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A CRACK WITH SURFACE ELASTICITY
IN FINITE PLANE ELASTOSTATICS

XU WANG AND PETER SCHIAVONE

We consider the effect of surface elasticity on a finite crack in a particular class
of compressible hyperelastic materials of harmonic type subjected to uniform
remote Piola stresses. The surface mechanics is incorporated into the model of fi-
nite deformation by employing a version of the continuum-based surface/interface
theory of Gurtin and Murdoch. A complete solution valid throughout the entire
domain of interest is obtained by reducing the problem to two series of coupled
Cauchy singular integrodifferential equations that are solved numerically using
a collocation method. Our model predicts that, in general, the size-dependent Pi-
ola stresses exhibit a weak logarithmic singularity at the crack tips. For a crack in
a special class of materials subjected to mode II loading, the stresses are bounded
whereas the deformation gradients exhibit a logarithmic-type singularity at the
crack tips.

1. Introduction

Analysis of the finite deformation of cracked hyperelastic materials is a challenging
topic that, because of its importance, continues to attract the attention of theo-
reticians and practitioners alike. Knowles and Sternberg [1973; 1974] used as-
ymptotic analysis to study the influence of a crack in compressible hyperelastic
homogeneous materials and bimaterials under plane-strain conditions. Knowles
[1977] investigated the antiplane shear deformations of a generalized neo-Hookean
incompressible material containing a crack. In this investigation, he observed that,
in a special class of these materials, the shear stresses at the crack tip are bounded
whereas the displacement gradients remain unbounded. Knowles [1981] again used
asymptotic analysis to study the influence of a crack in a solid subjected to mode II
loading in finite elastostatics. He observed that an antisymmetric solution is impos-
sible and that crack opening at the crack tip still exists under mode II conditions.
Also of great interest was the analysis of Knowles and Sternberg [1983], who
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studied the crack-tip field of an interface crack in a neo-Hookean bimaterial and
found that the classical oscillatory singularities disappear. The asymptotic analysis
of a crack in incompressible hyperelastic homogeneous materials and bimaterials
was examined further by Geubelle and Knauss [1994a; 1994b; 1994c]. In contrast
to the aforementioned asymptotic analyses, Ru [2002] obtained a complete solution
for an interface crack in a bimaterial composed of a particular class of compressible
harmonic materials by utilizing a concise version of the complex-variable formu-
lation. Ru’s solution indicates that, when the asymptotic behavior of the harmonic
materials satisfies the constitutive restriction proposed by Knowles and Sternberg
[1975], the oscillatory singularity again disappears.

Most recently, various authors (see, for example, [Kim et al. 2010b; 2010a;
2011a; 2011b; 2011c; Antipov and Schiavone 2011; Wang 2015]) have incorpo-
rated the continuum-based surface/interface theory of Gurtin and Murdoch [1975;
1978; Gurtin et al. 1998] into the fracture analysis of linearly elastic solids. It was
shown that the incorporation of the Gurtin–Murdoch surface model can suppress
the classical strong square-root stress/strain singularity at the crack tip predicted
in linear elastic fracture mechanics (LEFM) to the weaker logarithmic singularity
[Walton 2012; Kim et al. 2013].

The objective of the present study is to incorporate a version of the Gurtin–
Murdoch surface model into the analysis of the finite plane-strain deformations of
a compressible hyperelastic material of harmonic type containing a central crack.
The complex-variable method [Ru 2002] is used to reduce the original boundary-
value problem to two sets of coupled first-order Cauchy singular integrodifferential
equations that are solved numerically using Chebyshev polynomials and a colloca-
tion method. Furthermore, an elementary closed-form analytic solution is derived
for a special material under mode II loading. It is seen from this closed-form
solution that all stress components are bounded whereas the deformation gradients
exhibit a logarithmic singularity at the crack tips.

2. Bulk and surface elasticity

In this study, the bulk material is taken from a particular class of compressible hy-
perelastic solids of harmonic type whereas the elasticity of the surface is restricted
to the class of isotropic linearly elastic materials. This simplifying assumption in
the mathematical model is a first step/starting point in the investigation of the con-
tribution of surface elasticity to fracture in this class of nonlinearly elastic materials.
In fact, as we detail later, the assumptions of isotropy and linearity in the surface
model result in singular integrodifferential equations that are accommodated by
existing methods in the literature allowing for relatively easy analysis and solution.
In contrast, if the surface-elasticity model is assumed also to be hyperelastic, the
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resulting singular integrodifferential equations become highly nonlinear and are
not accommodated by any existing theories of analysis.

