)) < 0. Since (λn)n∈N is
nondecreasing and λ0 = 0, there is at least one negative eigenvalue for (17) if the
above condition is satisfied with n = 1. �

In other words, the dynamical instability of the constant solutions implies their
variational instability. As we shall see numerically, variational and dynamical in-
stability are not equivalent for plateau-like solutions.

Notice that λ0 = 0 must still be excluded, as it corresponds to the direction gen-
erated by constants. Because of (15) we can ensure that the perturbation has zero
average. This will be discussed further below, in the general case of a stationary
solution.

6.2. Variational criterion. In the case of model (II), we can look at the Lyapunov
functional L and linearize it around a stationary solution (ρ, D). Let

LD[u, v] := lim
ε→0

L[ρ+ εu, D+ εv] −L[ρ, D]
2ε2 .

A simple computation shows that

LD[u, v] =
∫
�

(
u2

2ρ(1− ρ)
− uv

)
dx + κ

2

∫
�

|∇v|2 dx + δ
2

∫
�

v2 dx .
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With Eφ defined by (14), let

3 := inf∫
�
vρ(1−ρ) dx=0

v 6≡0

∫
�
v(Eφv) dx∫
�
v2 dx

, (18)

with φ = D−φ0, and φ0 satisfying (9).

Lemma 20. Let M > 0 and consider model (II) only. If (ρ, D) satisfies (3) and is
such that ρ is given by (8) with φ = D−φ0 and φ0 determined by (9), then

3= 2 inf∫
�
vρ(1−ρ) dx=0∫
�
v2 dx=1

LD[u, v].

As a consequence, if (ρ, D) is a local minimizer of L under the mass constraint
(3), then 3 is nonnegative.

Proof. We notice that LD[u, v] =
∫
�
v(Eφv) dx holds true as soon as u= vρ(1−ρ),

with ρ given by (8). In particular, this is the case if (ρ, D) is a local minimizer of L.
With v fixed, an optimization of LD[u, v] with respect to u shows that u= vρ(1−ρ).
When (ρ, D) is a local minimizer of L, it is straightforward to check that LD[u, v]
cannot be negative. �

6.3. Entropy-entropy production. Along the linearized flow (16), we have

d
dt

LD[u(t, ·), v(t, ·)] = −2ID[u(t, ·), v(t, ·)], (19)

where

ID[u, v] :=
1
2

∫
�

ρ(1− ρ)
∣∣∣∣∇( u

ρ(1− ρ)
− v

)∣∣∣∣2 dx + 1
2

∫
�

|−κ1v+ δv− u|2 dx .

Let us define the bilinear form

〈(u1, v1), (u2, v2)〉D

=

∫
�

(
u1u2

ρ(1− ρ)
− (u1v2+ u2v1)

)
dx + κ

∫
�

∇v1 · ∇v2 dx + δ
∫
�

v1v2 dx,

which is such that
2LD[u, v] = 〈(u, v), (u, v)〉D.

Lemma 21. Consider model (II) only and assume that (ρ, D) is a local minimizer
of L under the mass constraint (3). On the orthogonal of the kernel of Eφ with
φ = D−φ0, φ0 satisfying (9), 〈·, ·〉D is a scalar product and HD is a self-adjoint
operator with respect to 〈·, ·〉D . Moreover, if (u, v) is a solution of (16), then

d
dt

LD[u, v] = −2ID[u, v] = 〈(u, v),HD(u, v)〉D ≤ 0.
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As a consequence, on the orthogonal of the kernel of Eφ , (0, 0) is the unique sta-
tionary solution of (16) and any solution with initial datum in the orthogonal of
the kernel converges to (0, 0).

With a slight abuse of notation, we have denoted by the kernel of Eφ the set
{(u, v) : v ∈ Ker(Eφ)}.

Proof. The positivity of ID is a consequence of the definition and self-adjointness
results from the computation

−〈(u1, v1),HD(u2, v2)〉D=

∫
�

ρ(1−ρ)∇
(

u1

ρ(1− ρ)
−v1

)
·∇

(
u2

ρ(1− ρ)
−v2

)
dx

+

∫
�

(−κ1v1+ δv1− u1)(−κ1v2+ δv2− u2) dx . �

Note that one has to take special care of the kernel of HD. If (ρM , DM) is
a stationary solution of (1)–(4) depending differentiably on the mass parameter
M , it is always possible to differentiate ρM and DM with respect to M and get
a nontrivial element in the kernel of HD. However, it is not guaranteed that this
element generates the kernel of Eφ , and, although not observed numerically, it
cannot be excluded that secondary bifurcations occur on branches of plateau-like
solutions.

