
NISSUNA UMANA INVESTIGAZIONE SI PUO DIMANDARE VERA SCIENZIA
S’ESSA NON PASSA PER LE MATEMATICHE DIMOSTRAZIONI

LEONARDO DAVINCI

Mathematics and Mechanics
of

Complex Systems

msp

vol. 4 no. 3-4 2016

CHRISTIAN MAES

WHAT DECIDES THE DIRECTION OF A CURRENT?



MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS
Vol. 4, No. 3-4, 2016

dx.doi.org/10.2140/memocs.2016.4.275
MM ∩

WHAT DECIDES THE DIRECTION OF A CURRENT?

CHRISTIAN MAES

Dedicated in honor of Lucio Russo

Nonequilibria show currents that are maintained as the result of steady driving.
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1. Introduction

Predicting the course of events given the present state is part of scientific practice.
In what direction things will evolve is however not always so evident. In thermo-
dynamics, there are a number of general rules of thumb derived from the principal
laws. For instance, macroscopic systems tend to equilibrate at the same tempera-
ture, chemical potential and pressure as the surroundings, relaxation (or time itself)
flows in the direction of increasing entropy, etc. In mechanics, the ambition is even
higher; we compute trajectories given the present state. Statistical mechanics is sup-
posed to transfer mechanical laws to thermodynamic behavior, with the attenuation
that some thermodynamic principles are not absolute but become statistical. For
example, the Boltzmann equation for a dilute gas has a direction of time, but for
mesoscopic systems, fluctuations can be expected, and as Maxwell emphasized,
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“The truth of the second law is . . . a statistical, not a mathematical, truth,
for it depends on the fact that the bodies we deal with consist of millions
of molecules . . . Hence the second law of thermodynamics is continually
being violated, and that to a considerable extent, in any sufficiently small
group of molecules belonging to a real body” [Maxwell 1878].

That is, statistical mechanics will not only derive thermodynamics, it will also cor-
rect it and extend it. That is especially true for nonequilibrium statistical mechanics
as there we are necessarily dealing with atypical behavior from the point of view
of the microcanonical ensemble. It therefore becomes both a major inspiration and
application of probability theory, exactly in the way Lucio Russo has been enjoying
and contributing to it.

Going to irreversible thermodynamics [de Groot and Mazur 1962], that is, the
thermodynamics for irreversible phenomena, the main guiding principle that sur-
vives for the direction of currents is the positivity of the entropy production. We
are for example considering an open macroscopic system which is being steadily
frustrated by contacts with different equilibrium baths. Currents will be maintained,
at least on the time scales where the environment is kept at the same intensive
values (e.g., temperature). The directions of these currents can and will vary with
different arrangements, but the entropy production 6 is positive. We denote by
6 =

∑
α JαFα a sum over all possible types of channels of transport of the product

of currents (or displacements) Jα and thermodynamic forces Fα . For predicting the
current directions, we just see what is compatible with 6 ≥ 0, nothing more. In
the linear regime, where currents are proportional to forces, Jα =

∑
γ Lαγ Fγ with

symmetric1 Onsager linear response coefficients Lαγ = Lγα, and the positivity of
6 is the positivity of the matrix (Lαγ ). Here again, statistical mechanics will derive
and extend that scheme, but now it should be nonequilibrium statistical mechanics.
That is very much unfinished business and could certainly go beyond the linear
regime around zero thermodynamic forces. In fact, nonequilibrium statistical me-
chanics is far behind the equilibrium version:

“My inclination is to postpone the study of the large-system limit: Since it
is feasible to analyze the nonequilibrium properties of finite systems — as
Gibbs did for their equilibrium properties — it seems a good idea to start
there. That may not answer all questions, but it advances nonequilibrium
statistical mechanics to the point equilibrium had reached after Gibbs”
[Ruelle 2004].

In other words, a general theory of nonequilibrium phase transitions or of univer-
sality is still nonexistent, and even a systematic way of dealing with many-body

1We ignore here the Casimir correction that takes into account the parity under time-reversal of
the physical quantity being transported.



WHAT DECIDES THE DIRECTION OF A CURRENT? 277

Inside

Outside

Figure 1. Example of a simple stationary current for which the
direction is decided by the positivity of the entropy production.

effects is largely lacking. We certainly have no percolation or geometric picture
of nonequilibrium collective phenomena, and remembering the crystal-clear and
perfectly elegant contributions of Lucio to percolation theory and to mathematical
statistical mechanics, we can only hope that the day will soon come when such a
mathematical framework and geometric interpretation will also become available
for nonequilibrium physics to match Lucio’s standards.

