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PROPAGATION OF CHAOS AND EFFECTIVE EQUATIONS
IN KINETIC THEORY: A BRIEF SURVEY

MARIO PULVIRENTI AND SERGIO SIMONELLA

We review some historical highlights leading to the modern perspective on the
concept of chaos from the point of view of kinetic theory. We focus in particular
on the role played by the propagation of chaos in the mathematical derivation of
effective equations.

1. The paradigm of kinetic theory

Propagation of chaos is a central topic in kinetic theory and certainly exhibits in-
teresting features from the point of view of probability theory and mathematical
physics.

This contribution is dedicated to our friend and colleague Lucio Russo, who gave
and is giving important contributions to these fields and to the history of science.
The purpose is to review some important steps in the mathematical understanding
of kinetic equations and of the notion of chaos.

We do not pretend to be exhaustive and limit ourselves to a selection of argu-
ments which played a key role from a modern outlook. We also comment on some
perhaps less known historical aspects underlining the long and difficult path of the
scientific progress.

Many interesting systems in physics and applied sciences consist of a large
number of identical components so that they are difficult to analyze from a math-
ematical point of view. On the other hand, quite often, we are not interested in a
detailed description of the system but rather in its collective behavior. Therefore,
it is necessary to look for all procedures leading to simplified models, retaining
the interesting features of the original system, cutting away redundant information.
This is exactly the methodology of statistical mechanics and kinetic theory. Here
we want to outline the limiting procedure leading from the microscopic descrip-
tion of a large particle system (based on the fundamental laws like the Newton or
Schrödinger equations) to the more practical picture dictated by kinetic theory.
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Although recently the methodology of kinetic theory has been applied to a large
variety of complex systems (consisting of a huge number of individuals), we will
discuss here only models arising in physics and more precisely in classical me-
chanics. The starting point is a system of N identical particles in the space R3.
A microscopic state of the system is a sequence z1, . . . , zN where zi = (xi , vi )

denotes position and velocity of the i-th particle. The particles interact via the
(smooth) two-body interaction ϕ : R3

→ R, and the equations of motion are{
ẋi = vi ,

v̇i =−
∑

j : j 6=i ∇ϕ(xi − x j ).
(1)

Particles have unit mass, and ϕ depends on the distance |xi − x j | so that the force
of particle j acting on particle i (that is, −∇ϕ(xi − x j )) is directed along xi − x j .

We are interested in a situation where N is very large (for instance, a cubic cen-
timeter of a rarefied gas contains approximately 1019 molecules). The knowledge
of the microscopic states becomes useless, and we turn to a statistical descrip-
tion. We introduce a probability measure W N (Z N ) d Z N (absolutely continuous
with respect to the Lebesgue measure), defined on the phase space of the system
R3N
×R3N , where

Z N = (z1, . . . , zN )= (xi , vi , . . . , xN , vN ).

W N assigns the same statistical weight to two different vectors Z N and Z ′N differ-
ing only for the order of particles, i.e., identifying the same physical configuration.
Physically relevant measures are symmetric with respect to permutations of the
sequence z1, . . . , zN .

The time-evolved measure is defined by

W N (Z N , t)=W N (8−t(Z N )). (2)

Here 8t(Z N ) denotes the dynamical flow constructed by solving the equations of
motion; namely, 8t(Z N ) solves (1) with initial datum Z N .

We can establish a partial differential equation, called the Liouville equation,
describing the evolution of the measure (2). However, this equation is also not
tractable from a practical point of view. To have an efficient reduced description,
one can focus on the time evolution for the probability distribution of a given
particle (say particle 1), all the particles being identical.

To this end, we define the j-particle marginals

f N
j (Z j , t)=

∫
dz j+1 · · · dzN W N (Z j , z j+1, . . . , zN , t), j = 1, . . . , N , (3)
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and we look for an equation describing the evolution of f N
1 . Roughly, we establish

an evolution equation of the form

∂t f N
1 =−v · ∇ f N

1 + Q. (4)

The first term in the right-hand side denotes the contribution to the evolution of f N
1

due to the free transport of particles, while the term Q should describe the interac-
tion of particle 1 with the rest of the system.

We now face a big difficulty. Since the interaction is binary, Q will depend on
f N
2 , namely the two-particle marginal. In other words, (4) is still useless because

to know f N
1 we need to know f N

2 and to know f N
2 we need to know f N

3 and so on.
We handle a hierarchy of equations, called BBGKY hierarchy [Bogolyubov 1946]
(from the names of the physicists Bogolyubov, Born, Green, Kirkwood, and Yvon).

Here enters the property called propagation of chaos, that is,

f N
2 (x1, v1, x2, v2, t)= f N

1 (x1, v1, t) f N
1 (x2, v2, t). (5)

Accepting (5), Q becomes a bilinear operator of f N
1 and (4) is a closed equation.

We have thus replaced a huge ordinary differential system with a single PDE. The
price we pay is that (4) is nonlinear.

Strictly speaking, (5) is certainly false since it expresses the statistical indepen-
dence of particle 1 and particle 2, which even if assumed at time 0 cannot hold
at later times. Indeed, the dynamics creates correlations. Nevertheless, one can
hope to recover this property in some asymptotic situation described by a suitable
scaling limit. This is what happens in three different physical contexts: the mean-
field, the low-density and the weak-coupling limits, yielding three different kinetic
equations, namely the Vlasov, Boltzmann and Landau equations, respectively.

2. Mean-field limit and Vlasov equation

The simplest example in which the methods of kinetic theory apply is the mean-
field limit. Let us suppose that the particle system we are considering interacts
through a very small (possibly long-range) potential O(1/N ), where the number
of particles N is going to diverge. The equation of motion becomes{

ẋi = vi ,

v̇i =−(1/N )
∑

j : j 6=i ∇ϕ(xi − x j ).
(6)

Consider also an initial distribution W N fully factorized, i.e., W N
= f ⊗N

0 . In this
situation, the dynamics creates correlations at each positive time. However, given
two particles, say 1 and 2, the dynamics of particle 1 is influenced by the presence
of particle 2 by a factor O(1/N ). The same happens for particle 2 regarding the
influence of particle 1. Therefore, we expect that the correlations are negligible
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and in the limit N →∞

f N
2 ≈ ( f N

1 )
⊗2. (7)

We shall see that, in our context, (4) becomes

(∂t+v1 ·∇x1) f N
1 (t)=

(N − 1)
N

∫
dx2

∫
dv2 ∇ϕ(x1−x2)·∇v1 f N

2 (x1, v1, x2, v2, t)
(8)

so that, using (7) and formally taking the limit N →∞, we arrive at the following
equation for the one-particle distribution f :

(∂t + v · ∇x) f (x, v, t)=
∫

dy
∫

dw f (y, w, t)∇ϕ(x − y) · ∇v f (x, v, t). (9)

Equation (9) is called the Vlasov equation (from the name of the physicist who
introduced it) and describes a large system of weakly interacting particles.

The rigorous analysis of the mean-field limit and the Vlasov equation are a well
understood subject in the case of smooth potentials (see for instance [Dobrušin
1979]). The interesting case of the Coulomb interaction is still a challenging open
problem.