Bulk elasticity. In this section, we review the equations governing finite plane-
strain deformations of a particular class of compressible hyperelastic materials of
harmonic type first advanced by John [1960] and later studied by various authors
[Ru 2002; Knowles and Sternberg 1975; Varley and Cumberbatch 1980; Li and
Steigmann 1993; Wang et al. 2005; Wang and Schiavone 2015]. Let the complex
variable z = x1+ i x2 represent the initial coordinates of a material particle in the
undeformed configuration and w(z) = y1(z)+ iy2(z) the corresponding spatial
coordinates in the deformed configuration. Thus, the displacements u1 and u2 of
a material particle labeled (x1, x2) are given by u1 = y1 − x1 and u2 = y2 − x2.
Define the deformation gradient tensor by the components (i, j = 1, 2)

Fi j =
∂yi

∂x j
. (1)

For a particular class of harmonic materials, the strain energy density W defined
with respect to the undeformed unit area can be expressed by [Ru 2002; Varley and
Cumberbatch 1980; Li and Steigmann 1993; Abeyaratne 1984]

W = 2µ[F(I )− J ], F ′(I )=
1

4α

[
I +

√
I 2− 16αβ

]
. (2)

Here I and J are the scalar invariants of the tensor F FT given by

I = λ1+ λ2 =
√

Fi j Fi j + 2J , J = λ1λ2 = det[Fi j ], (3)

where λ1 and λ2 are the principal stretches, µ is the shear modulus, and 1
2 ≤ α < 1

and β > 0 are two material constants. A full discussion of the physical implications
of both this class of materials and the associated material constants can be found
in [Ru 2002]. We note, in particular, one of the well-known limitations of this
harmonic material model in that it exhibits unphysical behavior in states of se-
vere compression. Consequently, in what follows, we concern ourselves only with
physical problems exhibiting states of strain that are appropriate for this model.

According to the formulation developed by Ru [2002], the deformation w can
be written in terms of two analytic functions ϕ(z) and ψ(z) as

iw(z, z)= αϕ(z)+ iψ(z)+
βz

ϕ′(z)
, (4)

and the complex Piola stress function χ is given by

χ(z, z)= 2iµ
[
(α− 1)ϕ(z)+ iψ(z)+

βz

ϕ′(z)

]
. (5)
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In addition, the Piola stress components can be written in terms of the Piola
stress function χ as

−σ21+ iσ11 = χ,2, σ22− iσ12 = χ,1. (6)

Surface elasticity. The equilibrium conditions on the surface incorporating inter-
face/surface elasticity can be expressed as [Gurtin and Murdoch 1975; Gurtin et al.
1998; Ru 2010]

[σα j n j eα] + σ s
αβ,βeα = 0 (tangential direction),

[σi j ni n j ] = σ
s
αβκαβ (normal direction),

(7)

where α, β = 1, 3, ni is the unit normal vector to the surface before deformation,
[ · ] denotes the jump of the quantities across the surface, σ s

αβ is the surface Piola–
Kirchhoff stress tensor of the first kind, and καβ is the curvature tensor of the
surface. In addition, the constitutive equations on the isotropic linearly elastic
surface are given by

σ s
αβ = σ0δαβ + 2(µs

− σ0)ε
s
αβ + (λ

s
+ σ0)ε

s
γ γ δαβ, (8)

where εs
αβ is the surface infinitesimal strain tensor, δαβ is the Kronecker delta for

the surface, σ0 is the surface tension, and λs and µs are the two surface Lamé
parameters. A justification of (7) and (8) can be found in the Appendix.

3. A crack with surface effects

We consider the finite plane-strain deformations of a harmonic material weakened
by a crack subjected to remote uniform Piola stresses (σ∞11 , σ

∞

22 , σ
∞

12 , σ
∞

21 ). The
cross section of the crack occupies the segment [−a, a] of the x1 axis, and the faces
of the crack are assumed to be traction-free, i.e., σ12 = σ22 = 0 on −a < x1 < a
and x2 =±0. Let the upper and lower half-planes be designated the “+” and “−”
sides of the crack, respectively.

It follows from (7) that the boundary conditions on the crack faces can be specif-
ically written as

σ s
11,1+ (σ12)

+
− (σ12)

−
= 0,

(σ22)
+
− (σ22)

−
=−σ0 y+2,11

on the upper crack face, (9a)

σ s
11,1+ (σ12)

+
− (σ12)

−
= 0,

(σ22)
+
− (σ22)

−
=−σ0 y−2,11

on the lower crack face, (9b)

where (σ12)
− and (σ22)

− in (9a) and (σ12)
+ and (σ22)

+ in (9b) are zero.
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By assuming a coherent interface, the following relationship can then be ob-
tained from (8):

σ s
11,1 = (λ

s
+ 2µs

− σ0)y1,11. (10)