If (ρ, D) is a stationary solution of (1)–(5), we can of course still consider
ID[u, v], and its sign determines whether (ρ, D) is dynamically stable or not. In
this paper we are interested in the evolution according to the nonlinear flow given
by (1)–(5). The fundamental property of mass conservation (3) can still be observed
at the level of the linearized equations (16). The reader is invited to check that any
classical solution of (16) is indeed such that

d
dt

∫
�

u(t, x) dx = 0,

and it makes sense to impose
∫
�

u dx = 0 at t = 0. If we linearize the problem
at a stationary solution given by (8), it also makes sense to consider the constraint∫
�
vρ(1− ρ) dx = 0.

6.4. Dynamic criterion. After these preliminary observations, we can define two
notions of stability. We shall say that a critical point φ of Eφ0 is variationally
stable (resp. unstable) if and only if 3 > 0 (resp. 3 < 0), where 3 is defined
by (18). Alternatively, we shall say that a stationary solution (ρ, D) of (1)–(5) is
dynamically stable (resp. unstable) if and only if

inf∫
�

u dx=0∫
�
v2 dx=1

LD[u, v]
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is positive (resp. negative) in the case of model (II). The operator HD being self-
adjoint, dynamical stability means variational stability of L on the product space,
once mass constraints are taken into account. Most of the remainder of this section
is devoted to this issue.

For model (I) we can extend the notion of dynamical stability (resp. instability)
by requiring that inf{Re(λ) : λ ∈ Spectrum(HD)} is positive (resp. negative). How-
ever, in the case of model (I), notions of dynamical and variational instability are
not so well related, as we shall see in Section 7.

Let us start with the following observation. In the cases of models (I) and (II),
the kernel of the operator Eφ associated with the linearized energy functional and
defined by (14) determines a subspace of the kernel of HD .

Lemma 22. Let φ0 ∈ R and assume that φ is a critical point of Eφ0 . Then ρ given
by (8) and D = φ+φ0 provides a stationary solution of (1)–(5). If v is in the kernel
of Eφ , then (u, v) is in the kernel of HD if u = ρ(1− ρ)v.

Proof. Using (14), it is straightforward to check that 0 = Eφv = H(2)
D (u, v) if

v ∈ Ker(Eφ). Then

H(1)
D (u, v)=∇ ·

[
ρ(1− ρ)∇

(
u

ρ(1− ρ)
− v

)]
= 0

because of the special choice u = ρ(1− ρ)v. �

Since (1) preserves the mass, it makes sense to impose
∫
�

u dx = 0. This also
suggests considering the constraint

∫
�
ρ(1− ρ)v dx = 0, which has already been

taken into account in (18). Let us give some more precise statements, in the case
of model (II). First we can state a more precise version of Lemma 20. Let us define

31 := 2 inf∫
�

u dx=0∫
�
v2 dx=1

LD[u, v].

Lemma 23. Let M > 0. Consider model (II) only and assume that (ρ, D) is a
critical point of L under the mass constraint (3). With φ = D−φ0 where φ0 is the
unique real number determined by (9), consider 3 defined by (18). Then we have
31 ≤3. If either 3< δ or 31 < δ, then we have 3=31.

Proof. If (ρ, D) is a critical point of L, the analysis of Section 2.1 shows that
ρ is given by (8) with φ = D− φ0 and φ0 determined by (9). Consider first the
minimization problem

inf∫
�
vρ(1−ρ) dx=0∫
�
v2 dx=1

LD[u, v].

As in Lemma 20, optimization with respect to u shows that u = vρ(1− ρ), and
it is then straightforward to get that 2LD[u, v] =

∫
�
v(Eφv) dx =3. Additionally,
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we know that v solves the Euler–Lagrange equation

Eφv =−κ1v+ δv− vρ(1− ρ)=3v−µρ(1− ρ), (20)

for some Lagrange multiplier µ, and we have
∫
�

u dx =
∫
�
vρ(1−ρ) dx = 0. This

proves that 31 ≤3.
Now, consider a minimizer (u, v) for 31. We find that

u = (v− v̄)ρ(1− ρ), with v̄ :=

∫
�
vρ(1− ρ) dx∫

�
ρ(1− ρ) dx

.