In what follows, we are asking about what determines the direction of a nonequi-
librium current. The main point will be that it is certainly not always the case
that the current direction is decided by the positivity of the entropy production;
nondissipative effects will be important and sometimes crucial. We refer to the
pedagogical introduction [Maes 2015] on nondissipative aspects of nonequilibrium
statistical mechanics. For the moment, it suffices to add that transition rates in a
process also have time-symmetric parameters and, quite obviously, that we need
to understand how they contribute to deciding the direction of the current.

2. Traditional arguments

2A. Phenomenology. The media inside and outside of a biological cell can be
very different. These are connected via thin pores through which ions of various
chemicals can be transported. Consider such a pore or channel in the membrane
separating outside and inside; see Figure 1. Because of different concentrations
at its ends, there will be a current through the pore. In fact, ions will be traveling
from the region of higher chemical potential to the region of lower chemical po-
tential. The same thing happens with many types of currents, whether the channel
is connected to thermal, chemical or mechanical reservoirs. At the appropriate
scale of time, the system is in steady nonequilibrium, not changing its macroscopic
appearance. There is a constant production 6 of entropy in the environment, which
is positive,

6 =−βµ1 J1−βµ2 J2

with Ji the particle flux into the i-th reservoir at chemical potential µi and inverse
temperature β. Stationarity (and bulk conservation of particles) implies J1+ J2 = 0
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µ` µr

−N −N + 1 N − 1 N

Figure 2. Stochastic lattice gas, symmetric in the bulk and gov-
erned by local interactions, driven by contact with particle reser-
voirs at different chemical potentials.

so that we can find the direction of the particle current J1 by requiring

6 = β J1(µ2−µ1)≥ 0 (second law).

By bulk conservation of particles, we still have J1 = J , the stationary particle
current through the channel or pore from the second towards the first reservoir,
and hence, J ≥ 0 whenever µ2 ≥ µ1.

Similar scenarios can be written for thermal and mechanical baths that frustrate
the system. Those are the typical cases where finding the direction of the current
amounts to applying the second law in the form such that the stationary entropy
production is positive.

While the previous case was treated rather phenomenologically, precise math-
ematical arguments can be provided for simple particle model systems following
the same physics. Here comes an example.

2B. Stochastic lattice gas. We consider identical particles that can jump from
site i to the nearest neighbor site j = i ± 1 on the finite linear chain 3N =

{−N ,−N+1, . . . , 0, 1, . . . , N−1, N }; see Figure 2. The endpoints i =±N in3N

are called the boundary of the system; the other sites are in the bulk. There is at
most one particle per site i so that a site i can be vacant or occupied, and we write
η(i)∈ {0, 1} for the occupation at site i ∈3N . The state space is K = {0, 1}3N with
elements η, η′, ξ, . . . ∈ K . The reasoning below is outlined in [Maes et al. 2009].

The energy function on K is chosen as

H(η)=−B
N∑

i=−N

η(i)− κ
N−1∑

i=−N

η(i)η(i + 1), (1)

where B and κ are some real constants. The system is imagined in thermal contact
with a very large heat bath at inverse temperature β (Boltzmann’s constant is set
equal to 1). The energy change in that bath over the transition η→ η′ gives a first
contribution β(H(η)− H(η′)) to the change of entropy in the reservoir. Another
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important quantity here is the particle number

N[ j,k](η)=

k∑
i= j

η(i)

in the lattice interval [ j, k] ∩3N , −N ≤ j ≤ k ≤ N . The total number of particles
inside the system is N= N[−N ,N ].

We now also imagine that the system is in contact with a particle reservoir at
each of its boundary sites. There can be a birth or a death of a particle at these sites,
which amounts to the entrance from and the exit to the corresponding reservoir of a
particle. In that sense, we write J` =1N` and Jr =1Nr as the changes in particle
number in the left and right particle reservoirs, respectively. The flow of particles
in and out of the system can also contribute to the dissipated heat in the reservoir
and hence to changes in entropy:

S(η, η′)= β[H(η)− H(η′)] −βµ`1N`(η, η
′)−βµr1Nr (η, η

′) (2)

is the change of entropy in the environment for µ` and µr , the chemical potentials
(up to some factor β that we have ignored) of the left and right particle reservoirs,
respectively. We will make mathematical sense of (2) entirely in terms of variables
inside the system.