As a result, it follows from (9) and (10) that

(σ12)
+
=−(λs

+ 2µs
− σ0)y+1,11,

(σ22)
+
=−σ0 y+2,11

on the upper crack face, (11)

(σ12)
−
= (λs

+ 2µs
− σ0)y−1,11,

(σ22)
−
= σ0 y−2,11

on the lower crack face, (12)

which is equivalent to

(σ12)
+
+ (σ12)

−
=−(λs

+ 2µs
− σ0)(y+1,11− y−1,11),

(σ12)
+
− (σ12)

−
=−(λs

+ 2µs
− σ0)(y+1,11+ y−1,11),

(σ22)
+
+ (σ22)

−
=−σ0(y+2,11− y−2,11),

(σ22)
+
− (σ22)

−
=−σ0(y+2,11+ y−2,11).

(13)

We now define a new analytic function

θ(z)=−iψ(z)+
βz
ϕ′(z)

. (14)

The deformation w and the complex Piola stress function χ along the real axis
can then be concisely expressed in terms of ϕ(z) and θ(z) as

iw = αϕ(x1)+ θ(x1), χ = 2iµ
[
(α− 1)ϕ(x1)+ θ(x1)

]
,

x2 = 0, −∞< x1 <+∞, . (15)

In view of the above expression, ϕ(z) and θ(z) can be written in the form

ϕ(z)=
1

4πµ

∫ a

−a

{
2µ[b1(ξ)+ ib2(ξ)] + f2(ξ)− i f1(ξ)

}
ln(z− ξ) dξ + i Az, (16a)

θ(z)=
1

4πµ

∫ a

−a

{
2µ(α− 1)[b1(ξ)− ib2(ξ)] +α[ f2(ξ)+ i f1(ξ)]

}
ln(z− ξ) dξ

− i
(

B+
β

A

)
z, (16b)

where b1(x1), b2(x1), f1(x1), and f2(x1) with −a < x1 < a are four unknown real
functions to be determined and the two complex constants A and B are related to
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the remote uniform Piola stresses through

(1−α)A−
β

A
=
σ∞11 + σ

∞

22 + i(σ∞21 − σ
∞

12 )

4µ
,

B =
σ∞11 − σ

∞

22 − i(σ∞12 + σ
∞

21 )

4µ
.

(17)

It is clear that ϕ(z) and θ(z) given in (16) satisfy the uniform loading condition
at infinity. Our task below is to determine the four real functions b1(x1), b2(x1),
f1(x1), and f2(x1) in (16) from the remaining boundary conditions on the crack
surfaces. The following limiting values can then be obtained from (16):

ϕ′
+
(x1)=

2µ[b2(x1)− ib1(x1)] − f1(x1)− i f2(x1)

4µ

+
1

4πµ

∫ a

−a

2µ[b1(ξ)+ ib2(ξ)] + f2(ξ)− i f1(ξ)

x1− ξ
dξ + i A,

ϕ′
−
(x1)=

2µ[−b2(x1)+ ib1(x1)] + f1(x1)+ i f2(x1)

4µ

+
1

4πµ

∫ a

−a

2µ[b1(ξ)+ ib2(ξ)] + f2(ξ)− i f1(ξ)

x1− ξ
dξ + i A,

(18)

θ ′
+
(x1)=

2µ(α− 1)[−b2(x1)− ib1(x1)] +α[ f1(x1)− i f2(x1)]

4µ

+
1

4πµ

∫ a

−a

2µ(α− 1)[b1(ξ)− ib2(ξ)] +α[ f2(ξ)+ i f1(ξ)]

x1− ξ
dξ

− i
(

B+
β

A

)
,

θ ′
−
(x1)=

2µ(α− 1)[b2(x1)+ ib1(x1)] −α[ f1(x1)− i f2(x1)]

4µ

+
1

4πµ

∫ a

−a

2µ(α− 1)[b1(ξ)− ib2(ξ)] +α[ f2(ξ)+ i f1(ξ)]

x1− ξ
dξ

− i
(

B+
β

A

)
,

(19)

where −a < x1 < a; the subscript “+” means the limiting value by approaching the
crack from the upper half-plane, and the subscript “−” means the limiting value
by approaching the crack from the lower half-plane.
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By imposing the boundary conditions in (13), and making use of (18) and (19) in
conjunction with (4)–(6), we obtain the hypersingular integrodifferential equations

−
4µ(1−α)

π

∫ a

−a

b1(ξ)

ξ − x1
dξ +

2α− 1
π

∫ a

−a

f2(ξ)

ξ − x1
dξ + 2σ∞12

= (λs
+ 2µs

− σ0)b′1(x1),

f2(x1)=
σ0(2α− 1)

π

∫ a

−a

b1(ξ)

(ξ − x1)2
dξ +

σ0α

πµ

∫ a

−a

f2(ξ)