Moreover, v solves the Euler–Lagrange equation

−κ1v+ δv− vρ(1− ρ)=31v− v̄ρ(1− ρ). (21)

Hence we have found that

2LD[u, v] = κ
∫
�

|∇v|2 dx + δ
∫
�

v2 dx −
∫
�

ρ(1− ρ)|v− v̄|2 dx,

so that

31− δ = inf
v 6≡0

κ
∫
�
|∇v|2 dx −

∫
�
ρ(1− ρ)|v− v̄|2 dx∫

�
v2 dx

= inf∫
�
vρ(1−ρ) dx=0
v 6≡0,c∈R

κ
∫
�
|∇v|2 dx −

∫
�
ρ(1− ρ)v2 dx∫

�
v2 dx + c2

= inf∫
�
vρ(1−ρ) dx=0

v 6≡0

κ
∫
�
|∇v|2 dx −

∫
�
ρ(1− ρ)v2 dx∫

�
v2 dx

,

where the last equality holds under the condition that either3<δ or31<δ. Hence
we have shown that 31− δ =3− δ, which concludes the proof. �

Remark 24. With no constraint, it is straightforward to check that δ is an eigen-
value of HD , and (u, v)= (0, 1) an eigenfunction. Hence, as soon as 31 < δ, we
have that

∫
�

u dx = 0 if (u, v) is a minimizer for 31, because of (21). This justifies
why the condition of either 3< δ or 31 < δ enters into the statement of Lemma 23.

In the case of model (II), we can get a bound on the growth of the unstable
mode.

Corollary 25. Consider model (II) only and assume that (ρ, D) is a critical point
of L under the mass constraint (3). If 3 defined by (18) is negative, then we have

inf∫
�

u dx=0∫
�
v2 dx=1

ID[u, v]
LD[u, v]

≤3
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and the growth rate of the most unstable mode of (16) is at least 2|3|.

Proof. Consider a function v given by (20) with
∫
�
vρ(1−ρ) dx = 0,

∫
�
v2 dx = 1,

u = vρ(1− ρ), and (u, v) taken as a test function. Then

ID[u, v]
LD[u, v]

=

∫
�
(Eφv)2 dx∫

�
v(Eφv) dx

=

∫
�
(3v−µρ(1− ρ))2 dx∫

�
(3v−µρ(1− ρ))v dx

=3+
µ2

3

∫
�

ρ2(1− ρ)2 dx ≤3.

Using (19), if LD[u, v] is negative, then we get

d
dt

LD[u, v] ≤ −23LD[u, v],

thus proving that LD[u, v](t)≤ LD[u, v](0)e2|3|t for any t ≥ 0. �

The result of Corollary 25 on the most unstable mode can be rephrased in terms
of standard norms. By definition of LD , we get that∫

�

(u2
+ v2) dx ≥ 2

∫
�

uv dx ≥ 2|LD[u, v]| ≥ 2|LD[u, v](0)|e2|3|t ,

for any t ≥ 0.
Summarizing, we have shown the following result.

Theorem 26. Let M > 0 and consider the case of model (II). Assume that (ρ, D)
is a stationary solution of (1)–(5) such that (3) is satisfied and let φ = D−φ0, with
φ0 satisfying (9). Then the following properties hold true.

(i) Neither dynamical instability nor variational instability can occur if (ρ, D)
is a local minimizer of L under the mass constraint (3) or, equivalently, if φ
is a local minimizer of Eφ0 such that (3) and (8) hold.

(ii) If (ρ, D) is a local minimizer of L under the mass constraint (3), then any
solution (u, v) of (16) converges towards (0, 0) when the initial datum is as-
sumed to be in the orthogonal of the kernel of HD and with sufficiently low
energy.

(iii) Dynamical stability implies variational stability.

(iv) Variational instability and dynamical instability are equivalent and, with the
above notation, 31 =3.

On the contrary, no clear relation between variational and dynamical (in)stability
is known in the case of model (I), except the result of Lemma 22, which is not so
easy to use from a numerical point of view.
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7. Numerical results

Let us summarize our findings on radial stationary solutions of (1)–(5), with pa-
rameters δ and κ in the range discussed in Section 3.4, when � is the unit ball
in Rd , with d = 1 or d = 2. Our results deal with either model (I) or model (II),
defined respectively by (6) and (7), as follows:

(i) We compute the branches of monotone, nonconstant, radial solutions that bi-
furcate from constant solutions for the two models, in dimensions d = 1 and
d = 2.

(ii) We study the variational and dynamical stability of these solutions. The two
notions coincide for model (II), which is partially explained with the help of
the Lyapunov functional.

(iii) Dynamical stability holds up to the turning point of the branch when it is
parametrized by the mass for model (II) in dimensions d = 1 and d = 2. This
is also true in dimension d = 1 for model (I).

