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ON THE CONSTITUTIVE EQUATIONS
OF VISCOELASTIC MICROPOLAR PLATES AND SHELLS

OF DIFFERENTIAL TYPE

HOLM ALTENBACH AND VICTOR A. EREMEYEV

Within the framework of the micropolar theory of continuum we discuss the
constitutive equations of viscoelastic micropolar thin-walled structures, i.e. vis-
coelastic micropolar plates and shells. Starting from the linear viscoelastic mi-
cropolar continuum and using the correspondence principle of the linear vis-
coelasticity we extend the procedure of reduction of three-dimensional equilib-
rium equations of elastic shell-like solids to the case of viscoelastic behavior. We
restricted ourselves by constitutive equations of differential type. In other words,
we consider both 2D and 3D constitutive equations which are linear dependen-
cies between certain set of time derivatives of stress and strain measures.

1. Introduction

The model of the Cosserat or micropolar continuum has recently found new appli-
cations in the modeling of the behavior of materials and structures with complex
inner structure; see [Eremeyev et al. 2013] and references therein. Since the sem-
inal paper [Ericksen and Truesdell 1958] the Cosserat model has found numerous
applications in construction of various generalized models for beams, plates, and
shells; see the review and bibliography in [Altenbach et al. 2009]. Within the
framework of the direct approach of Ericksen and Truesdell, the shell is modeled
as a deformable surface at each point of which a set of directors additionally is
attached. In the literature are also known theories of plates and shells based on the
reduction of three-dimensional micropolar continuum equations; see for example
[Eringen 1999; Reissner 1977; Sargsyan 2011; Zubov 2009; Steinberg and Kvasov
2013; Altenbach et al. 2009], where various averaging procedures in the thickness
direction together with the approximation of the displacements and rotations or the
force and moment stresses in the thickness direction are applied. In major cases
these considerations are restricted by the elastic behavior. For the linear theory of
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viscoelasticity the application of the correspondence principle gives the possibility
to derive the theory of viscoelasticity in the case of thin-walled structures such as
plates and shells.

In this paper we extend the through-the thickness integration procedure applied
in [Altenbach and Eremeyev 2009] to viscoelastic micropolar plates and shells.
The interest to the theory of viscoelastic micropolar thin-walled structures is based
on prospective applications of this theory to the mechanics of plates and shells
made of materials with complex inner structure, for example cellular materials and
foams for which the micropolar model is used; see [Diebels and Steeb 2003; Lakes
1986] among others.

We consider here the variant of plates and shell theory based on six kinemati-
cally independent variables, namely translations and rotations. This theory can be
derived using a direct approach [Eremeyev et al. 2013; Eremeyev and Zubov 2008;
Rubin 2000] or based on the reduction of the three-dimensional motion equations
[Chróścielewski et al. 2004; Libai and Simmonds 1998]. The mathematical study
of boundary-value problems was performed in [Bîrsan and Neff 2013; 2014; Ere-
meyev and Lebedev 2011], while various solutions and finite-element calculations
are presented in [Chróścielewski et al. 2004; 2010; 2011; Eremeyev and Zubov
2008].

2. Basic relations of the viscoelastic Cosserat continuum.

Following [Eringen 1999] we recall the governing equations of the linear microp-
olar viscoelasticity. Let the micropolar body occupies the domain V ∈ R3. The
infinitesimal deformations of the micropolar media are described by two vectorial
fields. The first one is the vector of translation u and the second field is the vector
of microrotation ϑ given as vector-functions of the position vector x and time t .
From the physical point of view, u describes an displacement of the particle of
a micropolar body while ϑ corresponds to the particle rotation. The quasistatic
deformations of a micropolar body are described by the equilibrium equations

∇ · σ + ρ f = 0, ∇ ·µ+ σ×+ ρ`= 0, x ∈ V, (1)

where ∇ is the three-dimensional nabla operator, f and ` are the mass forces
and the mass couples vectors, ρ is the density, σ and µ are the stress tensor and
the couple stress tensor, respectively, and σ× denotes the vectorial invariant of
the second-order tensor σ , see [Lebedev et al. 2010; Wilson 1901]. Equation (1)1

represents the local form of the balance of momentum while Eq. (1)2 is the balance
of moment of momentum.

