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SPATIAL AND MATERIAL STRESS TENSORS IN CONTINUUM
MECHANICS OF GROWING SOLID BODIES

JEAN-FRANÇOIS GANGHOFFER

We presently derive generalized expressions of the stress tensor for continuum
bodies with varying mass, considering both the Lagrangian and Eulerian view-
points in continuum mechanics. We base our analysis and derivation of the ex-
pressions of both Cauchy and Eshelby stress tensors on an extension of the virial
theorem for both discrete and continuous systems of material points with vari-
able mass. The proposed framework is applicable to describe physical systems
at very different scales, from the evolution of a population of biological cells
accounting for growth to mass ejection phenomena occurring within a collection
of gravitating objects at the very large astrophysical scales. As a starting basis,
the field equations in continuum mechanics are written to account for a mass
source and a mass flux, leading to a formulation of the virial theorem accounting
for a varying mass within the considered system. The scalar and tensorial forms
of the virial theorem are written successively in both Lagrangian and Eulerian
formats, incorporating the mass flux. This delivers generalized formal expres-
sions of Cauchy and Eshelby stress tensors versus the average tensor spatial and
material virials respectively, incorporating the mass flux contribution.

1. Introduction

There are many problems in physics which involve masses changing with time,
as exemplified by situation of growing bodies, solids and fluids exhibiting phase
transitions [Ericksen 1984] related to solidification, evaporation, sedimentation. In
particular, the mass balance (mass absorbency) influence phase transitions condi-
tions, see for instance [dell’Isola and Iannece 1989; Eremeyev and Pietraszkiewicz
2009; 2011]. To mention but a few, two specific situations illustrate the very wide
range of scales at which such phenomena may occur: growth or resorption in bio-
logical systems is a typical situation where the overall mass of a continuous body
or a collection of particles varies, due to mass production within the system, or to
a flux of mass through the system boundary. Growth at cellular level (individual
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cells can then be regarded as punctual masses) is typical of discrete growth, while
the continuous aspect is of relevance for large collections of cells, organized within
tissues for which the framework of continuous mechanics is adequate.

At a much larger scale, the dynamics of galaxies with mass loss due to either
mass accretion or mass ablation has deserved a lot of attention in the literature for
many years, usually relying on an extension of Newton’s law of motion [Gommer-
stadt 2001], as originally stated by Sommerfeld in 1952.

In 1870, Rudolf Clausius [1870] stated that the mean vis viva of the system is
equal to its virial, or that the average kinetic energy is equal to half the average
potential energy. The virial theorem which was there born is a way to analyze
the dynamics of a collection of interacting particles; it allows the average total
kinetic energy to be calculated from the potential energy of a stable system. This
holds even for very complicated systems that defy an exact solution, such as those
considered in statistical mechanics or in astrophysics when considering large scales.
Lord Rayleigh published a generalization of the virial theorem in 1903. Henri
Poincaré applied a form of the virial theorem to the problem of determining the
cosmological stability in 1911. A tensor form of the virial theorem was set up in
[Chandrasekhar and Fermi 1953; Chandrasekhar and Lebovitz 1962; Parker 1954],
both in the context of astrophysics.

The virial theorem has a rather broad physical significance; it has been extended
to include electric and magnetic fields. The virial has both a discrete and a con-
tinuum facet, the first facet being well adapted to the physical situation of a finite
collection of particles, while the continuum virial obtained by some kind of av-
eraging process brings a simplification by introducing fields in place of discrete
quantities. In the context of continuum mechanics, the virial theorem proves an
alternative efficient manner to derive the pressure for particles without internal
structure (fluids), avoiding thereby the — sometimes complex — derivation of a
thermodynamic potential (the free energy).

The virial theorem has raised a renewed interest in the contemporary litera-
ture in relation to the construction of the Cauchy stress for structured media, de-
rived from the tensorial virial theorem in [Jouanna and Brocas 2001; Jouanna and
Pèdesseau 2004], borrowing arguments from statistical mechanics. The general
idea at the root of the molecular definition of the average stress is the identification
of molecules or atoms as interacting point masses. This reminds to the similar
pioneering work of Irving and Kirkwood [1950], in which stress is defined as a
pointwise statistical averaging performed in time instead of space, relying on the
ergodicity hypothesis. This viewpoint applies for a number of molecules which is
large enough for averaging operations to make sense — instead of using quantum
mechanics — so that a classical description can be adopted. Works in the literature
since this pioneering contribution witness a diversity of definitions and derivations
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of the stress tensor using a molecular viewpoint, see the recent critical overview
[Murdoch 2007] and references therein. Especially, when micro-macro identifica-
tions processes are considered, higher gradient theories naturally arise in which
to Cauchy stress tensor one needs to add a family of hyper stresses, as already
remarked by Gabrio Piola in his pioneering works [dell’Isola and Iannece 1989;
dell’Isola et al. 2012; 2014].

As a main outcome and novelty of the present contribution, one shall derive
expressions of the material Eshelby stress and spatial Cauchy stress tensors for
continuum bodies witnessing a local change of their mass. We base our analysis
and derivation of the expressions of both Cauchy and Eshelby stress tensors on
an extension of the virial theorem for both discrete and continuous systems of
material points with variable mass, thereby generalizing developments exposed
in [Ganghoffer 2010b]. Eshelby stress appears as a driving force for the growth
of continuum solid bodies, possibly incorporating multiphysical phenomena, see
[Ganghoffer 2010a; 2012].