(ξ − x1)2
dξ,

(20)

−
4µ(1−α)

π

∫ a

−a

b2(ξ)

ξ − x1
dξ −

2α− 1
π

∫ a

−a

f1(ξ)

ξ − x1
dξ + 2σ∞22 = σ0b′2(x1),

f1(x1)=−
(2α− 1)(λs

+ 2µs
− σ0)

π

∫ a

−a

b2(ξ)

(ξ − x1)2
dξ

+
α(λs
+ 2µs

− σ0)

πµ

∫ a

−a

f1(ξ)

(ξ − x1)2
dξ,

(21)

where −a < x1 < a.
In addition, the following conditions can be obtained from (18), (19) and (4)–(6):

1y1 = y+1 − y−1 =−
∫ x1

−a
b1(ξ) dξ,

1y2 = y+2 − y−2 =−
∫ x1

−a
b2(ξ) dξ,

σ+12− σ
−

12 =− f1(x1),

σ+22− σ
−

22 =− f2(x1),
−a < x1 < a.

(22)

Consequently, the single-valuedness of the displacements and balance of force
for a contour surrounding the crack surface require that∫ a

−a
b1(ξ) dξ = 0,

∫ a

−a
b2(ξ) dξ = 0,∫ a

−a
f1(ξ) dξ = 0,

∫ a

−a
f2(ξ) dξ = 0.

(23)

If the end conditions

µ(2α− 1)b1(±a)+α f2(±a)= 0 when σ0 6= 0, σ∞12 6= 0, and σ∞22 = 0,

µ(2α− 1)b2(±a)−α f1(±a)= 0 when σ0 6= 0, σ∞22 6= 0, and σ∞12 = 0
(24)
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are met, then (20) and (21) can be written as first-order Cauchy singular integro-
differential equations

−
4µ(1−α)

π

∫ a

−a

b1(ξ)

ξ − x1
dξ +

2α− 1
π

∫ a

−a

f2(ξ)

ξ − x1
dξ + 2σ∞12

= (λs
+ 2µs

− σ0)b′1(x1),

f2(x1)=
σ0(2α− 1)

π

∫ a

−a

b′1(ξ)
ξ − x1

dξ +
σ0α

πµ

∫ a

−a

f ′2(ξ)
ξ − x1

dξ,

(25)

−
4µ(1−α)

π

∫ a

−a

b2(ξ)

ξ − x1
dξ −

2α− 1
π

∫ a

−a

f1(ξ)

ξ − x1
dξ + 2σ∞22 = σ0b′2(x1),

f1(x1)=−
(2α− 1)(λs

+ 2µs
− σ0)

π

∫ a

−a

b′2(ξ)
ξ − x1

dξ

+
α(λs
+ 2µs

− σ0)

πµ

∫ a

−a

f ′1(ξ)
ξ − x1

dξ,

(26)

where −a < x1 < a.
It should be pointed out that the resulting singular integrodifferential equations

are linear in nature due to the introduction of the new analytic function θ(z) in (14)
and that the end conditions in (24) are consistent with the discussions in [Kim et al.
2013] in which the idea is fully explained.

In what follows, we address three special cases:

Case 1. If we choose α = 1
2 for the case in which F ′(I )/I approaches unity as

I tends to infinity [Knowles and Sternberg 1975] (whose proposed constitutive
equation is satisfied by the asymptotic behavior of the harmonic material in this
case), (20) and (21) simplify to

−
2µ
π

∫ a

−a

b1(ξ)

ξ − x1
dξ + 2σ∞12 = (λ

s
+ 2µs

− σ0)b′1(x1),

−
2µ
π

∫ a

−a

b2(ξ)

ξ − x1
dξ + 2σ∞22 = σ0b′2(x1),

f1(x1)= f2(x1)= 0,

− a < x1 < a. (27)

Case 2. If σ0 = 0 (i.e., the residual surface tension is ignored as in [Kim et al.
2011c] since its contribution is usually negligible), (20) and (21) simplify to

−
4µ(1−α)

π

∫ a

−a

b1(ξ)

ξ − x1
dξ + 2σ∞12 = (λ

s
+ 2µs)b′1(x1),

b2(x1)=
σ∞22

2µ(1−α)
x1√

a2− x2
1

,

f1(x1)= f2(x1)= 0,

−a< x1<a. (28)
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Case 3. If λs, µs
→∞, (20) and (21) simplify to

−
µ

πα

∫ a

−a

b2(ξ)

ξ − x1
dξ + 2σ∞22 = σ0b′2(x1),

f1(x1)=
µ(2α− 1)

α
b2(x1),

b1(x1)= f2(x1)= 0,

− a < x1 < a. (29)

We remark that the resulting Cauchy singular integrodifferential equations in
(27)1,2, (28)1, and (29)1 are similar in structure.