The static boundary conditions have the following form

n · σ = t0, n ·µ= m0 at S f . (2)
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Here t0 and m0 are the surface forces and the surface couples acting on the part of
the surface S f of the micropolar body, S = Su ∪ S f ≡ ∂V . The kinematic boundary
conditions consist of the following relations

u = u0, ϑ = ϑ0 at Su, (3)

where u0 and ϑ0 are given functions at Su . Let us note that since the displacements
and rotations are independent kinematic variables, Dirichlet and Neumann bound-
aries for the displacements and rotations are different, in general. As a result, the
kinematic and static boundary conditions take the form

n · σ = t0 at S f , u = u0 at Su,

n ·µ= m0 at Sm, ϑ = ϑ0 at Sθ ,
(4)

where S = Su ∪ S f = Sm ∪ Sθ are two decompositions of S. For simplicity in what
follows we use the same boundaries that is Su = Sθ and S f = Sm . Obviously, other
mixed boundary conditions are also possible [Eremeyev et al. 2013].

The linear strain measures, i.e. the linear stretch tensor ε and the linear wryness
tensor æ, are given by the relations

ε =∇u+ϑ × I, æ=∇ϑ, (5)

where I is the unit three-dimensional tensor and × the cross product.
Let us consider the viscoelastic micropolar isotropic material. For the sake of

simplicity we restrict ourselves by the constitutive equations of the differential type.
This means that the constitutive equations are

P0(∂t)σ = P1(∂t)ε+ P2(∂t)ε
T
+ P3(∂t)I tr ε, (6)

Q0(∂t)µ= Q1(∂t)æ+ Q2(∂t)æT
+ Q3(∂t)I træ. (7)

In (6) and (7) ∂t stands for the derivative with respect to time; P0, P1, P2, P3, Q0,
Q1, Q2, Q3 are the polynomials.

Using the Laplace transform of a function f (t), given by

f (p)=

∞∫
0

f (t)e−pt dt,

the constitutive equations (6) and (7) become

σ = λI tr ε+µεT
+ (µ+ κ)ε, µ= αI træ+βæT

+ γæ, (8)

where

λ=
P3(p)
P0(p)

, µ=
P2(p)
P0(p)

, κ =
P1(p)− P2(p)

P0(p)
, (9)
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α =
Q3(p)
Q0(p)

, β =
Q2(p)
Q0(p)

, γ =
Q1(p)
Q0(p)

(10)

are the Laplace transforms of the relaxation functions of the viscoelastic micropolar
material. In fact, (8) with (9), (10) coincide up to notations with the constitutive
equations of an isotropic linear micropolar solid, see [Eringen 1999].

Substituting (8) into (1) one may derive the equilibrium equations in terms of the
kinematical fields u and ϑ . For homogeneous micropolar bodies these equations
are

(λ+µ)∇∇ · u+ (µ+ κ)∇ ·∇u+ κ∇ ×ϑ + ρ f = 0,

(α+β)∇∇ ·ϑ + γ∇ ·∇ϑ + κ∇ × u− 2κϑ + ρ`= 0.
(11)

Remark. In a similar manner other linear viscoelastic constitutive equations (in-
tegral equation, complex moduli equations) can be introduced and applied to the
representation of the viscoelastic micropolar behavior.

In what follows we consider the reduction of three-dimensional equilibrium
equations to the two-dimensional ones and discuss the corresponding two-dimen-
sional constitutive equations.

3. Micropolar plate and shell equations

Within the framework of the linear theory of micropolar plates and shells, also
called the six-parameter theory of shells, we consider a micropolar shell as a
two-dimensional Cosserat continuum, i.e., as a deformable surface M with six
degrees of freedom. Each material point of the surface is kinematically similar to
an infinitesimal rigid body with three translational and three rotational degrees of
freedom. Hence, the deformations of the micropolar plate or shell are described
by the translation vector v and the rotation vector θ which are defined at the base
surface M. Using the direct approach the basics of the linear theory of micropolar
shells are summarized in [Eremeyev and Zubov 2008; Lebedev et al. 2010]; see also
Appendix D in [Eremeyev et al. 2013]. The governing equations of the micropolar
shells and plates coincide with the relations of the general 6-parameter nonlinear
shell theory presented in [Chróścielewski et al. 2004; Libai and Simmonds 1998] in
the case of small deformations derived using the through-the-thickness integration
procedure.