The present contribution is organized as follows. In order to set the stage, the
virial theorem is first recalled in both scalar and tensorial formats (Section 2). We
next extend in Section 3 the virial theorem for systems with variable mass, a sit-
uation which occurs for growing biological systems and for a set of gravitational
masses with mass loss at the other extreme of the length spectrum. The virial
theorem for systems with variable mass is derived in sections 2 and 3 in Eulerian
format, and the material counterpart is written in sections 4 and 5, highlighting the
variation of the average virial in relation to the divergence of Eshelby stress. A
summary of the main developments is given in Section 6.

A few words regarding notation are in order. Vectors and higher-order tensors
are denoted with boldface symbols. Likewise, tensorial quantities built from their
scalar counterparts are denoted as boldface characters with a superposed hat; e.g.,
Êk denotes the tensorial kinetic energy, such that its trace is the scalar kinetic
energy: Tr(Êk)= Ek . The summation convention on repeated indices is in force,
unless otherwise explicitly stated.

The bracket 〈 · 〉 denotes the ensemble average of any quantity. The partial de-
rivative of a scalar function f (x) is denoted ∂x f = ∂ f/∂x ; the time derivative of
a function a(t) is represented by a superposed dot: ȧ(t)= da(t)/dt . The material
and spatial gradients are denoted Grad≡∇R and grad≡∇ respectively; similarly,
the material and spatial divergence are denoted Div( · )≡∇R( · ) and div( · )=∇·( · )
respectively. The transpose of the linear mapping A is the linear mapping denoted
AT . The notation sym( · ) stands for the symmetrized part of a dyadic product. The
second-order identity tensor is denoted I .
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Nomenclature of the principal symbols

R, Ri (r, ri ) material (resp. spatial) position vectors
J inertia tensor
pi := mi ṙi momentum of a single particle
V̂ , V̂ scalar and tensorial virials ; V̂int, V̂ext internal

and external scalar virials
〈 · 〉 ensemble averaging (equivalent to time averaging

according to ergodicity)
〈V̂0〉 (resp. 〈V̂0〉) average scalar (resp. tensorial) material virial
〈V̂ 〉 (resp. 〈V̂ 〉) average scalar (resp. tensorial) spatial virial
Ek, E p kinetic and potential energy respectively
Êk, Êp tensorial kinetic and potential energy respectively
F := Grad r first-order transformation gradient
J := det(F)
ψ kinematically admissible position field
f0, f referential and spatial body forces

3G := ∇X F second-order transformation gradient
W0(F) strain energy density
T := ∂W0(F)/∂F first Piola–Kirchhoff stress
σ Cauchy stress tensor
6 :=W0 I − Ft

· T second-order Eshelby stress
˜̃6 :=W0 I4

−Ft
⊗T fourth-order Eshelby stress

2. Scalar and tensorial virial theorems for systems with constant mass

In order to set the stage, a reminder of the statement of the virial theorems in
both scalar and tensorial format for systems of particles with constant mass are
conveniently recalled.

The Lagrangian of a set of N point particles with mass mi and position vector
ri , moving in a potential E p({ri }), is the difference between the kinetic energy

Ek({ṙi }) :=

N∑
i=1

p2
i

2mi
, (2-1)

where pi := mi ṙi is the momentum of the i-th particle, and the potential energy:

L({ri , ṙi }) := Ek({ṙi })− E p({ri }). (2-2)

In the hamiltonian formulation, the independent variables are the spatial positions
and the momenta, namely the set of variables {ri , pi }. The Lagrangian is related



STRESS TENSORS IN GROWING SOLID BODIES 345

to the Hamiltonian
H({ri , pi }) := Ek + E p, (2-3)

defined as the sum of the kinetic and potential energies of the individual particles,
by the equation

L(r, ṙ; t)= p · d r
dt
− H(r, p; t). (2-4)

Each material point is submitted to a force given by the gradient of the potential
energy vs. the corresponding spatial position, hence

fi =−∂ri E p. (2-5)

The scalar virial theorem states that the virial, viz the scalar valued quantity

V̂ :=
N∑

i=1

ri · fi (2-6)

is related to the kinetic energy of the set of particles by (the arguments of the
functionals are omitted for the sake of simplicity)

d
dt

( N∑
i=1

pi · ri

)
= 2Ek + V̂ . (2-7)

In the asymptotic limit of infinite times, the time average — indicated by the bracket
operator — of the left side of the previous identity vanishes, hence the ensemble
average of the right side vanishes:

2〈Ek〉+ 〈V̂ 〉 = 0. (2-8)

This identity constitutes the scalar version of the virial theorem. The assumption
of ergodicity at the macroscopic equilibrium implies that time averages at fixed
coordinate (following a single particle) are interchangeable with ensemble averages
(averages over a sufficiently large set of particles) at fixed time.

The virial can be decomposed into the sum of the internal virial V̂int and the
external virial V̂ext, as

V̂ = ( fi j · ri j ) j 6=i + fi,ext · ri ≡ V̂int+ V̂ext (2-9)

highlighting the contribution of internal forces fi j (first term on the right due to
interparticle interactions) and external forces (body forces due to gravity and con-
tact), denoted fi,ext, adopting the notation ri j := ri − r j for the relative position of
particles i and j .

The generalized virial theorem established in [Jouanna and Brocas 2001], viz
the tensorial generalization of the identities (2-6), (2-7), (2-8), can be obtained as
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follows: let differentiate twice the (symmetrical) inertia tensor (the summation of
repeated indices in the dyadic products is done over the set of N particles)

I := mi ri ⊗ ri (2-10)

hence giving
d I
dt
:= mi (ṙi ⊗ ri + ri ⊗ ṙi )

and so
d2 I
dt2 = 2mi ṙi ⊗ ṙi +mi (r̈i ⊗ ri + ri ⊗ r̈i )= 2Êk + V̂ , (2-11)

with
V̂ := 2 sym(ri ⊗ fi )=−2 sym(ri ⊗ ∂ri E p) (2-12)

defined as the tensorial virial, and the tensorial kinetic energy elaborated as

Êk := 2mi ṙi ⊗ ṙi ≡
pi ⊗ pi

2mi
. (2-13)

Remark. The trace of V̂ gives the scalar virial, Tr(V̂ )= V̂ ; similarly, the scalar
kinetic energy is recovered as the trace of its tensorial generalization.