3. The Boltzmann equation

Much more subtle are the limiting physical situations leading to the Boltzmann
equation.

Ludwig Boltzmann established an evolution equation to describe the behavior
of a rarefied gas in 1872, starting from the mathematical model of elastic balls and
using mechanical and statistical considerations. The importance of this equation
is twofold. On one side, it provides (as well as the hydrodynamical equations)
a reduced description of the microscopic world. On the other, it is also an im-
portant tool for applications, especially for dilute fluids when the hydrodynamical
equations fail to hold.

According to the general paradigm of kinetic theory, the starting point of Boltz-
mann’s analysis is to renounce the study of gas in terms of the detailed motion of
the molecules of the full system. It is preferable to investigate a function f (x, v)
which is the probability density of a given particle, where x and v denote its position
and velocity.

Following the original approach proposed by Boltzmann, f (x, v) dx dv is to
rather be interpreted as the fraction of molecules falling in the cell of the phase
space of size dx dv around (x, v). The two concepts are not exactly the same, but
they are asymptotically equivalent (when the number of particles diverges) if a law
of large numbers holds.
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More precisely, Boltzmann considered the occupation numbers of the cells of
a grid in the phase space, when the side of the cell is macroscopically small but
sufficiently large to contain a huge number of particles. From a historical point of
view, Boltzmann’s analysis was really remarkable. Probability theory was not well
developed from a mathematical point of view, and even the possibility of describing
the macroscopic world in terms of atoms and molecules was still doubtful.

Boltzmann considered a gas as microscopically described by a system of elastic
(hard) balls, colliding according to the laws of classical mechanics.

The Boltzmann equation for the one-particle distribution function reads

(∂t + v · ∇x) f = Q( f, f ) (10)

where Q, the collision operator, is defined by

Q( f, f )(x, v)=
∫

R3
dv1

∫
S2
+

dn (v− v1) · n [ f (x, v′) f (x, v′1)− f (x, v) f (x, v1)],

(11)
with

v′ = v− n[n · (v− v1)],

v′1 = v1+ n[n · (v− v1)]
(12)

and n a unitary vector varying in S2
+
= {n : n · (v− v1)≥ 0}.

Note that v′ and v′1 are the outgoing velocities after a collision of two elastic balls
with incoming velocities v and v1 and centers x and x + εn, with ε the diameter of
the spheres. Clearly the collision takes place if n · (v− v1) > 0. Formulas (12) are
consequences of the conservation of energy and momentum. Note that ε does not
enter (10) as a parameter.

As a fundamental feature of (10), one has the formal conservation (in time) of
the five quantities ∫

dx
∫

dv f (x, v; t)vα (13)

with α = 0, 1, 2, expressing conservation of probability, momentum and energy,
respectively. From now on, we shall set

∫
=
∫

R3 for notational simplicity.
Moreover, Boltzmann introduced the (kinetic) entropy defined by

H( f )=
∫

dx
∫

dv f log f (x, v) (14)

and proved the famous H theorem asserting the decrease of H( f (t)) along the
solutions of (10).

Finally, in the case of bounded domains or homogeneous solutions ( f = f (v, t)
is independent of x), the distribution defined for some β > 0, ρ > 0 and u ∈ R3 by

M(v)=
ρ

(2π/β)3/2
e−(β/2)|v−u|2, (15)
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called the Maxwellian distribution, is stationary for the evolution given by (10). In
addition, M minimizes H among all distributions with given total mass ρ, mean
velocity u and mean energy. The parameter β is interpreted as the inverse temper-
ature.

In conclusion, Boltzmann was able to introduce an evolution equation with the
remarkable properties of expressing mass, momentum and energy conservation
and also the tendency to thermal equilibrium. In other words, he tried to conciliate
Newton’s laws with the second principle of thermodynamics.

The H theorem is in contrast with the laws of mechanics, which are time-
reversible. This fact caused skepticism among the scientific community, and the
work of Boltzmann was attacked by several scientists. We refer the reader to the
beautiful monograph by C. Cercignani [1998], which is a marvelous compromise
between historical and high-level scientific divulgation, to have a faithful idea of
the debate at the time.

To formally derive (10), let us consider a system of N identical hard spheres of
diameter ε and unitary mass, interacting by means of the collision law (12). We
denote by ε the diameter of the particles in view of the fact that ε is very small
compared with typical macroscopic lengths.

The phase space 0N of the system is the subset of (R6)N satisfying the hard-core
condition, namely

|xi − x j | ≥ ε for i 6= j .

The dynamical flow is defined as the free flow, i.e.,

Z N (t)= (x1+ v1t, v1, . . . , xN + vN t, vN )

up to the first impact time, namely when |xi − x j | = ε. Then an instantaneous
collision takes place according to the law (12), and the flow goes on up to the next
collision instant.

We denote by Z N →8t(Z N ) the dynamical flow constructed in this way. The
well-posedness of the hard-sphere dynamics is not obvious, due to the occurrence
of multiple collisions or to the a priori possibility that collision times accumulate
at a finite limiting time. However, such pathologies cannot occur outside a set of
initial conditions Z N of vanishing measure. Therefore, the flow Z N → 8t(Z N )

can be defined almost everywhere with respect to the Lebesgue measure, and this
is enough for our purposes.

Given a probability measure with density W ε
0 on 0N , thanks to the invariance

of the Lebesgue measure under the above evolution, we define the time-evolved
measure as the measure with density

W ε(Z N , t)=W ε
0 (8

−t Z N ). (16)
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We recall that we consider probability distributions W ε
0 which are initially (and

hence at any positive time) symmetric in the exchange of the particles. The proba-
bility density of the first j particles is given by the j-particle marginal

f εj (Z j , t)=
∫

dz j+1 · · · dzN W ε(Z j , z j+1, . . . , zN , t), j = 1, . . . , N . (17)

Notational remark. Up to now, the two parameters N and ε have been introduced
independently, and the definitions 0N , Z N , W ε, f εj , etc., should exhibit a double
dependence. However, in a moment, we shall fix a precise dependence ε = ε(N )
so that the notation is unambiguous.

Cercignani [1972] derived a hierarchy of equations for the marginals, and the
first of such equations, for the one-particle distribution, is

(∂t + v · ∇x) f ε1 = Coll, (18)

where Coll denotes the variation of f due to the collisions. It takes the form

Coll= (N − 1)ε2
∫

dv2

∫
S2

dn f ε2 (x, v, x + nε, v2)(v2− v) · n. (19)

Let us argue the physical significance of (19) and (18). In absence of collisions,
the probability density of a given particle would be conserved, that is,

d
dt

f ε(x + vt, v, t)= 0.

The presence of collisions and the total conservation of the probability imply that

d
dt

f ε(x + vt, v, t)= flux,

where the flux is computed on the boundary of the spherical surface of the ball of
radius ε around x . Therefore, the probability flux due to a collision with a given
particle, say particle 2, having velocity v2, is given by

−ε2
∫

S2
f ε2 (x, v, x + nε, v2)V · n

where V = v2 − v is the relative velocity and −n is the inward normal to the
considered surface.