The balance of momentum and the balance of moment of momentum are for-
mulated as follows

∇s ·T+ q = 0, ∇s ·M+T×+ c= 0, (12)

where q and c are the surface loads (forces and moments), T and M are the resul-
tant force stress and couple stress tensors, and ∇s is the surface nabla differential
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operator. The tensors T and M have the properties

n ·T= 0, n ·M= 0, (13)

where n is the unit vector of normal to M. Hence, T and M take the form

T= Tαβ iα⊗ iβ+Tα3 iα⊗n, M=Mαβ iα⊗ iβ+Mα3 iα⊗n (α, β= 1, 2), (14)

where iα are the base vectors on the shell surface. Obviously, in this theory of shells
the action of the drilling moment Mα3 is taken into account. For example, such
possibility may be useful to describe the interaction of the shell and the rigid body
or for the description of the deformations of multifolded plates, see [Chróścielewski
et al. 2004].

The static and kinematic boundary conditions take the form

ν ·T= t∗s , ν ·M= m∗s along C f ,

v = v0, θ = θ0 along Cu .
(15)

Here ν is the vector of the unit normal to C f , ν · n = 0, t∗s and m∗s are external
force and couple vectors acting along the boundary C f , while v0 and θ0 are given
functions describing the displacements and rotations of the boundary Cu , respec-
tively, C = Cu ∪ C f ≡ ∂M. For simplicity we use here again the same boundaries
for Dirichlet and Neumann conditions for displacements and rotations.

The linear surface strain measures are

ε =∇sv+A× θ , κ =∇sθ , (16)

where A≡ I− n⊗ n is the two-dimensional or surface unit tensor.
We restrict ourselves again by the constitutive equations for T and M of differ-

ential type. We assume the following relations

A0(∂t)T= AA1(∂t) tr ε‖+ A2(∂t)ε
T
‖
+ A3(∂t)ε‖+ A4(∂t)ε · n⊗ n, (17)

B0(∂t)M= AB1(∂t) tr κ‖+ B2(∂t)κ
T
‖
+ B3(∂t)κ‖+ B4(∂t)κ · n⊗ n, (18)

Here ε‖ = ε ·A, κ‖ = κ ·A, and Ak(p), Bk(p), k = 0, 1, 2, 3, are polynomials.
We call the constitutive equations for the shell (17) and (18) the Maxwell-type,

if A0 = 1+a0 p, B0 = 1+b0 p, where 1/a0 and 1/b0 are the relaxation time for the
stress resultants and for couple stresses, respectively, and if other polynomials are
constants. We call (17) and (18) the Voigt-type constitutive equation, if A0= B0= 1
while other polynomials are linear functions of p.

Using the Laplace transform these constitutive equations become

T= α1A tr ε‖+α2ε
T
‖
+α3ε‖+α4ε · n⊗ n, (19)

M= β1A tr κ‖+β2κ
T
‖
+β3κ‖+β4κ · n⊗ n, (20)



278 HOLM ALTENBACH AND VICTOR A. EREMEYEV

where

αi =
Ai (p)
A0(p)

, βi =
Bi (p)
B0(p)

, i = 1, 2, 3, 4.

The final step in the theory of micropolar viscoelastic shells is the construction
of the polynomials Ak and Bk on the base of the dimension reduction of the three-
dimensional continuum or by experiments. Further we consider the derivation
of the relaxation functions αi and βi using the through-the-thickness integration
procedure presented in [Altenbach and Eremeyev 2009; 2010].

4. Reduction of constitutive equations from three to two dimensions

For simplicity let us consider the undeformed plane geometry; i.e., we restrict
ourselves to the theory of plates. The case of shells can be discussed by similar
way. Using the correspondence principle [Christensen 1971] from [Altenbach and
Eremeyev 2009] it follows

T= 〈A · σ 〉, M= 〈A ·µ〉− 〈A · zσ × n〉, (21)

where z is the coordinate along the thickness coordinate axis. The averaging oper-
ator 〈·〉 is defined as follows

〈 f 〉 =
∫ h/2

−h/2
f (z) dz.