Considering the asymptotic limit of infinite times, the identity (2-11) further
gives the generalized (tensorial) virial theorem, as the tensorial extension of the
scalar virial theorem

2〈Êk〉+ 〈V̂ 〉 = 0. (2-14)

The virial can be decomposed into the sum of the internal virial V̂int and the
external virial V̂ext, as

V̂ = ( fi j · ri j ) j 6=i + fi,ext · ri ≡ V̂int+ V̂ext (2-15)

highlighting the contribution of internal forces fi j (first term on the right due to
interparticle interactions) and external forces (body forces due to gravity and con-
tact), denoted fi,ext, adopting the notation ri j := ri − r j for the relative position of
particles i and j .

3. Scalar and tensorial viral theorems for systems with varying mass

Variable mass problems have been treated in the literature in the context of the virial
theorem [Gommerstadt 2001], especially considering applications in astronomy.
The authors especially mention that when a body is losing mass isotropically, no
additional force should appear, thus the motion of the body will overall not be
altered by mass losses.



STRESS TENSORS IN GROWING SOLID BODIES 347

The mass balance writes in integral form as

D
Dt

∫
�

ρ dx =
∫
�

ρ(π − div J) dx (3-1)

in presence of a source term π and a mass flux vector J , which can be identified
for an open system including different chemical species as

π =
∑
k
ρk ṅk, J =

∑
k

Jk . (3-2)

In continuum mechanics, the balance of linear momentum is written in integral
form as

D
Dt

∫
�

ρv dx =
∫
�

f dx +
∫
∂�

n · σ ds+
∫
�

πv dx −
∫
∂�

n · (J ⊗ v) ds

=

∫
�

f dx +
∫
∂�

n · σ ds+
∫
�

πv dx −
∫
�

div(v⊗ J) dx

≡

∫
�

f dx +
∫
�

πv dx +
∫
�

div(σ − v⊗ J) dx .

(3-3)

The last equality highlights that the effective stress is in fact the second order tensor

σ̃ := σ − v⊗ J .

Note that we have used the fact the divergence is presently elaborated as the right
divergence operator. For a continuum body, the strong form of the mass and mo-
mentum balance laws in presence of mass changes are successively obtained as

dρ
dt
≡ ρ̇ = π −∇ · J − ρ∇v (3-4)

and

ρ
dv
dt
= f +∇ · σ − (J .∇)v ≡ f +∇ · σ −∇v · J,

that is to say

ρ
dvi

dt
= fi + σi p,p −

∂vi

∂x p
Jp

= fi + σi p,p − Jpvi,p = fi + (σi p − vi Jp),p + vi div J .

This entails the balance of linear momentum equality

ρ
dv
dt
= ( f + v div J)+∇ · σ̃ . (3-5)

We can see that the additional contribution v div J acts in fact as a source term
in the balance of linear momentum (3-5), and can be incorporated into the overall
effective body force, quantity ( f + v div J).
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3.1. Cauchy stress from the discrete form of the virial theorem. The discrete
scalar virial in eulerian form is built as the dyadic product of the spatial positions
of the material points with the forces acting on them [Jouanna and Brocas 2001]:

V̂ =
N∑

i=1

ri · fi =

N∑
i, j=1

( fi j · ri j ) j 6=i +

Next∑
i=1

fi,ext · ri ≡ V̂int+ V̂ext,

yielding

〈V̂ 〉 = 〈V̂int〉+ 〈V̂ext〉 ∼=

〈 Ncon∑
i=1

ri · fi,con

〉
+

〈 Next∑
i=1

ri · fi,vol

〉
=

∫
∂�

r · σ · n dσt +

∫
�

r · f dx

=

∫
�

(r · div σ + σ t
: grad r) dx +

∫
�

r · f dσt

=

∫
�

(r · div σ + σ t
: I) dx +

∫
�

r · f dx (3-6)

which we view as the ensemble average of the discrete (scalar) eulerian virial,
denoted by 〈V 〉. Since contact and external (body) forces do not act on the same
material points, we have indicated in (3-6) the range of these respective material
points by Ncont and Next, respectively; this notation will be retained throughout.

The contribution
∫
∂�

r ·σ ·n dσt in previous equality represents the exterior virial
due to contact forces, considering that interactions between particles have a very
short range, hence the particles contributing to the exernal virial are those located
near the boundaries of the considered volume element. These forces are in fact
contact forces (reflected in the existence of Cauchy stress at the continuum level),
and thus are considered as internal forces corresponding to the internal virial V̂int.
The contribution

∫
�

r · f dσt represents the contribution to the scalar virial due to
external forces, and is accordingly coined the external virial, denoted V̂ext in (3-6).

In the sequence of equalities in (3-6), we have used the analogy between the
discrete and continuous counterpart of the scalar virial of external and contact (in-
ternal) forces. The second row of equalities in (3-6) is the continuous counterpart
of the discrete elaboration of the scalar virial in (2-6), as previously explained: in-
ternal forces in a continuum mechanical description are identified to contact forces,
while external forces are typically body forces or any force at distance.