4. Solution to the Cauchy singular integrodifferential equations

Set x = x1/a and t = ξ/a in (23)–(26). For convenience, and without loss of
generality, we write bi (x)= bi (ax)= bi (x1) and fi (x)= fi (ax)= fi (x1), i = 1, 2.
Consequently, (23)–(26) can be written in the normalized form∫ 1

−1

−4(1−α)b̂1(t)+ (2α− 1) f̂2(t)
t − x

dt = π S1b̂′1(x)− 2π,∫ 1

−1

S2(2α− 1)b̂′1(t)+ S2α f̂ ′2(t)
t − x

dt = π f̂2(x), −1< x < 1,∫ 1

−1
b̂1(t) dt =

∫ 1

−1
f̂2(t) dt = 0, (2α− 1)b̂1(±1)+α f̂2(±1)= 0,

(30)

∫ 1

−1

−4(1−α)b̂2(t)+ (2α− 1) f̂1(t)
t − x

dt = π S2b̂′2(x)− 2π,∫ 1

−1

S1(2α− 1)b̂′2(t)+ S1α f̂ ′1(t)
t − x

dt = π f̂1(x), −1< x < 1,∫ 1

−1
b̂2(t) dt =

∫ 1

−1
f̂1(t) dt = 0, (2α− 1)b̂2(±1)+α f̂1(±1)= 0,

(31)

where

b̂1(x)=
µb1(x)
σ∞12

, f̂1(x)=−
f1(x)
σ∞22

, S1 =
λs
+ 2µ− σ0

αµ
,

b̂2(x)=
µb2(x)
σ∞22

, f̂2(x)=
f2(x)
σ∞12

, S2 =
σ0

αµ
.

(32)

Equations (30) and (31) are identical in structure in the sense that (31) can be
obtained by replacing the subscripts 1 and 2 in (30) by 2 and 1, respectively. In
the following, we focus on the solution of (30).
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By utilizing the first and second inverse operators [Chakrabarti and George 1994;
Chakrabarti and Hamsapriye 1999]

T−1
firstψ(x)=

√
1− x2

π

∫ 1

−1
ψ(t) dt −

√
1− x2

π2

∫ 1

−1

ψ(t)

(t − x)
√

1− t2
dt, (33)

T−1
secondψ(x)=

1

π
√

1− x2

∫ 1

−1
ψ(t) dt −

1

π2
√

1− x2

∫ 1

−1

√
1− t2ψ(t)

t − x
dt, (34)

where−1< x < 1, in (30)2 and (30)1, respectively, and making use of the conditions
in (30)3, we arrive at

√
1−x2

[
−4(1−α)b̂1(x)+(2α−1) f̂2(x)

]
=−

1
π

∫ 1

−1

√
1−t2[S1b̂′1(t)−2]

t−x
dt,

S2(2α−1)b̂′1(x)+S2α f̂ ′2(x)=−

√
1−x2

π

∫ 1

−1

f̂ ′2(t)

(t−x)
√

1−t2
dt,

(35)

where −1< x < 1.
The two unknown functions b̂1(x) and f̂2(x) are approximated as

b̂1(x)=
N+1∑
m=0

cm Tm(x), f̂2 =

N+1∑
m=0

dm Tm(x), (36)

where Tm(x) represents the m-th Chebyshev polynomial of the first kind and cm

and dm , m = 0, 1, 2, . . . , N + 1 are 2N + 4 unknown coefficients to be determined
using the collocation method.

Substituting (36) into (35), and using the identities

dTm(x)
dx

= mUm−1(x),∫ 1

−1

Um(t)
√

1− t2

t − x
dt =−πTm+1(x),∫ 1

−1

Tm(t)

(t − x)
√

1− t2
dt = πUm−1(x)

(37)

with Um(x) being the m-th Chebyshev polynomial of the second kind, we arrive at

N+1∑
m=0

Tm(x)
{√

1− x2[4(1−α)cm − (2α− 1)dm] +mS1cm
}
= 2x,

N+1∑
m=0

Um−1(x)
{
m[S2(2α− 1)cm + S2αdm] +

√
1− x2dm

}
= 0.

(38)
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If we select the collocation points given by x =− cos(iπ/N ) for i = 1, 2, . . . , N ,
(38) becomes

N+1∑
m=0

(−1)m cos
(miπ

N

){[
4(1−α) sin

( iπ
N

)
+mS1

]
cm − (2α− 1) sin

( iπ
N

)
dm

}
=−2 cos

( iπ
N

)
, i = 1, 2, . . . , N ,

N+1∑
m=0

(−1)m sin
(miπ

N

){
mS2(2α− 1)cm +

[
mS2α+ sin

( iπ
N

)]
dm

}
= 0, i = 1, 2, . . . , N − 1,

N+1∑
m=0

[
m2(2α− 1)cm +m2αdm

]
= 0.