Integrating with respect to dv2 and summing over all the possible choices of
particles, we arrive to (18) and (19).

This is, basically, Boltzmann’s original argument, except for an important con-
ceptual difference. The basic object of investigation considered by Boltzmann is
not the probability density f but rather the quantity

f ε(x, v, t)≈
N1(t)
|1|N
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where 1 is a small cell on the phase space around the point (x, v), |1| is its volume
and N1(t) is the occupation number of the cell 1 (number of particles falling in 1)
at time t . Clearly, 1 must be small compared with the macroscopic lengths, e.g.,
the size of the box in which the gas is confined, but large with respect to the typical
microscopic lengths, for instance ε (molecular diameter).

The two concepts introduced are not exactly the same, but in view of a limit
N →∞, it is possible to conceive a law of large numbers allowing one to identify
the empirical sample with the a priori probability.

Next we shall tackle the problem of getting a closed equation. Apparently, we
are in a situation analogous to the one discussed for the Vlasov equation, but there
is a deep difference. Indeed for the hard-sphere system, one can write a hierarchy
of equations which plays the role of the BBGKY hierarchy for smooth potentials.
However, the interaction among the particles is strong and the mean-field argument
used to invoke the propagation of chaos fails.

Boltzmann’s most important assumption enters here, namely that two given par-
ticles should be (almost) uncorrelated if the gas is rarefied enough. This leads to
the propagation of chaos

f ε2 (x, v, x2, v2)= f ε(x, v) f ε(x2, v2), (20)

which is however much more delicate in the present context. In fact, if two particles
collide, correlations are created. Even assuming (20) at some time, if particle 1
collides with particle 2, such an equation cannot be satisfied at any time after the
collision.

Before discussing the propagation of chaos further, we notice that, in practical
situations, for a rarefied gas, the combination Nε3

≈ 10−8 cm3 (total volume oc-
cupied by the particles) is very small, while Nε2

= O(1). This implies that the
collision operator given by (19) is O(1). Therefore, since we are dealing with a
huge number of particles, we are tempted to perform the limit N →∞ and ε→ 0
in such a way that ε2

= O(N−1). As a consequence, the probability that two tagged
particles collide (which is of the order of the surface of a ball, that is, O(ε2)) is
negligible. Instead, the probability that a given particle collides with any of the
remaining N − 1 particles (O(Nε2)= O(1)) is not negligible. On the other hand,
condition (20) refers to two preselected particles (say 1 and 2) and it is not unrea-
sonable to conceive that it holds in the limiting situation in which we are working.

Nevertheless, we cannot insert (20) into (19) because the integral operator refers
to times both before and after the collision. Let us assume (20) only when the pair
of velocities v and v2 are incoming ((v−v2) ·n> 0). If the two particles are initially
uncorrelated, it is unlikely that they have collided before a given time t so that we
assume their statistical independence.
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This is a standard argument in textbooks of kinetic theory, but some extra com-
ments are needed. If particles 1 and 2 have not collided directly before a given
time t , this does not imply that they are uncorrelated. Indeed there may exist a
chain of collisions involving a group i1, i2, . . . of particles

1→ i1→ i2→ · · · → 2,

correlating particles 1 and 2. The occurrence of this event must be excluded by a
rigorous mathematical analysis.

Coming back to (19), for the outgoing pair of velocities v and v2 ((v2−v)·n> 0),
we make use of the continuity property

f ε2 (x, v, x + nε, v2)= f ε2 (x, v
′, x + nε, v′2) (21)

where the pair v′ and v′2 is precollisional. On the two-particle distribution expressed
in terms of precollisional variables, we apply condition (20), obtaining

Coll= (N − 1)ε2
∫

dv2

∫
S2
+

dn (v− v2) · n

×[ f (x, v′) f (x − nε, v′2)− f (x, v) f (x + nε, v2)] (22)

after a change n→−n in the positive part of Coll, using the notation S2
+

for the
hemisphere S2

+
= {n : n · (v− v2)≥ 0}.

Finally, in the limit as N →∞ and ε→ 0 with Nε2
= λ−1, we find

(∂t+v ·∇x) f =λ−1
∫

dv2

∫
S+

dn (v−v2)·n [ f (x, v′) f (x, v′2)− f (x, v) f (x, v2)].

(23)
The parameter λ represents, roughly, the typical length a particle can cover without
undergoing any collision (mean free path). (In (10), we just chose λ= 1.)

Remark. After having taken the limit N →∞ and ε → 0, there is no way to
distinguish between incoming and outgoing pair velocities because no trace of
the parameter ε is left in (23) and n plays the role of a random parameter. How-
ever, keeping in mind the way we derived the Boltzmann equation, we shall con-
ventionally maintain the name “incoming” for velocities satisfying the condition
(v− v2) · n ≥ 0 and consequently the pair v′ and v′2 is outgoing in (23).

Equation (23) (or equivalently (10)–(11)) is the Boltzmann equation for hard
spheres. Such an equation has a statistical nature, and it is not equivalent to the
Hamiltonian dynamics from which it has been derived. Indeed the H theorem
shows that it is not reversible in time in contrast with the laws of mechanics. We
note, incidentally, that this is not the case for the Vlasov equation, which inherits
all the properties of the Hamiltonian systems.
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By the analysis on the order of magnitude of the quantities in the game, we
deduced that the Boltzmann equation works in special situations only. The con-
dition Nε2

= O(1) means that we consider a rarefied gas, with almost vanishing
volume density. After Boltzmann established the equation, Harold Grad [1949;
1958] postulated its validity in the limit N →∞ and ε→ 0 with Nε2

→ const. as
discussed above (this is often called, indeed, the Boltzmann–Grad limit).

There is no contradiction in the irreversibility or in the trend to equilibrium
obtained after the limit, when they are strictly speaking false for mechanical sys-
tems. However, the arguments above are delicate and require a rigorous, deeper
analysis. If the Boltzmann equation is not a purely phenomenological model de-
rived by assumptions ad hoc and justified by its practical relevance, but rather a
consequence of a mechanical model, we should derive it rigorously. In particular,
the propagation of chaos should not be a hypothesis but the statement of a theorem.

After the formulation of the mathematical problem by Grad, Cercignani [1972]
obtained the evolution equation (hierarchy) for the marginals of a hard-sphere sys-
tem, and this was the starting point to rigorously derive the Boltzmann equation,
as accomplished by Lanford [1975] in his famous paper, even though only for a
short time interval.

Lanford’s theorem is probably the most relevant result regarding the mathemati-
cal foundations of the kinetic theory. In fact, it dispelled the many previous doubts
on the validity of the Boltzmann equation (although some authors refuse a priori
the problem of deriving the equation starting from mechanical systems [Truesdell
and Muncaster 1980]).

Unfortunately, the short-time limitation is serious. Only for special systems, as
the case of a very rarefied gas expanding in a vacuum, can we obtain a global
validity result [Illner and Pulvirenti 1986; 1989]. The possibility of deriving the
Boltzmann equation globally in time, at least in cases when we have a good global
existence of solutions, is still an open and challenging problem.