Introducing therein the previous balance of momentum, rewritten here for the
sake of clarity as

ρ
dv
dt
= f +∇ · σ − (J .∇)v
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leads further to〈 Ncont∑
i=1

ri · fi,con

〉
+

〈 Next∑
i=1

ri · fi,vol

〉
=

∫
V

r ·(ργ+(J .∇)v) dV+
∫

V
σ T
: I dV . (3-7)

Introducing the acceleration γ := dv/dt therein. One can thus express the trace of
Cauchy stress as

|V |I1(σ ) := |V |Tr(σ )

=

〈 Ncont∑
i=1

ri · fi,con

〉
+

〈 Next∑
i=1

ri · fi,vol

〉
−

∫
V

r · (ργ + (J · ∇)v) dV

∼=

〈 Ncont∑
i=1

ri · fi,con

〉
+

〈 Next∑
i=1

ri · fi,vol

〉
−

∫
V

r · (J · ∇)v dV . (3-8)

It is customary to neglect the inertia forces, so that the pressure now involves an
additional contribution given by the last integral in previous equality, involving the
mass flux. The last equality is the extended scalar virial theorem in Eulerian format
accounting for mass changes within a body of a set of particles.

The tensor form of the virial theorem is obtained as follows:

Vext,tot = Vext,con+ Vext,vol ∼=

〈 Ncont∑
i=1

ri · fi,con

〉
+

〈 Next∑
i=1

ri · fi,vol

〉
=

∫
∂V

r ⊗ σ · n ds+
∫

V
r ⊗ fvol dx

=

∫
V
(r ⊗ div σ + I · σ T ) dx +

∫
V

r ⊗ fvol dx . (3-9)

Inserting the previous balance of linear momentum delivers the equality〈 Ncont∑
i=1

ri · fi,con

〉
+

〈 Next∑
i=1

ri · fi,vol

〉
=

∫
V
(r ⊗ (ργ − f + (J · ∇)v)+ σ T ) dx +

∫
V

r ⊗ fvol dx . (3-10)

Neglecting body forces on both sides and inertia forces we can then obtain the
average of the Cauchy stress tensor:∫

V
σ T dx ≈ |V |σ T

=

〈 N∑
i=1

ri ⊗ fi,con

〉
−

∫
V
(r ⊗ (ργ − f + (J · ∇)v)) dx,
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leading to

σ T
=

1
|V |

〈 Ncont∑
i=1

ri ⊗ fi,con

〉
−

1
|V |

∫
V

r ⊗ (J · ∇)v dx . (3-11)

We have considered a small enough volume so that the stress tensor can be con-
sidered as homogeneous inside. Thereby, Cauchy stress tensor is expressed versus
the average virial of contact forces and the additional contribution of mass flux, in
identified as the last integral in previous equality.

The average Cauchy stress can alternatively be derived from the continuum ver-
sion of the virial theorem, as exposed in the next subsection. We shall in addition
and as a matter of completeness incorporate the inertia forces, which have been
neglected in previous derivations.

3.2. Continuum form of the virial theorem and average Cauchy stress. The full
derivation of the virial theorem in scalar format and from a purely continuum
viewpoint (that is without resorting to the discrete mechanics of a set of interacting
particles) delivers the average of Cauchy stress as an extension of the virial theorem
with constant mass (see for example identity (3) in [Gommerstadt 2001]) as

1
|V |

∫
V
σ dx =

1
|V |

Ec−
1

2|V |
d2 I
dt2 +

1
2|V |

∫
∂V

x⊗ σ · n ds. (3-12)

The tensor of kinetic energy therein is defined as

Ec :=
1
2

∫
V
ρv⊗ v dx . (3-13)

The inertia tensor and its second material derivative are computed successively as
follows:

I =
∫

V
ρx⊗ x dx

d I
dt
=

∫
V
ρ(x⊗ v+ v⊗ x) dx +

∫
V

dρ
dt

x⊗ x dx +
∫

V
ρ(x⊗ x)∇ · v dx

d2 I
dt
=

∫
V
ρ(γ ⊗ x+ x⊗ γ + 2v⊗ v) dx + 2

∫
V
(ρ̇+ ρ∇ · v)

D
Dt
(x⊗ x) dx

+

∫
V

(
ρ̈+ 2ρ̇∇ · v+ ρ

D
Dt
(∇ · v)+ ρ(∇ · v)2

)
(x⊗ x) dx . (3-14)

In the particular case of incompressible media, the condition ∇ · v = 0 entails the
simplified expression of the second-order material derivative of the inertia tensor

d2 I
dt
=

∫
V
ρ(γ ⊗ x+ x⊗γ +2v⊗v) dx+2

∫
V
ρ̇

D
Dt
(x⊗ x) dx+

∫
V
ρ̈(x⊗ x) dx

(3-15)
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in which the second-order time derivative of the mass density results from balance
law (3-4) incorporating mass source and mass flux contributions.