(iv) In dimension d = 1, the variational stability of the branch of monotone, non-
constant solutions is more restrictive than the dynamical stability in the case
of model (I).

Before entering into the details, let us observe that bifurcation diagrams are more
complicated in dimension d = 2 than for d = 1, and that the lack of a Lyapunov
functional makes the study of model (I) significantly more difficult.

All computations are based on the shooting method presented in Proposition 2.
This allows us to find all radially symmetric stationary solutions, as the range of
parameter a for which solutions exist is bounded according to Corollary 8. Hence
we are left with a single ordinary differential equation, which can be solved us-
ing standard numerical methods. Because of the smallness of the parameter κ ,
the shooting criterion ϕ′a(1) = 0 has a rather stiff dependence on a. This makes
directly finding all zeros of the criterion for a given φ0 difficult, so in practice
we use perturbation and continuation methods to parametrize the whole branch of
monotone, plateau-like solutions.

The computation of the spectrum of the linearized evolution operator (16) is
done using a basis of cosines, normalized and scaled to meet the boundary condi-
tions. This allows for fast decomposition of the coefficients by FFT. In the case
d = 2, such a basis in not orthogonal, which is taken into account using a mass
matrix during diagonalization. In cases where the constraints cannot be enforced
directly at the basis level, a Rayleigh quotient minimization step is performed, on
the orthogonal of the constrained space.
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Numerical computations have been made entirely using the freely available
NumPy and SciPy Python libraries. These make use of reference numerical li-
braries LAPACK and odepack.

We start by considering constant solutions. We make use of the notation of
Section 2.2.

Let us comment on the plots of Figure 2.�� ��1 The first turning point: φ0 = φ
−

0 , on the branch of constant solutions.
For lower values of φ0, there is only one constant solution φ ≡ φ(0), which
converges to +∞ as φ0→−∞.�� ��2 and

�� ��3 Nonconstant solutions bifurcate from constant solutions, which
are unstable in the corresponding interval for φ0. The solutions of the two
branches correspond to monotone solutions, either increasing or decreasing,
and always bounded from above and below by constant solutions.�� ��4 Second turning point: φ0 = φ

+

0 , on the branch of constant solutions. For
higher values of φ0, there is only one constant solution φ ≡ φ(0), which
converges to −∞ as φ0→+∞.

The dependence of plateau-like solutions on parameters φ0 and κ is shown in
Figure 3.

Next we consider monotone, plateau-like solutions. In Figures 4 and 5, the
shaded region corresponds to masses for which constant solutions are unstable.

Dynamical and variational stability criteria and their interplay are a tricky issue,
especially in the case of model (I), in which we have no theoretical framework to
relate the two notions. See Figure 6.

Figure 4. Model (I), with κ = 5× 10−4 and δ = 10−3. Thin lines
represent constant solutions and bold lines plateau-like solutions.
For readability purposes we use a logarithmic scale for the mass.
The dotted part of each branch shows where solutions are dynam-
ically unstable. For d = 1 (left) and d = 2 (right).

http://scipy.org
http://scipy.org
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Figure 5. Model (II), with κ = 10−2 and δ= 10−3. Thin lines rep-
resent constant solutions and bold lines plateau-like solutions. The
dotted part of each branch shows where solutions are dynamically
unstable. For d = 1 (left) and d = 2 (right).

Stationary solutions are critical points of Eφ0 . It is therefore interesting to de-
termine whether they are minima or not, either for fixed values of φ0 or for fixed
values of M , which makes more sense from the dynamical point of view. However,
it is only in the case of model (II) that minimizers of Eφ0 are also minimizers of
L, and therefore dynamically and variationally stable. See Figures 7 and 8.

Finally in the case of model (II), we can check that dynamical and variational
stability are compatible; see Figure 9.