We conclude this section with some historical remarks.
Before Boltzmann, Maxwell proposed a kinetic equation that is nothing other

than the Boltzmann equation integrated against test functions [Maxwell 1867; 1995].
He considered also more general potentials, in particular inverse-power-law poten-
tials, essentially for the special properties of their cross-sections.

After Lanford’s result, the case of smooth short-range potentials has been studied
by other authors [King 1975; Gallagher et al. 2014; Pulvirenti et al. 2014], but the
validity (or nonvalidity) of the Boltzmann equation in the case of genuine long-
range potentials is open.

A rigorous derivation of the hierarchy of equations for hard spheres formally
established by Cercignani is obtained in [Spohn 1991; Cercignani et al. 1994; Si-
monella 2014].
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4. The weak-coupling limit and the Landau equation

The Boltzmann equation is suited to the description of rarefied gases, and one can
ask whether a useful kinetic analysis can be applied also to the case of a dense
gas. To introduce the problem, let us revisit first the Boltzmann–Grad limit in
an alternative way. Let ε be a small scale parameter denoting the ratio between
the microscopic and macroscopic scales, for instance the inverse number of atomic
diameters necessary to cover 1 meter or the inverse number of atomic characteristic
times necessary to cover 1 second. Then scale space and time by ε in the equations
of motion (in our case, the hard-sphere hierarchy). We need to specify the number
of particles N . In a box of side 1, there should be N ≈ ε−3 particles if one assumes
that the intermolecular distance is of the same order as the molecular diameter. The
number of collisions of a given particle per macroscopic unit time would be ε−1.
As we have seen, in a low-density regime, N scales differently, namely N ≈ ε−2,
the number of collisions per unit time is finite and the one-particle distribution
function satisfies the Boltzmann equation.

A variety of possible scalings describes different physical situations. For in-
stance, the gas may be dense, N = O(ε−3) and the particles weakly interacting
via a smooth two-body potential ϕ. To express the weakness of the interaction,
we assume that ϕ is rescaled by

√
ε. Since ϕ varies on a scale ε (in macroscopic

units), the force will be O(1/
√
ε) and act on a time interval O(ε). The variation of

momentum due to the single scattering is O(
√
ε), and the number of particles met

by a typical particle is O(1/ε). Hence, the total momentum variation for unit time
is O(1/

√
ε). However, in the case of a homogeneous gas and symmetric forces, this

variation should be zero in the average. The computation of the variance leads to a
result (1/ε)O(

√
ε)2 = O(1). Therefore, based on a central-limit type of argument,

we expect that in the kinetic limit a diffusion equation in the velocity variable holds.
Moreover, even though the force induced by a given particle on a test particle is
O(1/
√
ε) (i.e., not small as in the mean-field limit), the fact that it produces a small

variation on the momentum should be sufficient to ensure propagation of chaos.
At the level of the kinetic equation (that is, assuming propagation of chaos),

consider a model of collision with an operator of the form

Q( f, f )=
∫

dv1

∫
dpw(p)δ(p2

+ (v− v1) · p)[ f ′ f ′1− f f1] (24)

where

f ′ = f (v+ p), f ′1 = f (v1− p).

Here p is the transferred momentum in the collision, and w is the probability den-
sity of having p as an effect of the collision. The δ expresses energy conservation.
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To express the fact that the transferred momentum is small, let us rescale w
as (1/ε3)w(p/ε) (so that the transferred momenta are O(ε)). In addition, let us
rescale the inverse mean-free path by a factor 1/ε to take into account the high
density of particles. The collision operator becomes

Qε( f, f )=
1
ε4

∫
dv1

∫
dpw

( p
ε

)
δ(p2
+ (v− v1) · p)[ f ′ f ′1− f f1]

=
1

2πε2

∫
dv1

∫
dpw(p)

∫
+∞

−∞

ds eis(p2ε+(v−v1)·p)

×[ f (v+ εp) f (v1− εp)− f (v) f (v1)]

=
1

2πε

∫
dv1

∫
dpw(p)

∫ 1

0
dλ
∫
+∞

−∞

ds eis(p2ε+(v−v1)·p)

× p · (∇v −∇v1) f (v+ ελp) f (v1− ελp). (25)

Here the smooth function w, which modulates the collision, is assumed to depend
on p through its modulus only. Note that we used a change of variables p/ε→ p
and the representation formula in R1

δ(x)=
1

2πε

∫
+∞

−∞

ds eisx/ε.

To outline the behavior of Qε( f, f ) in the limit ε → 0, we introduce a test
function u for which, after a change of variables (here ( · , · ) denotes the scalar
product in L2(dv)),

(u, Qε( f, f ))=
1

2πε

∫
dv
∫

dv1

∫
dpw(p)

∫ 1

0
dλ
∫
+∞

−∞

ds

× eis(p2(ε−2ελ)+(v−v1)·p)u(v− ελp)p · (∇v −∇v1) f f1

=
1

2πε

∫
dv
∫

dv1

∫
dpw(p)

∫ 1

0
dλ
∫
+∞

−∞

ds

× eis(v−v1)·p[u(v)− ελp · ∇vu(v)]p · (∇v −∇v1) f f1

+
1

2π

∫
dv
∫

dv1

∫
dpw(p)

∫
+∞

−∞

ds eis(v−v1)·pu(v)

× isp2
∫ 1

0
dλ (1− 2λ)p · (∇v −∇v1) f f1+ O(ε). (26)

Note now that the term O(ε−1) vanishes because of the symmetry p→−p (w is
even). The last term also vanishes since the integral in dλ is zero. As a result,

(u, Qε( f, f ))=−
1

4π

∫
dv
∫

dv1

∫
dpw(p)

∫
+∞

−∞

ds eis(v−v1)·p

× p · ∇vup · (∇v −∇v1) f f1+ O(ε). (27)
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Therefore, we have recovered (formally) the kinetic equation

(∂t + v · ∇x) f = QL( f, f ) (28)

with a new collision operator

QL( f, f )=
∫

dv1 ∇va(∇v −∇v1) f f1, (29)

where a = a(v− v1) denotes the matrix

ai, j (V )=
1
2

∫
dpw(p)δ(V · p)pi p j . (30)

This matrix can be handled in a better way by introducing polar coordinates:

ai, j (V )=
1

2|V |

∫
dp |p|w(p)δ(V̂ · p̂) p̂i p̂ j

=
B
|V |

∫
d p̂ δ(V̂ · p̂) p̂i p̂ j , (31)

where V̂ and p̂ are the versors of V and p, respectively, and

B =
1
2

∫
+∞

0
dr r3w(r). (32)

Note that B is the only parameter describing the interaction appearing in the equa-
tion. Finally a straightforward computation yields

ai, j (V )=
B
|V |

(δi, j − V̂i V̂ j ). (33)

The collision operator QL was introduced by Landau in 1936 [Landau 1965;
Lifshitz and Pitaevskiı̆ 1981] for the study of a weakly interacting dense plasma,
and (28) is called the Landau equation (sometimes Landau–Fokker–Planck).