(39)

In addition, the conditions in (30)3 become

N+1∑
m=0,m 6=1

1+ (−1)m

1−m2 cm = 0,
N+1∑

m=0,m 6=1

1+ (−1)m

1−m2 dm = 0,

N+1∑
m=0

[
(2α− 1)cm +αdm

]
= 0,

N+1∑
m=0

(−1)m
[
(2α− 1)cm +αdm

]
= 0.

(40)

The 2N + 4 unknowns cm and dm , m = 0, 1, 2, . . . , N + 1, can be uniquely
determined by solving the 2N + 4 independent linear algebraic equations in (39)
and (40).

5. The stress field

The four real functions b1(x1), b2(x1), f1(x1), and f2(x1) have been determined
in the previous section by solving the ensuing Cauchy singular integrodifferential
equations (30) and (31) numerically. This means that the two analytic functions ϕ(z)
and θ(z) are known. In view of (14), the other original analytic function ψ(z) can
be given by

ψ(z)= iθ(z)−
iβz
ϕ′(z)

. (41)

The Piola stresses can then be determined by using (5) and (6). Since b1(±a),
b2(±a), f1(±a), and f2(±a) are all finite when σ0 6= 0, the Piola stresses exhibit
a weak logarithmic singularity at the crack tips when σ0 6= 0. In particular, the two
stress components σ12 and σ22 are singularly distributed along the real axis outside
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the crack as

σ12

σ∞12
=−

2(1−α)
π

∫ 1

−1

b̂1(t)
t − x

dt +
2α− 1

2π

∫ 1

−1

f̂2(t)
t − x

dt + 1,

σ22

σ∞22
=−

2(1−α)
π

∫ 1

−1

b̂2(t)
t − x

dt +
2α− 1

2π

∫ 1

−1

f̂1(t)
t − x

dt + 1,

x /∈ [−1, 1], (42)

from which we arrive at the following asymptotic behavior near the crack tips:

σ12

σ∞12
=−

b̂1(1)
2πα

ln(x − 1)+ O(1),

σ22

σ∞22
=−

b̂2(1)
2πα

ln(x − 1)+ O(1),

x − 1→ 0+,

σ12

σ∞12
=

b̂1(−1)
2πα

ln|x + 1| + O(1),

σ22

σ∞22
=

b̂2(−1)
2πα

ln|x − 1| + O(1),

x − 1→ 0−.

(43)

In the above derivation, we have used the last of the conditions in (30) and (31).
Thus, the incorporation of the surface elasticity suppresses the classical strong
square-root singularity [Knowles and Sternberg 1983; Abeyaratne 1984; Ru 2002]
to the weaker logarithmic one. In addition, σ12 and σ22 are regular and distributed
on the crack faces as

(σ12)
+
=
σ∞12 S1b̂′1(x)+ σ

∞

22 f̂1(x)
2

, (σ12)
−
=
σ∞12 S1b̂′1(x)− σ

∞

22 f̂1(x)
2

,

(σ22)
+
=
σ∞22 S2b̂′2(x)− σ

∞

12 f̂2(x)
2

, (σ22)
−
=
σ∞22 S2b̂′2(x)+ σ

∞

12 f̂2(x)
2

,

(44)

where −1< x < 1.
It is seen from (30) that the functions b̂1(x), b̂2(x), f̂1(x), and f̂2(x) are de-

pendent on the two parameters S1 and S2, which are controlled by the crack size.
Consequently, our model also predicts that the induced Piola stresses depend on
the crack size. In fact, this is evident from (42) and (44). It is deduced from (28)
that, if σ0 = 0, the stresses exhibit both weak logarithmic and strong square-root
singularities at the crack tips.

6. Results and discussions

We first show in Figure 1 the two functions b̂1(x) and f̂2(x) obtained for the case
S1 = 2, S2 = 1, and α = 0.8. It is observed that both b̂1(x) and f̂2(x) are finite
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Figure 1. The two functions b̂1(x) and f̂2(x) for S1 = 2, S2 = 1,
and α = 0.8.

at x = ±1 (more precisely, b̂1(±1) = ±1.1607 and f̂2(±1) = ∓0.7736) and that
the end conditions (2α− 1)b̂1(±1)+α f̂2(±1)= 0 are indeed satisfied.