8. Concluding remarks

Model (II) is the (formal) gradient flow of the Lyapunov functional L with respect
to a distance corresponding to the Wasserstein distance for ρ and an L2 distance for
D (see [Blanchet and Laurençot 2013; Blanchet et al. 2015; Laurençot and Matioc
2013] for further considerations in this direction). Critical points of L are stationary
solutions for the system. They attract all solutions of the evolution equation and
the infimum of L is achieved by a monotone function, which is therefore either a
plateau solution or a constant solution. When d = 1, numerics, at least for the values
of the parameters we have considered, show that plateau solutions exist only in the
range in which constant solutions are unstable and are uniquely defined in terms of
the mass. However, when d = 2, the range for dynamically stable plateau solutions
is larger than the range (in terms of the mass) of constant unstable solutions under
radial perturbation. Infima of L and Eφ0 actually coincide. Consistent with our
analysis, we find that the linearized evolution operator around minimizing solutions
has only positive eigenvalues. Moreover, this operator is self-adjoint in the norm
corresponding to the quadratic form given by the second variation of L around a
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Figure 6. Model (I) with d = 1. We numerically compare the
criteria for variational and dynamical instability along the branch
of monotone, nonconstant solutions. When d M/dφ0 changes sign,
this means that the branch has a turning point when plotted in
terms of M . We observe that this turning point corresponds to
the loss of dynamical stability, while variational stability is lost
for smaller values of φ0 along the branch; see in particular the
enlargement (bottom). Here µ1 corresponds to the lowest value of
Re(〈(u, v),−HD(u, v)〉) under the constraints 〈(u, v), (u, v)〉 = 1
and

∫
�

u dx = 0, where 〈·, ·〉D denotes the standard scalar product.

minimizer. Hence, when d = 2, we observe the existence of multiple stable (under
radial perturbation) stationary solutions.

In the case of model (I), no Lyapunov functional is available, to our knowledge.
Still, all stationary states are characterized as critical points of Eφ0 and obtained
(as long as they are radially symmetric) using our shooting method. In dimension
d = 1, the structure of the set of solutions is not as simple as in model (II), and
this can be explained by the frustration due to the ρ(1− ρ) term in the equation
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Figure 7. Energy is represented as a function of φ0 for constant
and monotone (either increasing or decreasing) solutions. Here
we assume d = 1. For model (I) (upper left), the energy Eφ0 is
shifted by (δ/2)φ2

0 |�|. For model (II) (upper right), nonconstant
solutions (the upper curve) are indistinguishable from a branch of
constant solutions. Details for model (II) (bottom) show the dif-
ference of the energies of the constant and nonconstant solutions
(under appropriate restrictions on φ0).
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Figure 8. For any given mass, there is exactly one constant solu-
tion. Hence minimizers of FM [D]=Eφ0[φ+φ0]with φ0=φ

M
0 [D]

for masses M in a certain range are not constant. Model (I) with
d = 1 (left) and model (II) with d = 1 (right). These minimiz-
ers are also minimizers of the Lyapunov functional and therefore
dynamically stable (φ0 is restricted to an appropriate range).
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Figure 9. Model (II) with d = 2. The solution of M 7→3 (left),
where, for each M , we compute the two monotone plateau-like
solutions, and then 3 according to (18). Hence 3 < 0 means
that the solution is variationally unstable under the mass constraint.
Detail is shown (right). Here µ1 corresponds to the lowest value
of 〈(u, v),−HD(u, v)〉 under the constraints 〈(u, v), (u, v)〉 = 1
and

∫
�

u dx = 0.

for D. Numerically, when d = 1, we observe that monotone plateau solutions
are uniquely defined and dynamically stable in the range where constant solutions
are dynamically unstable. However, when d = 1, we also have a range in which
both types of solutions are dynamically stable, which means that the system has
no global attractor. We do not even know whether stationary solutions attract all
solutions of the evolution problem or not.

To give a simple picture of the physics involved in the two models of crowd
modeling studied in this paper, we may use the following image. The potential
D defines the strategy of the individuals. It takes into account the source term
(the density ρ in the case of model (II) and ρ(1− ρ) in the case of model (I)) to
determine a preferred direction. Because it is governed by a parabolic equation, it
takes the value of the source term into account not only at instant t , but also in the
past, which means that there is a memory effect. Of course, the recent past receives
a larger weight, and actually two mechanisms are at work updating the system: a
local damping, with time scale determined by δ, and a diffusion term (the position
of the source term gets lost over a long time range), with a time scale governed by
κ . Both coefficients being small, the time scale (that is, the memory of the system)
is long compared to the time scale for ρ.

As far as ρ is concerned, the diffusion accounts for random effects while the
drift is tempered by some tactical term, which tries to avoid densely populated
areas, and is taken into account by means of the (1− ρ) term in the drift.

In the case of model (II) the strategy defined by the source term is simple: indi-
viduals want to aggregate in high ρ densities. In the case of model (I) the strategy is
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different, as the system tends to favor regions with intermediate densities, typically
ρ on the order of 1/2. Of course, this is antagonistic to the trend of concentrating
in regions where D is large and introduces some frustration in the system. At a
very qualitative level, this is an explanation for the fact that multiplicity of the
dynamically stable stationary state occurs in model (I) even when d = 1.
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