The qualitative properties of the solutions to the Landau equation are the same
as for the Boltzmann equation regarding the basic conservation laws and the H
theorem.

Following the paradigm of kinetic theory, we would like to derive the Landau
equation from particle systems. A rigorous proof is however missing, even for
short time intervals. We refer to [Boblylev et al. 2013] for a partial result.

5. Some historical remarks

The first attempt to implement the program of kinetic theory was due to Boltzmann,
who derived his celebrated equation for rarefied gases in 1872 [Boltzmann 1964].
This followed some previous work of Maxwell. He wrote a system of equations
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in 1867 for the moments of the velocity distribution in order to justify the equilib-
rium measure which inherits his name [Maxwell 1867; 1995].

Boltzmann’s work was attacked by several physicists and mathematicians due to
the apparent basic contradiction between the H theorem and the reversible nature
of Newton’s equations. In particular, the Poincaré recurrence theorem seemed to
be in contrast with convergence toward an equilibrium state. Boltzmann replied to
the criticisms asserting that the equation has a statistical meaning. Of course, he
did not have at his disposal the mathematical tools suitable to make this statement
more precise. We do not further discuss this interesting aspect and refer the reader
to [Cercignani 1998].

In spite of the success of the Boltzmann equation in solving practical problems
concerning rarefied gases, the issue of a rigorous justification of the equation re-
mained open for a long time.

As already mentioned, a significant step forward was taken by Grad [1949;
1958], who figured out the scaling limit in which the equation is expected to hold, in
the framework of classical mechanics. A second important contribution along the
lines of Grad’s approach was then made by Cercignani [1972], who established the
hierarchy for the hard-sphere system whose first equation was written in Section 3.
His analysis was formal, but it opened the way for Lanford’s [1975] rigorous result
on the short time validity of the Boltzmann equation.

Lanford’s result solved the problem of conciliating the Boltzmann equation with
the laws of classical mechanics.

On the other hand, even in recent times, the Boltzmann equation has often been
considered a useful and successful tool of investigation and not necessarily as a
direct consequence of the principles of mechanics. This is, for instance, the position
of Truesdell and Muncaster [1980] in their famous monograph:

“We will make no attempt to trace the source of this irreversibility in
more general theories or physico-philosophical speculations. Rather, in
the spirit of rational mechanics, we shall attempt to determine its specific
and rigorous mathematical nature and consequences.”

Another attitude was the one of the great probabilist Kac [1956; 1959], who con-
ceived the stochastic dynamics for an N -particle system yielding rigorously, in the
limit N →∞, the homogeneous Boltzmann equation. His work is contemporary
with the one of Grad; however, the point of view is very different. A footnote in
[Kac 1956] reads,

“This formulation led to the well-known paradoxes which were fully dis-
cussed in the classical article of P. and T. Ehrenfest. These writers made
it clear
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(a) that the ‘Stosszahlansatz’ cannot be strictly derivable from purely
dynamic considerations and

(b) that the ‘Stosszahlansatz’ has to be interpreted probabilistically.
The recent attempts of Born and Green, Kirkwood and Bogoliubov to de-
rive Boltzmann’s equation from Liouville’s equation and hence to justify
the ‘Stosszahlansatz’ dynamically are, in our opinion, incomplete, inas-
much as they do not make it clear at what point statistical assumptions
are introduced.

“The ‘master equation’ approach which we have chosen seems to us
to follow closely the intentions of Boltzmann.”

The works quoted after point (b) were the first to attempt a justification of kinetic
equations based on a hierarchical technique, and the “Stosszahlansatz” is the prop-
erty of propagation of chaos necessary to close the hierarchy (we refer in particular
to [Bogolyubov 1946] for a pioneering analysis including the three classical kinetic
equations).

Therefore, Kac’s purpose is not just to provide a toy model as it is intended to
be strongly related to the physics. A further quotation from the same paper is,

“Since the master equation is truly descriptive of the physical situation,
and since existence and uniqueness of the solution of the master equation
are almost trivial, the preoccupation with existence and uniqueness theo-
rems for the Boltzmann equation appears to be unjustified on grounds of
physical interest and importance.”

An important point is that Kac’s model is restricted to homogeneous situations
(no dependence on positions). Interestingly enough, in the completely different
context of numerical simulations of rarefied gases, Bird [1976] constructed the
successful scheme known as DSMC (direct-simulation Monte Carlo), which splits
the dynamics of a particle system into two parts: free motion and a stochastic
interaction closely related to the one of Kac. In other words (without knowing
Kac’s work), Bird was providing an inhomogeneous stochastic model approximat-
ing the Boltzmann equation (see also [Cercignani et al. 1994] and references quoted
therein).

Kac was greatly influenced by the famous treatise of Paul and Tatjana Ehrenfest
[1959], where the conceptual bases of statistical mechanics are discussed. Here
the authors try to explain the nature of the Boltzmann equation and the emergence
of irreversibility with the aid of simple examples.

We note, incidentally, that in [Ehrenfest and Ehrenfest 1959] a model is intro-
duced (often called the wind-tree model) in which a light (point) particle collides
with a random distribution of square obstacles in the whole plane, in such a way
that only four velocities are possible. The set of velocities is V={±e1,±e2}, where
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ei , i = 1, 2, are the versor of the coordinate axes in the plane. An elastic collision
of the light particle with an obstacle with sides oriented at π/4 is a rotation of the
incoming velocity by ±π/2. The corresponding kinetic equation is linear and has
the form

(∂t + v · ∇x) f = 1
2( f (v⊥)+ f (−v⊥))− f (v)

where V 3 v→ v⊥ is the rotation of π/2.
For the more realistic “Lorentz model” with circular obstacles and velocity

set S1, a rigorous derivation of the linear Boltzmann equation was obtained by
Gallavotti [1999] in a remarkable paper. His approach applies as well to the Ehren-
fest wind-tree model.

We also mention a nonlinear version of the wind-tree model, namely the Broad-
well model with kinetic equation

(∂t + v · ∇x) f = ( f (v⊥) f (−v⊥)− f (v) f (−v)).

Surprisingly, this equation cannot be derived from the mechanical system of col-
liding square particles in the plane in the Boltzmann–Grad limit [Uchiyama 1988;
Cercignani et al. 1994]. This counterexample shows how delicate a rigorous study
of the low-density limit of deterministic systems can be.

As mentioned in Section 4, Landau proposed his kinetic equation for dense
gases and plasmas in 1936. He started by assuming the Boltzmann equation with
Coulomb cross-section, cutting divergences at short and at long distances. His
argument is similar to the one presented here in Section 4, and the problem of the
propagation of chaos is pragmatically avoided.

Bogolyubov [1946] works instead with the BBGKY hierarchy and asserts that
it would be necessary to obtain the Landau equation starting from particle systems
under a suitable scaling limit instead of starting from the Boltzmann equation di-
rectly. His discussion amounts to what is nowadays called the “weak-coupling
limit” for the Landau equation (see also [Balescu 1975]) and includes an attempt
to outline the various regimes in which the kinetic equations are expected to be
valid, starting again from the hierarchy.