For derivation of (21) we refer to the Appendix.
As a result the two-dimensional material parameters are given by the relations

α1 =3h ≡
λ(2µ+κ)
λ+2µ+κ

h, α2 = µh, α3 = (µ+κ)h, α4 = (µ+κ)h, (22)

β1 = αh−µh3

12
, β2 = βh−3h3

12
, β3 = γ h+(2µ+κ+3)h

3

12
, β4 = γ h, (23)

where h is the plate thickness.
From (22) and (9) it follows the relations for the tangential relaxation functions

P3

P0

P1+ P2

P1+ P2+ P3
h =

A1

A0
,

P2

P0
h =

A2

A0
,

P1

P0
h =

A3

A0
=

A4

A0
. (24)

It is clear that determination of the polynomials Ak(p) from the latter equations
can not be performed uniquely. Solving (24) results in

A0 = P0(P1+ P2+ P3), A1 = P3(P1+ P2)h, (25)

A2 = P2(P1+ P2+ P3)h, A3 = A4 = P1(P1+ P2+ P3)h. (26)
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In a similar way from (23) and (10) we obtain the equations for the bending relax-
ation functions

B1

B0
=

Q3

Q0
h−

P2

P0

h3

12
,

B2

B0
=

Q2

Q0
h−

P3(P1+ P2)

P0(P1+ P2+ P3)

h3

12
,

B3

B0
=

Q1

Q0
h+

(P1+ P2)(P1+ P2+ 2P3)

P0(P1+ P2+ P3)

h3

12
,

B4

B0
=

Q1

Q0
h.

From this it follows that

B0 = P0 Q0(P1+ P2+ P3),

B1 =

(
Q3 P0h− P2 Q0

h3

12

)
(P1+ P2+ P3),

B2 = Q2 P0(P1+ P2+ P3)h− P3 Q0(P1+ P2)
h3

12
,

B3 = Q1 P0(P1+ P2+ P3)h+ Q0(P1+ P2)(P1+ P2+ 2P3)
h3

12
,

B4 = Q1 P0(P1+ P2+ P3)h.

Hence, the differential operators in the constitutive equation for the resultant
stress and couple stress tensors T and M are more complicated than in the three-
dimensional case because the order of derivatives of Ai and Bi is higher than the
order of Pk and Qk , in general. This means that the viscoelastic properties of
the two-dimensional structure are more complicated then their three-dimensional
counterparts.

Remark. In the case of shells the stress resultant and couple stress tensors depend
on σ as follows:

T= 〈(A− zB)−1
· σ 〉, M= 〈(A− zB)−1

·µ〉− 〈(A− zB)−1
· zσ × n〉, (27)

where B = −∇Sn is the curvature tensor of the base shell surface, and 〈 · 〉 takes
a more complex form; see [Lebedev et al. 2010] for details. This means that for a
curved surface one should obtain more complicated relaxation properties for two-
dimensional theories of shell and plate.

5. Examples

Let us consider the simple case of the viscoelastic micropolar constitutive equations
and the corresponding two-dimensional equations.

5.1. Maxwell model. For a Maxwell-type model the polynomials in (6) and (7)
have the form

P0 = 1+ p0 p, P1, P2, P3 = const,

Q0 = 1+ q0 p, Q1, Q2, Q3 = const .
(28)
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For the stress resultant tensor T we obtain the constitutive equation of Maxwell-
type, i.e. A0 is the linear polynomial only, while the A1, A2, A3, and A4 are
constants. For the couple stress tensor M we obtain more complicated form of
constitutive equations. The simplification is possible if p0 = q0 = 1/τ . In this case
we use the polynomials

B0 = P0(P1+ P2+ P3),

B1 =

(
Q3h− P2

h3

12

)
(P1+ P2+ P3),

B2 = Q2(P1+ P2+ P3)h− P3(P1+ P2)
h3

12
,

B3 = Q1(P1+ P2+ P3)h+ (P1+ P2)(P1+ P2+ 2P3)
h3

12
,

B4 = Q1(P1+ P2+ P3)h,

where B0 is a polynomial while B1, B2, B3, and B4 are constants. Thus, we obtain
the Maxwell-type two-dimensional constitutive equations in the case when the re-
laxation times for the stress and couple stress coincide, i.e., when P0 ≡ Q0, and we
have one relaxation time τ . In the general case we obtain more general constitutive
equation for M.

5.2. Voigt model. Assume the polynomials in (6) and (7) have the form

P0 = 1, P1 = P0
1 (1+ p1 p), P2 = P0

2 (1+ p2 p), P3 = P0
3 (1+ p3 p),

Q0 = 1, Q1 = Q0
1(1+q1 p), Q2 = Q0

2(1+q2 p), Q3 = Q0
3(1+q3 p).