Inserting expression (3-14) into (3-12) then delivers the following expression
for the average Cauchy stress tensor:

σ :=
1
|V |

∫
V
σ dx

=
1
|V |

Ec+
1

2|V |

∫
∂V

x⊗σ ·n ds

−
1

2|V |

{∫
V
ρ(γ⊗x+x⊗γ+2v⊗v) dx+2

∫
V
(ρ̇+ρ∇·v)

D
Dt
(x⊗x) dx

+

∫
V

(
ρ̈+2ρ̇∇·v+ρ

D
Dt
(∇·v)+ρ(∇·v)2

)
(x⊗x) dx

}
. (3-16)

Based on (3-15), this expression simplifies for incompressible media to deliver the
full Cauchy stress tensor in averaged form:

σ :=
1
|V |

∫
V
σ dx

=
1
|V |

Ec+
1

2|V |

∫
∂V

x⊗ σ · n ds

−
1

2|V |

{∫
V
ρ(γ ⊗ x+ x⊗ γ + 2v⊗ v) dx

+ 2
∫

V
ρ̇

D
Dt
(x⊗ x) dx +

∫
V
ρ̈(x⊗ x) dx

}
. (3-17)

4. Material version of the scalar virial theorem for systems
with varying mass

Since Cauchy stress represents a spatial measure of the contact forces in condensed
matter, one expects a similar interpretation of the Eshelby stress, from the tensorial
virial and extensions thereof, viewed as the material counterpart of Cauchy stress.
Microscopic interpretations of the notion of Eshelby stress are of high interest,
since this tensor leads to the so called material forces accounting for the presence of
defects (inhomogeneities, such as inclusions or cracks) in material space [Maugin
1993]. Hence, discrete simulations in the configuration of the defects based on the
virial can be conceived as a mean to evaluate those material forces at the very scale
of the defect themselves.

Pursuing further along this line of thoughts, the construction of Eshelby stress
from considerations tied to a system of discrete interacting punctual masses proves
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also relevant in the context of the so-called continuum-atomistic modeling strate-
gies in multiscale simulation methods, see [Alibert et al. 2003; Sunyk and Stein-
mann 2003; Tadmor et al. 1996] and references therein. Such an interpretation of
the stress tensor has been done in the continuum modeling of granular materials
such as sands, cements, clays, concrete, rocks and certain polymers [Misra and
Singh 2015; Misra and Poorsolhjouy 2015b; 2015a].

We establish the material version of the scalar virial theorem; we adopt as for
the eulerian situation a quasi-static framework, and define the scalar material virial
V̂0 with ensemble average 〈V̂0〉 as [Ganghoffer 2010b]

〈V̂0〉 := −

∫
∂�0

R ·6 · N dσ0+

∫
�0

R · fR d X

≡ −

∫
�0

I :6t d X ∼=−Tr(6)|�0| (4-1)

considering a small enough volume element �0, so that the fields can be considered
as nearly homogeneous (equilibrium in terms of Eshelby stress has been used);
vector R is the material position. Previous identity has been obtained by a pull-back
of the eulerian form of the balance of linear momentum on the material manifold.

An elaboration of the scalar material virial can be done alternatively starting
from a construction similar to that of the eulerian scalar virial in (2-6) for its discrete
version or in (3-6) for the continuum counterpart: we define the scalar material
virial as the dot product of the spatial positions of material points with the forces
acting on them (with a change of sign for the internal virial of contact forces);
developments presented in [Ganghoffer 2010b] lead to

V̂R =

N∑
i=1

Ri · fRi ,

which is equivalent to

〈V̂R〉 := −

∫
∂�R

R ·6 · N dσR +

∫
�

R · fR d X

= −

∫
�

(R · ∇R ·6+6
t
: ∇R R) dx +

∫
�

R · fR dσt

= −

∫
�

(R · ∇R ·6+6
t
: I) dx +

∫
�

R · fR dx . (4-2)

In previous set of equalities, the index R refers to the referential configuration; thus
one has the identity V̂R = V̂0.

Inserting the material divergence of the Eshelby tensor 6, previously obtained
as

∇R ·6 =∇R · 6̃+ JR · ∇R F · v+∇R · (FT
· (JR ⊗ v)), (4-3)



STRESS TENSORS IN GROWING SOLID BODIES 353

delivers the trace of Eshelby stress as

−|�|Tr(6T )=

∫
�

(R ·∇R ·6) dx+
∫
�

R · fR dx−〈V̂R〉

=

∫
�

(R ·∇R ·6̃) dx+
∫
�

R · {JR ·∇R F ·v+∇R ·(FT
·(JR⊗v))} dx

+

∫
�

R · fR dx−〈V̂R〉.

Inserting therein the balance of momentum with the effective Eshelby stress finally
delivers the trace of Eshelby stress versus the source of mass terms, the referential
scalar virial, and the heat and chemical contributions:

−|�|Tr(6t)=−

∫
�

(
R · {5FT

· v+∇R · [FT
· T̃ ]+ s∇Rθ +µk∇Rnk}

)
dx

+

∫
�

R · {∇R · (FT
· (JR ⊗ v))} dx −〈V̂R〉. (4-4)

Microscopic interpretations of the notion of Eshelby stress are of high interest,
since this tensor leads to the so-called material forces accounting for the presence of
defects (inhomogeneities, such as inclusions or cracks) in material space [Maugin
1993]. Hence, discrete simulations in the configuration of the defects based on
the virial can be conceived as a mean to evaluate those material forces at the very
scale of the defect themselves. Since the virial relies on the consideration of a
discrete set of interacting particles, one may further evoke the mixed continuum-
atomistic approaches that prove adequate in nanomechanics, which combine the
usual framework of continuum mechanics with a full atomic scale description
based on interatomic potentials. The full Eshelby stress shall be derived in the
next section from the virial theorem.