The Vlasov equation was introduced first in 1938 [Vlasov 1967] to study the time
evolution of the distribution function of plasmas consisting of charged particles and
long-range forces (for example, Coulomb) in contrast with the Landau equation,
which is suited for particles interacting weakly via short-range forces. Actually
both equations are needed to retain different aspects of the complicated dynamics
of plasmas.

We shall conclude by recalling the famous speech by Hilbert [1902] at the In-
ternational Congress of Mathematicians in Paris in 1900, where he posed twenty-
three problems as the basis of mathematical research in the forthcoming century.
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Among these, the sixth is perhaps a less definite problem but rather a broad field
of investigation and a prophecy of the modern role of mathematics in physics. It
is titled “Mathematical of the Axioms of Physics” and reads,

“The investigations on the foundation of geometry suggest [. . . ] to treat in
the same manner, by means of axioms, those physical sciences in which
mathematics play an important part; in the first rank are the theory of
probabilities and mechanics.

“As to the axioms of the theory of probabilities, it seems to me desir-
able that their logical investigation should be accompanied by a rigorous
and satisfactory development of the method of mean values in mathemat-
ical physics, and in particular in the kinetic theory of gases.

“Important investigations by physicists on the foundations of mechan-
ics are at hand [. . . ]. Thus Boltzmann’s work on the principles of me-
chanics suggests the problem of developing mathematically the limiting
processes, there merely indicated, which lead from the atomistic view to
the laws of the motion of continua.”

The necessity of a rigorous approach to the scaling limits starting from funda-
mental particle models is clearly expressed. Moreover, the role of mathematics in
investigating how different mathematical models of reality are connected is out-
lined:

“[. . . ] Further, the mathematician has the duty to test exactly in each
instance whether the new axioms are compatible with the previous ones.
The physicist, as his theories develop, often finds himself forced by the
results of the experiments to make new hypotheses, while he depends,
with respect to the compatibility of the new hypotheses with the old ax-
ioms, solely upon these experiments or upon certain physical intuition,
a practice which in the rigorously logical building up of a theory is not
admissible.”

Clarifying the scopes and methodologies of a physicist and a mathematician
establishes the role of modern mathematical physics, in which the concept of a
mathematical model, as a noncontradictory system of axioms, is fundamental.

The sixth problem of Hilbert can nowadays be further specified; namely there
are at least three kinds of convergence which can be analyzed: (1) derive the Boltz-
mann equation from particle systems, (2) derive the Euler and/or Navier–Stokes
equations from the Boltzmann equation and (3) derive the Euler and/or Navier–
Stokes equations from particle systems.

We have remarkable progress regarding points (1) and (2). The first point has
been discussed in this note. Regarding point (2), Hilbert [1912] himself introduced
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an expansion which is the basic tool for deriving the Euler equation for compress-
ible fluids, in a suitable scaling limit, starting from the Boltzmann equation. Many
rigorous results deriving hydrodynamic laws from the Boltzmann equation have
been obtained over recent years. We underline that the hydrodynamic laws are the
ones of a perfect gas since we start from a low-density regime. A more challenging
problem is the derivation of the Euler equation from particle systems (point (3)).
The laws relating density, pressure and temperature are not those of a perfect gas,
but they may be computed through the Gibbs state associated with the interacting
potential of the system. Such a difficult problem is unsolved on the mathematical
side. We mention only the formal computations of the pioneering work by Morrey
[1955]. Here the author gives a list of necessary steps to prove that the Euler
equation can be obtained from the Newton laws. It is a notable work, having the
merit of showing in a logically clear way what the link between the microscopic
and macroscopic descriptions of fluids is. See [Esposito and Pulvirenti 2004] for
a review of the argument.

Acknowledgment

We thank Thierry Paul for fruitful discussions.

References

[Balescu 1975] R. Balescu, Equilibrium and nonequilibrium statistical mechanics, Wiley-Interscience,
New York, 1975.

[Bird 1976] G. A. Bird, Molecular gas dynamics, Clarendon, Oxford, 1976.

[Boblylev et al. 2013] A. V. Boblylev, M. Pulvirenti, and C. Saffirio, “From particle systems to the
Landau equation: a consistency result”, Comm. Math. Phys. 319:3 (2013), 683–702.

[Bogolyubov 1946] N. N. Bogolyubov, Problems of a dynamical theory in statistical physics, Gostek-
hisdat, Moscow, 1946. In Russian; translated in Studies in statistical mechanics, I, edited by J. de
Boer and G. E. Uhlenbeck, North-Holland, Amsterdam, 1962.

[Boltzmann 1964] L. Boltzmann, Lectures on gas theory, University of California, Berkeley, CA,
1964.

[Cercignani 1972] C. Cercignani, “On the Boltzmann equation for rigid spheres”, Transport Theory
Statist. Phys. 2:3 (1972), 211–225.

[Cercignani 1998] C. Cercignani, Ludwig Boltzmann: the man who trusted atoms, Oxford Univer-
sity, 1998.

[Cercignani et al. 1994] C. Cercignani, R. Illner, and M. Pulvirenti, The mathematical theory of
dilute gases, Applied Mathematical Sciences 106, Springer, New York, 1994.

[Dobrušin 1979] R. L. Dobrušin, “Vlasov equations”, Funktsional. Anal. i Prilozhen. 13:2 (1979),
48–58. In Russian; translated in Funct. Anal. Appl. 13:2 (1979), 115–123.

[Ehrenfest and Ehrenfest 1959] P. Ehrenfest and T. Ehrenfest, The conceptual foundations of the
statistical approach in mechanics, Cornell University, Ithaca, NY, 1959.

http://dx.doi.org/10.1007/s00220-012-1633-6
http://dx.doi.org/10.1007/s00220-012-1633-6
http://dx.doi.org/10.1080/00411457208232538
http://dx.doi.org/10.1007/978-1-4419-8524-8
http://dx.doi.org/10.1007/978-1-4419-8524-8
http://mi.mathnet.ru/eng/faa/v13/i2/p48
http://dx.doi.org/10.1007/BF01077243


PROPAGATION OF CHAOS AND EFFECTIVE EQUATIONS IN KINETIC THEORY 273

[Esposito and Pulvirenti 2004] R. Esposito and M. Pulvirenti, “From particles to fluids”, pp. 1–82
in Handbook of mathematical fluid dynamics, vol. III, edited by S. Friedlander and D. Serre, North-
Holland, Amsterdam, 2004.

[Gallagher et al. 2014] I. Gallagher, L. Saint-Raymond, and B. Texier, From Newton to Boltzmann:
hard spheres and short-range potentials, Zurich Lectures in Advanced Mathematics 18, European
Mathematical Society, Zürich, 2014.

[Gallavotti 1999] G. Gallavotti, “Grad–Boltzmann limit and Lorentz’s gas”, Appendix 1.A2, pp.
48–55 in Statistical mechanics: a short treatise, Springer, Berlin, 1999.

[Grad 1949] H. Grad, “On the kinetic theory of rarefied gases”, Comm. Pure Appl. Math. 2:4 (1949),
331–407.