We illustrate in Figure 2 the variations of 1ŷ1 =µ1y1/(aσ∞12 )=−
∫ x
−1 b̂1(t) dt

for different values of α with S1 = 1 and S2 = 0.1. We note that, in the presence
of surface elasticity, the crack-tip opening angles lie strictly between 0 and π/2
and that 1ŷ1 is an increasing function of α. We illustrate in Figure 3 max{1ŷ1}

as functions of S2 and α with S1 = 1. From Figure 3, it is clear that max{1ŷ1}

lies between the constant value of 0.4958 for α = 1
2 and the value of 1 for S2 = 0
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Figure 2. Variations of 1ŷ1 for different values of α with S1 = 1
and S2 = 0.1.
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Figure 3. max{1ŷ1} as functions of S2 and α with S1 = 1.

and α = 1, that max{1ŷ1} ≈ 0.76 when α = 0.84 for any value of S2 (0.1< S2 <

1000), and that max{1ŷ1} is an increasing function of α but varies in a complicated
manner as S2 increases. Our numerical results also indicate that max{1ŷ1} ≤

1/S1 with equality established when S2 = 0 and α = 1. It is interesting to note
that, when S2 = 0 and α = 1, we have the exact result: 1ŷ1 = (1− x2)/S1 and
b̂1(x) = 2x/S1. This fact can be deduced quite easily from (28). In this case,
closed-form expressions of the two original analytic functions resulting from the
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Figure 4. Distribution of the stress component σ11 along the real
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∞

21 = 0.2µ, β = 1
2 , and S1 = 0.05.
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mode II loading σ∞11 6= 0, σ∞22 = 0, and σ∞12 = σ
∞

12 6= 0 can be explicitly given as

ϕ′(z)=
σ∞12

πµS1

(
−2−

z
a

ln
z− a
z+ a

)
+ i A,

ψ(z)=
(

B+
β

A

)
z−

iβz
σ∞12
πµS1

(
−2− z

a ln z−a
z+a

)
+ i A

,

(45)

where

A =−
4µβ
σ∞11

, B =
σ∞11 − 2iσ∞12

4µ
. (46)

Evidently, the assumption ensures that the real constant A is finite.
It is further deduced from (14), (15), and (45) that along the x1-axis

σ12 = σ
∞

12 , σ22 = 0, −∞< x1 <+∞,

σ+11+ iσ+21 =
σ∞11

1+ iσ∞12 σ
∞

11
4πβS1µ2

(
2+ x1

a ln
∣∣ x1−a

x1+a

∣∣− iπx1
a

) + iσ∞12 , |x1|< a,

σ−11+ iσ−21 =
σ∞11

1+ iσ∞12 σ
∞

11
4πβS1µ2

(
2+ x1

a ln
∣∣ x1−a

x1+a

∣∣+ iπx1
a

) + iσ∞12 , |x1|< a,

σ+11+ iσ+21 = σ
−

11+ iσ−21

=
σ∞11

1+ iσ∞12 σ
∞

11
4πβS1µ2

(
2+ x1

a ln
∣∣ x1−a

x1+a

∣∣) + iσ∞12 , |x1|> a,

(47)

y+2,1 = f −2,1 =
σ∞12

πµS1

(
2+

x1

a
ln
∣∣∣∣ x1− 1
x1+ a

∣∣∣∣)+ σ∞12

2µ
, −∞< x1 <+∞,

y+1,1 =−
σ∞12

aµS1
x1−

4µβ
σ∞11

, y−1,1 =
σ∞12

aµS1
x1−

4µβ
σ∞11

, |x1|< a,

y+1,1 = y−1,1 =−
4µβ
σ∞11

, |x1|> a,

(48)

which clearly indicates that y2,1 exhibits a logarithmic singularity at the crack tips
whereas y1,1 remains finite at the crack tips.

Figures 4 and 5 show the distributions of σ11 and σ21 along the real axis obtained
from (47) with σ∞11 = σ

∞

12 = σ
∞

21 = 0.2µ, β = 1
2 , and S1 = 0.05. It is seen from

Figure 4 that σ11 is finite and varies continuously along the whole real axis with
max{σ+11} = max{σ−11} = 1.5368σ∞11 and σ+11 = σ

−

11 = 0 at the crack tips and that
σ11 ≈ σ

∞

11 when |x |> 1.5. Also, from Figure 5, we see that σ21 is also finite and
again varies continuously along the whole real axis with max{σ+21} =max{σ−21} =

1.8320σ∞21 , min{σ+21}=min{σ−21}= 0.7180σ∞21 , and σ+21=σ
−

21=σ
∞

21 at the crack tips
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Figure 5. Distribution of the stress component σ21 along the real
axis with σ∞11 = σ

∞

12 = σ
∞

21 = 0.2µ, β = 1
2 , and S1 = 0.05.

and at x =±0.8336 and that σ21 outside the crack decays to its remote value much
slower than σ11. It should be stressed that the result σ+21= σ

−

21= σ
∞

21 at x =±0.8336
is independent of all the loading and material parameters since x =±0.8336 are
simply the roots of the transcendental equation 2+ x(ln|x − 1| − ln|x + 1|) = 0.
In this example, we see that all stress components are bounded at the crack tips
whereas the deformation gradients exhibit logarithmic singularity at the crack tips.