5. Eshelby stress for continua with variable mass

Recall that the tensorial virial states [Jouanna and Brocas 2001] that the transpose
of the Cauchy stress may be expressed as the average external virial tensor divided
by the volume occupied by the set of considered particles. The external tensorial
virial is defined as the contribution of the tensorial virial due exclusively to the
external forces fi,ext:

V̂ext := ri ⊗ fi,ext. (5-1)

It is the principal aim of this section to give a similar microscopic interpretation
of the purely material Eshelby stress in terms of the material counterpart of the
tensorial virial, to be elaborated in the sequel.
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Starting from the tensorial eulerian virial as the following integral [Jouanna and
Brocas 2001], adopting the continuum limit, viz

〈V̂ 〉 ≡
∫
∂�

r ⊗ σ · n dσt +

∫
�

r ⊗ f dx . (5-2)

And accounting for the relation between the spatial and material tensorial virials

〈V̂ 〉 = 〈V̂0〉+

∫
�0

W0 I d X (5-3)

one obtains after length developments presented in the Appendix B the average of
the Eshelby stress versus the eulerian tensorial virial:

〈V̂ 〉 =
∫
�0

(
−tr( ˜̃6t)+W0 I

)
d X +

∫
�0

R ·
{

FT
⊗ ρ J

dv
dt
+ FT

⊗ J (J · ∇)v
}

d X,

leading to∫
�0

tr( ˜̃6t) d X ≡
∫
�0

6 d X

=−〈V̂0〉+

∫
�0

R ·
{

FT
⊗ ρ J

dv
dt
+ FT

⊗ J (J · ∇)v
}

d X. (5-4)

The averaged material virial therein satisfies the material version of the tensorial
virial theorem (for asymptotic times), which is the equality

〈V̂0〉 = 〈V̂0 ext,tot〉+ 〈V̂0 int〉, 〈V̂0 ext,tot〉+ 〈V̂0 int〉+ 2〈Êk〉 = 0. (5-5)

This writing leads to the following expression of the average Eshelby stress

6̄ :=
1
|�0|

∫
�0

6 d X

= −
1
|�0|
〈V̂0〉+

1
|�0|

∫
�0

R ·
{

FT
⊗ρ J dv

dt
+ FT

⊗ J (J ·∇)v
}

d X

=
1
|�0|

{
〈V̂0 int〉+2〈Ek〉

}
+

1
|�0|

∫
�0

R ·
{

FT
⊗ρ J dv

dt
+ FT

⊗ J (J ·∇)v
}

d X,

(5-6)

the right-hand side being evaluated using the discrete expression of the internal
virial and kinetic energy (averaged over long times); the internal virial results from
the additive decomposition of the total tensor virial into the internal and external
virials,

V̂ = (ri j ⊗ fi j ) j 6=i + ri ⊗ fi,ext ≡ V̂int+ V̂ext, (5-7)

which leads to
V̂0 int ≡ (ri j ⊗ FT

· fi j ) j 6=i ,
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adopting the following definition for the total discrete tensorial virial:

V̂0 =

N∑
i=1

Ri ⊗ Ft
· f0i .

Expression (5-6) involves the pull-back to the material manifold of the referential
internal (traducing interactions between particles within the considered domain)
forces FT

· fi j , accounting for both contact and volumetric forces.
Observe that the introduced fourth-order Eshelby tensor ˜̃6 involved in previ-

ous derivations is an intermediate object originating from the mathematical devel-
opments initiated from the tensorial eulerian virial, which finally reduces to the
classical (second order) Eshelby tensor by taking the trace of ˜̃6.

The balance of momentum satisfied by the effective Eshelby stress

6̃ :=W I − FT
· T̃

, built from T̃ , is derived in Appendix A, leading to equality (A-12), which is
recalled for completeness:

ρR FT
·
∂v

∂t
= fR +5FT

· v+∇R F : (JR ⊗ v)−∇R.6̃+ (∂Xψ)exp l . (5-8)

In (5-8), the quantity 5FT
· v + JR · ∇R F · v +∇R F : (JR ⊗ v) reflecting mass

production and mass flux would vanish for closed systems with constant mass,
in addition to modified Eshelby stress 6̃ coinciding with the classical Eshelby
stress 6.

6. Conclusion

We have derived formal expressions of the Cauchy and Eshelby stress tensors for
continuum bodies with varying mass, a situation of interest for growing solid bodies
or for gravitational masses subjected to accretion phenomena. The adopted method-
ology relies on an extension of the virial theorem to situations of non constant
mass, traduced by a mass flux through the system boundaries and a mass produc-
tion term. These two additional contributions entail modifications of the balance
of momentum, when considering either a spatial formulation involving Cauchy
stress or a material formulation relying on Eshelby stress. The stress measures in
both material and physical format have been expressed versus the tensorial virial,
highlighting an additional contribution from the mass flux.

The present study shed some new light on the microscopic interpretation of
Cauchy and Eshelby stress for systems with variable mass, bridging the gap between
the microscopic (particle level) and the macroscopic continuum scales. Interpre-
tation of those results from the microscopic or molecular point of view highlights
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that stresses may identified as the average of the virial tensor with additional contri-
butions arising from the mass flux of particles entering the system, their evaluation
resulting from the solution of the (dynamical in general) equations of motion at the
microscopic or atomic level. This strategy may prove a convenient way to evaluate
Eshelby and Cauchy stresses from discrete quantities, such as in finite element
calculations (numerical approximation of a continuum model) or in simulations in-
volving a two scale approach, like mixed atomistic continuum formulations. This
approach appears of great interest in nanoscale systems with varying number of
atoms due, for instance, to epitaxial growth, based on the extensive use of molecular
dynamical simulations to explore the behavior of systems of atoms and molecules.