[Grad 1958] H. Grad, “Principles of the kinetic theory of gases”, pp. 205–294 in Handbuch der
Physik, Band XII: Thermodynamik der Gase, edited by S. Flügge, Springer, Berlin, 1958.

[Hilbert 1902] D. Hilbert, “Mathematical problems”, Bull. Amer. Math. Soc. 8:10 (1902), 437–479.

[Hilbert 1912] D. Hilbert, “Begründung der kinetischen Gastheorie”, Math. Ann. 72:4 (1912), 562–
577.

[Illner and Pulvirenti 1986] R. Illner and M. Pulvirenti, “Global validity of the Boltzmann equation
for a two-dimensional rare gas in vacuum”, Comm. Math. Phys. 105:2 (1986), 189–203.

[Illner and Pulvirenti 1989] R. Illner and M. Pulvirenti, “Global validity of the Boltzmann equation
for two- and three-dimensional rare gas in vacuum: erratum and improved result”, Comm. Math.
Phys. 121:1 (1989), 143–146.

[Kac 1956] M. Kac, “Foundations of kinetic theory”, pp. 171–197 in Proceedings of the Third
Berkeley Symposium on Mathematical Statistics and Probability (Berkeley, CA, 1954–1955), vol.
III, edited by J. Neyman, University of California, Berkeley, CA, 1956.

[Kac 1959] M. Kac, Probability and related topics in physical sciences: proceedings of the summer
seminar (Boulder, CO, 1957), Lectures in Applied Mathematics 1, Interscience, London, 1959.

[King 1975] F. G. King, BBGKY hierarchy for positive potentials, Ph.D. thesis, University of Cali-
fornia, Berkeley, 1975, Available at http://search.proquest.com/docview/302766232.

[Landau 1965] L. D. Landau, “The transport equation in the case of Coulomb interactions”, Chap-
ter 24, pp. 163–170 in Collected papers of L. D. Landau, edited by D. ter Haar, Pergamon, Oxford,
1965.

[Lanford 1975] O. E. Lanford, III, “Time evolution of large classical systems”, pp. 1–111 in Dynam-
ical systems, theory and applications (Seattle, 1974), edited by J. Moser, Lecture Notes in Physics
38, Springer, Berlin, 1975.

[Lifshitz and Pitaevskiı̆ 1981] E. M. Lifshitz and L. P. Pitaevskiı̆, Course of theoretical physics, vol.
10: Physical kinetics, edited by L. D. Landau and E. M. Lifshitz, Pergamon, Oxford, 1981.

[Maxwell 1867] J. C. Maxwell, “On the dynamical theory of gases”, Philos. Trans. Roy. Soc. London
157 (1867), 49–88.

[Maxwell 1995] J. C. Maxwell, The scientific letters and papers of James Clerk Maxwell, vol. II:
1862–1873, edited by P. M. Harman, Cambridge University, 1995.

[Morrey 1955] C. B. Morrey, Jr., “On the derivation of the equations of hydrodynamics from statis-
tical mechanics”, Comm. Pure Appl. Math. 8:2 (1955), 279–326.

[Pulvirenti et al. 2014] M. Pulvirenti, C. Saffirio, and S. Simonella, “On the validity of the Boltz-
mann equation for short range potentials”, Rev. Math. Phys. 26:2 (2014), 1450001.

[Simonella 2014] S. Simonella, “Evolution of correlation functions in the hard sphere dynamics”, J.
Stat. Phys. 155:6 (2014), 1191–1221.

http://dx.doi.org/10.1016/S1874-5792(05)80004-7
http://dx.doi.org/10.4171/129
http://dx.doi.org/10.4171/129
http://dx.doi.org/10.1007/978-3-662-03952-6_1
http://dx.doi.org/10.1002/cpa.3160020403
http://dx.doi.org/10.1007/978-3-642-45892-7_3
http://dx.doi.org/10.1090/S0002-9904-1902-00923-3
http://dx.doi.org/10.1007/BF01456676
http://dx.doi.org/10.1007/BF01211098
http://dx.doi.org/10.1007/BF01211098
http://dx.doi.org/10.1007/BF01218628
http://dx.doi.org/10.1007/BF01218628
https://projecteuclid.org/euclid.bsmsp/1200502194
http://search.proquest.com/docview/302766232
http://dx.doi.org/10.1016/B978-0-08-010586-4.50029-8
http://dx.doi.org/10.1007/3-540-07171-7_1
http://dx.doi.org/10.1098/rstl.1867.0004
http://dx.doi.org/10.1002/cpa.3160080206
http://dx.doi.org/10.1002/cpa.3160080206
http://dx.doi.org/10.1142/S0129055X14500019
http://dx.doi.org/10.1142/S0129055X14500019
http://dx.doi.org/10.1007/s10955-013-0905-7


274 MARIO PULVIRENTI AND SERGIO SIMONELLA

[Spohn 1991] H. Spohn, Large scale dynamics of interacting particles, Springer, Berlin, 1991.

[Truesdell and Muncaster 1980] C. Truesdell and R. G. Muncaster, Fundamentals of Maxwell’s
kinetic theory of a simple monatomic gas: treated as a branch of rational mechanics, Pure and
Applied Mathematics 83, Academic, New York, 1980.

[Uchiyama 1988] K. Uchiyama, “On the Boltzmann–Grad limit for the Broadwell model of the
Boltzmann equation”, J. Statist. Phys. 52:1–2 (1988), 331–355.

[Vlasov 1967] A. A. Vlasov, “The vibrational properties of an electron gas”, Usp. Fiz. Nauk. 93
(1967), 444–470. In Russian; translated in Phys. Usp. 10:6 (1968), 721–733.

Received 28 Jul 2016. Accepted 3 Oct 2016.

MARIO PULVIRENTI: pulviren@mat.uniroma1.it
Dipartimento di Matematica, Università di Roma La Sapienza, Piazzale Aldo Moro 5,
I-00185 Rome, Italy

SERGIO SIMONELLA: s.simonella@tum.de
Zentrum Mathematik, Technische Universität München, Boltzmannstraße 3, D-85748 Garching,
Germany

MM ∩
msp

http://dx.doi.org/10.1007/978-3-642-84371-6
http://dx.doi.org/10.1007/BF01016418
http://dx.doi.org/10.1007/BF01016418
http://ufn.ru/en/articles/1968/6/a/
http://dx.doi.org/10.1070/PU1968v010n06ABEH003709
mailto:pulviren@mat.uniroma1.it
mailto:s.simonella@tum.de
http://www.univaq.it
http://memocs.univaq.it/
http://msp.org


MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS
msp.org/memocs

EDITORIAL BOARD
ANTONIO CARCATERRA Università di Roma “La Sapienza”, Italia

ERIC A. CARLEN Rutgers University, USA
FRANCESCO DELL’ISOLA (CO-CHAIR) Università di Roma “La Sapienza”, Italia

RAFFAELE ESPOSITO (TREASURER) Università dell’Aquila, Italia
ALBERT FANNJIANG University of California at Davis, USA