For the dynamics, we choose a continuous-time Markov process on K . Write
the transformation

ηi, j (k)=


η(k) if k 6= i and k 6= j,
η(i) if k = j,
η( j) if k = i

for the state obtained from η after exchanging the occupation of the sites i and j ,
only allowed for j = i ± 1. The rate for that transition is taken to be

C(i, j, η)= exp
[
−
β

2
(H(ηi, j )− H(η))

]
, |i − j | = 1. (3)

Similarly, the rate of birth and death for the transition η→ ηi with

ηi (k)=
{

1− η(k) if k = i,
η(k) if k 6= i,

only occurring at sites i =−N , N , is

C(i, η)= e−aiη(i) exp
[
−
β

2
(H(ηi )− H(η))

]
. (4)

The relevant parameters are the values a−N = βµ` and aN = βµr representing the
(different) chemical potentials of the two reservoirs at the outer edges.
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One observes from the definition (3) that

C(i, j, η)
C(i, j, ηi, j )

=
exp[−βH(ηi, j )]

exp[−βH(η)]
. (5)

Furthermore, from (4),

C(i, η)
C(i, ηi )

=
exp[−aiη(i)]

exp[−ai (1− η(i))]
exp[−βH(ηi )]

exp[−βH(η)]
, i =±N . (6)

For a−N = aN = a, when the left and right particle reservoirs have equal concen-
tration, then the system dynamics satisfies the condition of detailed balance: for
all allowed transitions η→ η′ and corresponding transition rates W (η→ η′),

W (η→ η′)

W (η′→ η)
=

Pβ,a[η′]

Pβ,a[η]
(7)

for the grand-canonical equilibrium probabilities

Pβ,a[η] =
1
Z

ea
∑
η(i)e−βH(η) (8)

where Z= Z(a, β, N ) is a normalization factor. Thus, (8) is a reversible stationary
measure when a−N = aN = a.

We now consider a1 6= aN (different chemical potentials). At the left boundary
of the system (see (6)),

C(−N , η)
C(−N , η−N )

= e−β[H(η
−N )−H(η)]−a−N J`(η,η−N ) (9)

where J`(η, η−N ) = 1 when the particle leaves the system via the site −N , i.e.,
η(−N ) = 1, and J`(η, η−N ) = −1 when a new particle enters, i.e., η(−N ) = 0.
Analogously, the current Jr (η, η

′)= 1 when η(N )= 1 and η′ = ηN and J`(η, η
′

)=

−1 when η(N )= 0 and η′ = ηN . The currents are zero otherwise.
As a consequence,

W (η→ η′)

W (η′→ η))
= e−β[H(η

′)−H(η)]−a−N J`(η,η′)−aN Jr (η,η
′) (10)

where we see the change of entropy (2). In other words,

W (η→ η′)

W (η′→ η)
= eS(η,η′) (11)

(which is known as the condition of local detailed balance), and

J`(η, η′)+ Jr (η, η
′)= N(η)−N(η′) (12)
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or, with aN = a and a−N = a+ δ,

W (η→ η′)

W (η′→ η)
=

Pβ,a[η′]

Pβ,a[η]
e−δ J`(η,η′)

with δ thus quantifying the amplitude of breaking of detailed balance.
As above, we define the bulk currents Ji (η, η

′) to be+1 if in the transition η→η′

a particle moves over the bond i→ i+1 and equal to−1 if a particle moves i← i+1.
In fact, throughout, we confuse current with what is more like a time-integrated
current or a change of particle number.

We have piecewise-constant paths ω over the time interval [0, τ ], starting from
some initial configuration η0 after which it changes into ηt1, ηt2, . . . at random
times t1, t2, . . . . At the jump times, we take ηtk−1 = ηt−k

and ηtk = ηt+k
for having

right-continuous paths with left limits. The time-reversal transformation on path-
space 2 is defined via (2ω)t = ωτ−t , up to irrelevant modifications at the jump
times making 2ω right-continuous again.

We consider a path ω = (ηt)
τ
t=0 and currents Ji (ω), i =−N , . . . , N , defined by

Ji (ω)= Ji (η0, ηt1)+ Ji (ηt1, ηt2)+ · · ·+ Ji (ηtn−1, ητ ).

In particular, Jr = JN and for i ≤ k

Ji (ω)− Jk(ω)= N[i+1,k](ητ )−N[i+1,k](η0),

J`(ω)+ J−N (ω)= η0(−N )− ητ (−N ).
(13)

Observe that the currents Ji are extensive in the time τ .
All of that is related to the process, be it transient or steady. We concentrate on

the steady-state regime. It is easy to verify that we have here a unique stationary
distribution ρ. That stationary distribution is only implicitly known and a solution
of the (time-independent) master equation. Corresponding to ρ is then a stationary
process with distribution Pρ . If we look at expectations in the stationary process,
we write 〈 · 〉ρ .