Appendix A. Balance of momentum satisfied by the effective Eshelby stress

The material form of the mass balance equation writes [Epstein and Maugin 2000],

∂ρR

∂t
=5−Div JR (A-1)

with the Lagrangian source and mass fluxes, respectively quantities 5 and JR ,
given versus their spatial counterparts as

5= Jπ, J = J−1 F · JR (A-2)

with the Jacobian J := det(F). The Lagrangian balance of momentum expresses
in terms of the nominal stress T , the first Piola–Kirchoff stress tensor, as

ρR
∂v

∂t
= f +∇R · T − (JR · ∇R)v (A-3)

which rewrites accounting for the mass balance equation (A-1) as the dynamical
equilibrium

ρR
∂v

∂t
= f +5v+∇R · (T − JR ⊗ v). (A-4)

The balance of angular momentum expresses as the symmetry condition for the
second-order tensor T̃ := T − JR ⊗ v, called the effective first Piola–Kirchhoff
stress.

The material version of the balance of momentum is obtained by a pull-back of
the eulerian version, using the relations [Milstein 1982]

Div(J F−T )= 0 ⇒ ∇R · T = J∇ · σ, (A-5)

leading to

ρR FT
·
∂v

∂t
= FT

· f +5FT
· v+ FT

· ∇R · T̃

= FT
· f +5FT

· v+ FT
· ∇R · T − FT

· ∇R · (JR ⊗ v). (A-6)
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For a hyperelastic medium with strain energy density W =W (F; X), consideration
of the following identity for the total spatial material derivative of W [Maugin
1993]

dX A W =
∂W
∂F i

I
F i

I,A+

(
∂W
∂X A

)
exp l
≡ T I

i F i
I,A+

(
∂W
∂X A

)
exp l

(A-7)

leads to
FT
·∇R · T =∇R · [FT

· T −W I] + (∂ X W )exp l . (A-8)

Due further to the equality

FT
· ∇R · (JR ⊗ v)= FT

· {JR · (∇R · v)+∇R JR · v}

= (∇R · v)FT
· JR + FT

· ∇R JR · v (A-9)

one easily obtains

∇R · [FT
· T̃ −W I] =∇R · [FT

· T − FT
· JR ⊗ v−W I], (A-10)

with

(FT
· T̃ )i j, j = (Fki T̃k j ), j = Fki, j T̃k j + Fki T̃k j, j

= (Fki, j Tk j + Fki Tk j, j )− JRk Fki, jv j + Fki (∇R · (JR ⊗ v))k j ,

and hence the equality

−∇R · 6̃ =−∇R ·6− JR ·∇R F · v−∇R · (FT
· (JR ⊗ v))

involving the Eshelby stress and modified Eshelby stress built from the hyperelastic
potential W :

6 :=W I − FT
· T , 6̃ :=W I − FT

· T̃ . (A-11)

More general similar derivations including chemical and thermal effects have been
obtained in [Ganghoffer 2010b].

We further elaborate the dynamical equilibrium as

ρR FT
·
∂v

∂t
= FT

· f +5FT
· v+ FT

· ∇R · T̃

≡ FT
· f +5FT

· v+ FT
· ∇R · T − FT

· ∇R · (JR ⊗ v),

ρR FT
·
∂v

∂t
= fR +5FT

· v−∇R ·6+ (∂Xψ)exp l − FT
· ∇R · (JR ⊗ v),

which is equivalent to

ρR FT
·
∂v

∂t
= fR+5FT

·v−∇R ·6̃+(∂Xψ)exp l+∇R · {FT
·(JR⊗v)}− FT

·∇R ·(JR⊗v),
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or again to the equality

ρR FT
·
∂v

∂t
= fR +5FT

· v−∇R · 6̃+∇R F : (JR ⊗ v)+ (∂Xψ)exp l, (A-12)

involving the referential body forces fR := FT
· f . The modified effective Eshelby

stress in (A-12) is the purely material stress incorporating the mass flux contribu-
tion.

Appendix B. Derivation of the average Eshelby stress from the virial theorem

The starting point is the relation (5-2), which is rewritten for the sake of clarity as

〈V̂ 〉 ≡
∫
∂�

r ⊗ σ · n dσt +

∫
�

r ⊗ f dx . (B-1)

We then analyse the dyadic moment of physical forces — in the vocabulary of
[Steinmann 2000] — therein:∫
∂�

r ⊗ σ · n dσt ≡

∫
∂�

riσ jknk dσt =

∫
�

(riσ jk)′k dx =
∫
�

(ri ′kσ jk + riσ jk,k) dx

≡

∫
�

(grad r · σ T
+ r ⊗ div σ ) dx

=

∫
�

I · σ T dx +
∫
�

r ⊗ div σ dx . (B-2)

Hence, assembling both contributions in 〈V̂ 〉 gives

〈V̂ 〉 ≡
∫
�

I · Jσ T d X +
∫
�0

R · {FT
⊗ J div σ + FT

⊗ f0} d X (B-3)

recalling that f0 := J f .
A material form of static equilibrium shall next be expressed, obtained by trans-

forming the integrand in (B-3) in a Lagrangian format. As a first step, the identity

FT
⊗Div T = Div(FT

⊗ T )−Grad(W0 I) (B-4)

is easily obtained, with

Grad(W0 I)= Grad FT
· T ≡ (F t)Ai,B T j B,

the contraction being done on the material subscript B; observe that this relation
is the tensorial generalization of the identity

Div(W0 I)= Div FT
· T .

Let us further express the gradient Grad(W I) above as the material divergence of
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a fourth-order tensor: due to the equality

I4 : A= Tr(A)I

there follows the identity [Ganghoffer 2010b]

Div(W0 I4)= Grad(W0 I). (B-5)

Let Div denote the material divergence, not to be confused with the spatial diver-
gence operator, ∇. From the classical Piola identity [Maugin 1993]

div(J F−T )= 0

there follows further the relation )

J∇ · σ̃ T
= Div T̃ T

, with
T̃ = J σ̃ · F−T

≡ T − J (J ⊗ v) · F−T (B-6)

the effective first Piola–Kirchhoff stress tensor. Combining the last identities with
the Eulerian balance of linear momentum (3-5) yields

ρ J
dv
dt
= (J f + v J div J)+ J∇ · σ̃ T ,

which is to say

ρ J
dv
dt
= f̃0+Div T̃ T , (B-7)

with f̃0 := ( f0+ v J div J) the effective body forces, and recalling the expression
σ̃ := σ − v⊗ J of the effective Cauchy stress.