GILLES A. FRANCFORT (CO-CHAIR) Université Paris-Nord, France
PIERANGELO MARCATI Università dell’Aquila, Italy

JEAN-JACQUES MARIGO École Polytechnique, France
PETER A. MARKOWICH DAMTP Cambridge, UK, and University of Vienna, Austria

MARTIN OSTOJA-STARZEWSKI (CHAIR MANAGING EDITOR) Univ. of Illinois at Urbana-Champaign, USA
PIERRE SEPPECHER Université du Sud Toulon-Var, France

DAVID J. STEIGMANN University of California at Berkeley, USA
PAUL STEINMANN Universität Erlangen-Nürnberg, Germany

PIERRE M. SUQUET LMA CNRS Marseille, France

MANAGING EDITORS
MICOL AMAR Università di Roma “La Sapienza”, Italia

CORRADO LATTANZIO Università dell’Aquila, Italy
ANGELA MADEO Université de Lyon–INSA (Institut National des Sciences Appliquées), France

MARTIN OSTOJA-STARZEWSKI (CHAIR MANAGING EDITOR) Univ. of Illinois at Urbana-Champaign, USA

ADVISORY BOARD
ADNAN AKAY Carnegie Mellon University, USA, and Bilkent University, Turkey

HOLM ALTENBACH Otto-von-Guericke-Universität Magdeburg, Germany
MICOL AMAR Università di Roma “La Sapienza”, Italia
HARM ASKES University of Sheffield, UK

TEODOR ATANACKOVIĆ University of Novi Sad, Serbia
VICTOR BERDICHEVSKY Wayne State University, USA

GUY BOUCHITTÉ Université du Sud Toulon-Var, France
ANDREA BRAIDES Università di Roma Tor Vergata, Italia

ROBERTO CAMASSA University of North Carolina at Chapel Hill, USA
MAURO CARFORE Università di Pavia, Italia

ERIC DARVE Stanford University, USA
FELIX DARVE Institut Polytechnique de Grenoble, France

ANNA DE MASI Università dell’Aquila, Italia
GIANPIETRO DEL PIERO Università di Ferrara and International Research Center MEMOCS, Italia

EMMANUELE DI BENEDETTO Vanderbilt University, USA
BERNOLD FIEDLER Freie Universität Berlin, Germany

IRENE M. GAMBA University of Texas at Austin, USA
DAVID Y. GAO Federation University and Australian National University, Australia

SERGEY GAVRILYUK Université Aix-Marseille, France
TIMOTHY J. HEALEY Cornell University, USA
DOMINIQUE JEULIN École des Mines, France
ROGER E. KHAYAT University of Western Ontario, Canada

CORRADO LATTANZIO Università dell’Aquila, Italy
ROBERT P. LIPTON Louisiana State University, USA
ANGELO LUONGO Università dell’Aquila, Italia
ANGELA MADEO Université de Lyon–INSA (Institut National des Sciences Appliquées), France

JUAN J. MANFREDI University of Pittsburgh, USA
CARLO MARCHIORO Università di Roma “La Sapienza”, Italia
GÉRARD A. MAUGIN Université Paris VI, France
ROBERTO NATALINI Istituto per le Applicazioni del Calcolo “M. Picone”, Italy

PATRIZIO NEFF Universität Duisburg-Essen, Germany
ANDREY PIATNITSKI Narvik University College, Norway, Russia

ERRICO PRESUTTI Università di Roma Tor Vergata, Italy
MARIO PULVIRENTI Università di Roma “La Sapienza”, Italia

LUCIO RUSSO Università di Roma “Tor Vergata”, Italia
MIGUEL A. F. SANJUAN Universidad Rey Juan Carlos, Madrid, Spain

PATRICK SELVADURAI McGill University, Canada
ALEXANDER P. SEYRANIAN Moscow State Lomonosov University, Russia

MIROSLAV ŠILHAVÝ Academy of Sciences of the Czech Republic
GUIDO SWEERS Universität zu Köln, Germany

ANTOINETTE TORDESILLAS University of Melbourne, Australia
LEV TRUSKINOVSKY École Polytechnique, France

JUAN J. L. VELÁZQUEZ Bonn University, Germany
VINCENZO VESPRI Università di Firenze, Italia
ANGELO VULPIANI Università di Roma La Sapienza, Italia

MEMOCS (ISSN 2325-3444 electronic, 2326-7186 printed) is a journal of the International Research Center for
the Mathematics and Mechanics of Complex Systems at the Università dell’Aquila, Italy.

Cover image: “Tangle” by © John Horigan; produced using the Context Free program (contextfreeart.org).

PUBLISHED BY
mathematical sciences publishers

nonprofit scientific publishing
http://msp.org/

© 2016 Mathematical Sciences Publishers

http://msp.org/memocs/
www.contextfreeart.org
http://msp.org/
http://msp.org/


Mathematics and Mechanics of Complex Systems

vol. 4 no. 3-4 2016

Special issue in honor of
Lucio Russo

197Lucio Russo: A multifaceted life
Raffaele Esposito and Francesco dell’Isola

199The work of Lucio Russo on percolation
Geoffrey R. Grimmett

213“Mathematics” and “physics” in the science of harmonics
Stefano Isola

235From quantum to classical world: emergence of trajectories in a quantum system
Rodolfo Figari and Alessandro Teta

255Propagation of chaos and effective equations in kinetic theory: a brief survey
Mario Pulvirenti and Sergio Simonella

275What decides the direction of a current?
Christian Maes

297A remark on eigenvalue perturbation theory at vanishing isolation distance
Fiorella Barone and Sandro Graffi

311Some results on the asymptotic behavior of finite connection probabilities in percolation
Massimo Campanino and Michele Gianfelice

327Correlation inequalities for the Potts model
Geoffrey R. Grimmett

335Quantum mechanics: some basic techniques for some basic models, I: The models
Vincenzo Grecchi

353Quantum mechanics: some basic techniques for some basic models, II: The techniques
Vincenzo Grecchi

373On stochastic distributions and currents
Vincenzo Capasso and Franco Flandoli

407A note on Gibbs and Markov random fields with constraints and their moments
Alberto Gandolfi and Pietro Lenarda

423Quantum mechanics: light and shadows (ontological problems and epistemic solutions)
Gianfausto Dell’Antonio

461Lucio Russo: probability theory and current interests
Giovanni Gallavotti

471An attempt to let the “two cultures” meet: relationship between science and architecture in the design of Greek temples.
Claudio D’Amato

MEMOCS is a journal of the International Research Center for
the Mathematics and Mechanics of Complex Systems
at the Università dell’Aquila, Italy.

MM ∩

2326-7186(2016)4:3;1-A

M
A

T
H

E
M

A
T

IC
S

A
N

D
M

E
C

H
A

N
IC

S
O

F
C

O
M

P
L

E
X

SY
ST

E
M

S
vol.

4
no.

3-
4

2
0

1
6


	1. The paradigm of kinetic theory
	2. Mean-field limit and Vlasov equation
	3. The Boltzmann equation
	4. The weak-coupling limit and the Landau equation
	5. Some historical remarks
	Acknowledgment
	References
	
	