(29)

Here the corresponding polynomials Ai , i = 1, 2, 3, 4, are linear functions of p.
This means that for T we have the viscoelastic equations which are similar to the
standard viscoelastic model [Christensen 1971]. For M we again obtain a more
complicated model because in the general case. B0 is a linear function while B1,
B2, B3, and B4 are quadratic functions of p.

A simplification of the two-dimensional constitutive equation for M is possible
if we assume p1 = p2 = p3 = p4 = q1 = q2 = q3 = q4 = 1/τ. In this case we have

B0 = (P0
1 + P0

2 + P0
3 ),

B1 =

(
Q0

3h− P0
2

h3

12

)
(P0

1 + P0
2 + P0

3 )
(

1+ p
τ

)
,

B2 =

(
Q0

2(P
0
1 + P0

2 + P0
3 )h− P0

3 (P
0
1 + P0

2 )
h3

12

)(
1+ p

τ

)
,

B3 =

(
Q0

1(P
0
1 + P0

2 + P0
3 )h+ (P

0
1 + P0

2 )(P
0
1 + P0

2 + 2P0
3 )

h3

12

)(
1+ p

τ

)
,

B4 = Q0
1(P

0
1 + P0

2 + P0
3 )h

(
1+ p

τ

)
.
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As for the Maxwell-type model, we conclude that the two-dimensional constitutive
equations of Voigt-type exists as a special case of the three-dimensional viscoelastic
behavior, i.e., with the same relaxation parameter τ .

Conclusion

We have discussed the two-dimensional constitutive equations for resultant force
stress and couple stress tensors derived from the constitutive equations of three-
dimensional viscoelastic Cosserat (micropolar) continuum. The presented results
demonstrate how the viscoelastic properties of three-dimensional continuum inherit
in the constitutive equations for plates and shells. Within the framework of the
linear micropolar viscoelasticity with constitutive equations of differential type we
show that 2D relaxation functions of shells have move complicated structures then
the relaxation function of the bulk material, in general. In particular, even for
homogeneous plates and shells the spectrum of relaxation time do not coincide
with the spectrum of the bulk material. For inhomogeneous plates and shells the
spectrum may depend also on the structure of the shell in the thickness direction
and its curvature in the case of shells.

Appendix: Through-the-thickness integration

Following [Altenbach and Eremeyev 2009] we present more details on the through-
the-thickness procedure used for the derivation of 2D governing equations of the
micropolar theory of plates. Let V = {(x, y, z) ∈ R3

: (x, y) ∈ M ⊂ R2, z ∈
[−h/2, h/2]} be the volume of a plate-like body. We denote the boundary of the
plate-like body as S= Sν

⋃
S+
⋃

S−, where S±={(x, y, z) : (x, y)∈M, z=±h/2
are the plate faces and Sν = {(x, y, z) : (x, y) ∈ C ≡ ∂M, z ∈ [−h/2, h/2]} is the
lateral surface. We consider the following boundary conditions at S±

n± · σ = t±, n± ·µ= m±, (30)

where t±, m± are given vector functions, n± =±i3, and i3 = i1× i2.

Integrating (1)1 over [−h/2, h/2] and introducing the notations

q = 〈ρ f 〉+ t++ t− (31)

we result in (12)1 with T= 〈A · σ 〉.
For the derivation of (12)2 we cross-multiply (1)2 by z i3 from the left and again

integrate the result through the thickness. Finally, we obtain (12)2 with

c= 〈ρ`〉+m++m−+ i3×〈ρz f 〉+
h
2

i3× (t+− t−)

and M= 〈A ·µ〉− 〈A · zσ × i3〉.
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In the case of linear theory the through-the-thickness integration can be applied
to the 3D constitutive relations with the linear approximation of displacements and
rotations

u(x, y, z)= v(x, y)− zφ(x, y), ϑ = φ(x, y)× i3+ϑ3(x, y)i3, (32)

where φ · i3 = 0. The approximation (32) is consistent with 2D equilibrium equa-
tions as well as with averaging through the thickness. In particular, 2D fields of
translations and rotations can be interpreted as

v =
1
h
〈u〉, θ = ϑ .

Other possible variants of 3D to 2D reduction within micropolar elasticity are
discussed in [Altenbach et al. 2009; Altenbach and Eremeyev 2009; 2010; Chróś-
cielewski et al. 2011; Sargsyan 2011; Sargsyan and Sargsyan 2014; Steinberg and
Kvasov 2013; 2015; Zubov 2009].
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