The balance of linear momentum, (B-7), is further elaborated as

FT
⊗ ρ J

dv
dt
= FT

⊗ f̃0+ FT
⊗Div T̃ T .

Due further to the relation satisfied by the (classical) first Piola–Kirchhoff stress
tensor,

FT
⊗Div T = Div(FT

⊗ T )−Grad(W0 I)≡ Div(FT
⊗ T −W0 I4),

there follows the dynamical tensorial equilibrium equation

FT
⊗ ρ J

dv
dt
= FT

⊗ f̃0−Div ˜̃6− FT
⊗Div{J (J ⊗ v) · F−T

} (B-8)

involving the fourth-order material Eshelby tensor (denoted by a double tilde)

˜̃6 :=W0 I4
− FT

⊗ T .



360 JEAN-FRANÇOIS GANGHOFFER

Adopting

tr(A⊗ B) := A · B, ∀A, B

as the definition of the trace of a fourth-order tensor built as the dyadic product of
two second-order tensors, the trace of the fourth-order Eshelby tensor yields the
second-order Eshelby tensor

6 :=W0 I − FT
· T .

It is easy to show that 6 satisfies the following dynamical balance of linear mo-
mentum incorporating the mass flux:

ρ J FT
·

dv
dt
= FT

· f̃0−Div6− FT
·Div{J (J ⊗ v) · F−T

}. (B-9)

The previous implications also show the identities

Ft
⊗ J div σ + Ft

⊗ f0 ≡ Ft Div T + Ft
⊗ f0 =−Div ˜̃6+ Ft

⊗ f0. (B-10)

Inserting this back into the tensorial eulerian virial further delivers

〈V̂ 〉 ≡
∫
�0

I · Jσ T d X +
∫
�0

R · {FT
⊗ J div σ + FT

⊗ f0} d X

≡

∫
�0

I · Jσ T d X +
∫
�0

R · {−Div ˜̃6+ FT
⊗ f0} d X.

Taking into account the eulerian form of the dynamical equilibrium, expressed as

∇ · σ = ρ
dv
dt
− f + (J · ∇)v,

one obtains

〈V̂ 〉 ≡
∫
�0

I · Jσ T d X+
∫
�0

R ·
{

FT
⊗ J

{
ρ

dv
dt
− f +(J ·∇)v

}
+ FT

⊗ f0

}
d X

≡

∫
�0

I · Jσ T d X

+

∫
�0

R ·
{
−Div ˜̃6− FT

⊗Div{J (J⊗v) · F−T
}+(J ·∇)v+ FT

⊗ f0
}

d X.

Further, the elaboration of Eshelby stress in terms of Cauchy stress is expressed by

6 =W0 I − J FT
· σ · F−T ,

or equivalently

σ =− j F−T
·6 · FT

+Wt I,
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observing that the product jW0 represents the density of strain energy in the current
configuration:

Wt := jW0.

This leads to a rewriting of the averaged Cauchy stress in terms of the Eshelby
stress: ∫

�

(σ T
· I) dx =

∫
�0

Jσ T
· I d X =

∫
�0

(−F−T
·6 · FT

+W0 I) d X.

Hence, the previous form of the tensorial eulerian virial becomes, after lengthy
developments,

〈V̂ 〉 ≡
∫
�0

(−F−t
·6 · Ft

+W0 I) d X +
∫
�0

R · {−Div ˜̃6+ Ft
⊗ f0} d X

≡

∫
�0

(−F−t
·6 · Ft

+W0 I) d X,

〈V̂ 〉 ≡
∫
�0

I · Jσ T d X +
∫
�0

R ·
{

FT
⊗ J

{
ρ

dv
dt
− f + (J · ∇)v

}
+ FT

⊗ f0

}
d X

≡

∫
�0

(−F−T
·6 · FT

+W0 I) d X

+

∫
�0

R ·
{
−Div ˜̃6+ FT

⊗ f0+ FT
⊗ Jρ dv

dt

− FT
⊗Div{J (J ⊗ v) · F−T

}+ (J .∇)v
}

d X

=

∫
�0

(−tr( ˜̃6t)+W0 I) d X

+

∫
�0

R ·
{
−Div ˜̃6+ FT

⊗ f0

− FT
⊗Div{J (J ⊗ v) · F−T

}+ FT
⊗ J (J · ∇)v

}
d X

≡

∫
�0

(−tr( ˜̃6t)+W0 I) d X +
∫
�0

R ·
{

FT
⊗ ρ J dv

dt
+ FT

⊗ J (J · ∇)v
}

d X.

Here we have taken into account the static equilibrium and the identity∫
�0

(−F−t
·6 · Ft

+W0 I) d X ≡
∫
�0

(−6t
+W0 I) d X

=

∫
�0

(−tr( ˜̃6t)+W0 I) d X, (B-11)

itself resulting from the equality

(A⊗ B)T = B⊗ A, ∀A, B,
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the coaxiality of T with Ft [Ciarlet 1993], and the following definition of the trace
of a fourth-order tensor built as the dyadic product of two second-order tensors:

tr(A⊗ B) := A · B, ∀A, B.

According to this definition, the trace of the fourth-order Eshelby tensor in delivers
the second-order Eshelby tensor.
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