Figure 6 shows the distributions of b̂1(x) for different values of S1 with α = 1
2 .

Since b̂1(x) is an odd function of x , we demonstrate only the results for 0< x < 1.
It is clear that b̂1(x) is finite at x =±1 when S1 6= 0 and that the magnitude of b̂1(x)
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Figure 6. Distributions of b̂1(x) for different values of S1 with
α = 1

2 .
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Figure 7. The value b̂1(1) as a function of S1 with α = 1
2 .

decreases as S1 increases. From (43), we note that b̂1(±1) and b̂2(±1) can be used
to characterize the intensity of the logarithmic stress singularity at the crack tips.
Figure 7 demonstrates b̂1(1) as a monotonically decreasing function of S1 with
α = 1

2 . Also, we see that b̂1(1)→∞ as S1→ 0 and b̂1(1)→ 0 as S1→∞.

7. Conclusions

We consider the finite plane-strain deformations of a compressible hyperelastic
solid of harmonic type containing a crack whose faces incorporate surface elasticity
as described by the Gurtin–Murdoch theory. We obtain a complete solution valid
everywhere in the domain of interest (including at the crack tips) by means of
two series of coupled Cauchy singular integrodifferential equations (25) and (26).
These equations can be simplified considerably for the three cases α = 1

2 , σ0 = 0,
and λs, µs

→∞. We propose a method based on Chebyshev polynomials and a
collocation technique to solve (25) and (26) numerically. Our results indicate that
generally the stresses exhibit a weak logarithmic singularity at the crack tips when
the Gurtin–Murdoch model is incorporated. An elementary closed-form solution
is obtained in (45) for a material with σ0 = 0 and α = 1 under mode II loading. In
this special case, the stresses are found to be bounded at the crack tips.

Finally, we mention that our fundamental hypothesis that the bulk material be-
longs to a particular class of compressible hyperelastic materials of harmonic type
while maintaining the assumption that the crack surfaces are modeled as linearly
elastic materials is a first step in analyzing the contribution of the surface in this con-
text. A justification of such a theoretical framework can be found in the Appendix
and also in the continuum-based hyperelastic surface elasticity developed by Huang



382 XU WANG AND PETER SCHIAVONE

and Wang [2006]. We mention also that, if indeed we instead model the crack faces
using similar hyperelastic materials, the resulting singular integrodifferential equa-
tions become highly nonlinear and are not accommodated by any existing theories
in the literature. This makes any further analytical investigations impossible.
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Appendix

Consider a bulk B ⊂ R3 with surface/interface ∂B. The subsurface SC ⊂ ∂B is
enclosed by a simple contour C . Let n be the unit normal vector to the subsur-
face SC before deformation and v be the outward unit normal vector to C before
deformation. The force balance condition on the subsurface SC yields∫

SC

[σ · n] +
∫

C
σ s
· v = 0, (49)

where σ is the bulk Piola–Kirchhoff stress tensor of the first kind and σ s the surface
Piola–Kirchhoff stress tensor of the first kind.

By applying Green’s theorem to (49), we obtain

[σ · n] + divs σ
s
= 0, (50)

where divs σ
s denotes the surface divergence of σ s . The above can be further writ-

ten in component forms along the tangential and normal directions of the surface:

[n · σ · n] = σ s
: κ,

[ p · σ · n] = − grads σ
s,

(51)

where p= I − n⊗ n with I being the three-dimensional identity tensor, κ is the
curvature tensor of the surface, and grads σ

s is the gradient of σ s on the surface
before deformation. Equation (51) is equivalent to (7). The balance conditions
in (51) or (7) are in fact valid whether the specific constitutive equations of the
bulk and the surface are linear or nonlinear and whether the deformations are finite
or infinitesimal.

In this study, we adopt a linearized isotropic constitutive equation for the surface.
As in [Huang and Wang 2006], if the surface Cauchy stress tensor τ s is taken as

τ s
= σ0 I2+ λ

s tr(εs)I2+ 2µsεs, (52)
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with I2 being the two-dimensional identity tensor, the linearized constitutive re-
lation for the surface Piola–Kirchhoff stress tensor of the first kind can then be
written as

σ s
= σ0 I2+ (λ

s
+ σ0) tr(εs)I2+ 2(µs

− σ0)ε
s
+ σ0 grads u. (53)

If we discard the last term σ0 grads u, (53) will reduce to (8).
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