From the conservation laws (12) and (13),

〈J`〉ρ =−〈Jr 〉ρ =−〈Ji 〉ρ, i ∈3N .

Proposition 2.1. The direction of the current is from higher to lower chemical
potential; i.e., assuming that δ ≥ 0 (or a−N = µ` ≥ aN = µr ), we have 〈Ji 〉ρ ≥ 0.

Proof. The path density of Pρ with respect to Pρ2, both started in the stationary
distribution ρ, is

dPρ
dPρ2

(ω)=
ρ(ω0)

ρ(ωτ )
exp[−β(H(ωτ )− H(ω0))+ a1N− δ J`(ω)]. (14)
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By normalization, ∫
dPρ(ω)

dPρ2
dPρ

(ω)= 1,

and hence, by concavity, ∫
dPρ(ω) log

dPρ2
dPρ

(ω)≤ 0. (15)

But from (14) and by stationarity,

0≤
∫

dPρ log
dPρ

dPρ2
(ω)=−δ〈J`〉ρ = δ〈Ji 〉ρ .

We conclude that
δ〈Ji 〉ρ ≥ 0,

which shows that the average direction of the particle current depends only on the
sign of δ.

Getting a strict inequality 〈Ji 〉ρ > 0 is also possible for δ > 0; it suffices to see
that there is a nonzero probability that the current Ji as a function of the path ω is
not identically equal to 0 even when ω0 = ωτ . �

Looking back at the proof, we see that the main inequality has been the positivity
(15) of the relative entropy between the forward and backward stationary processes.
The latter coincides with the stationary entropy production, as is in fact visible
from (11). Hence, the proof above, as in [Maes et al. 2009], is a nonperturbative
statistical mechanical argument or the physical analogue for the phenomenology
in Section 2A; there is nothing really new here.

3. Problematic cases

We collect a number of situations where either previous phenomenological or sta-
tistical mechanical arguments, based on the positivity of the entropy production, do
not work. From a general perspective comparable to the so-called Curie principle,
currents may appear whenever they are not forbidden by some symmetry. It is then
not wholly surprising that we cannot always apply the same physical arguments.
Yet the examples below are specifically relevant in the context of nonequilibrium
physics, for which we may hope to develop some framework.

3A. Ratchet currents.

3A1. Triangula. In [Van den Broeck et al. 2005], a number of versions of hard-
disk microscopic ratchets are introduced and studied with molecular dynamics and
with some low-density expansions. A directed systematic motion appears when a
temperature difference is applied to different units of a motor. One of the simple
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ρ

2θ

T1

ρ

Figure 3. Triangula: the triangles can only move horizontally and
are connected. They are in thermal baths at different temperatures.

examples is there called the Triangula: it is a motor consisting of two identical
triangular units, each sitting in a gas (reservoir) consisting of hard disks whose
centers collide elastically with the triangles; see Figure 3. The two triangles are
rigidly connected along a rod, with their base parallel to it, and the whole motor is
constrained to move along the horizontal direction without rotation or vertical dis-
placement. When the temperatures in the two reservoirs are different, a systematic
motion appears which turns out to be in the direction of the triangles’ apices — to
the right in Figure 3. The speed V of the Triangula depends on the difference in
temperatures T1 and T2 and on the apex angle 2θ and to some good approximation
for low-density reservoirs is given by

V = (1− sin θ)
√

2πkBm
4M

(T1− T2)
(
√

T1−
√

T2)

(
√

T1+
√

T2)2

for m the mass of the gas particle and M the mass of the triangle (see (22) in
[Van den Broeck et al. 2005] for the case of equal densities). If we write T2 =

T (1+ ε) and T1 = T , the leading order for that formula with ε ↓ 0 becomes

MV '
1− sin θ

32

√
2πkB T m ε2 (16)

and we see that the speed or current is second-order in the temperature difference.
That is not attainable with linear response theory around equilibrium. The reason is
that the translation current is orthogonal to the heat current (through the rod). Since
we are thus in the regime of nonlinear response, that should already tell us that
nondissipative features play a role [Basu et al. 2015]. As far as we know, nobody
has a good heuristic or simple argument to explain that indeed V > 0. Equation (16)
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connects the momentum of the Triangula with the thermal momentum of the gas,
which appears rectified depending on the apex angle and is second-order between
the temperatures, and is basically left without further explanation.

3A2. Parrondo game. The following is a paradoxical game invented by Juan Par-
rondo in 1996; see [Parrondo et al. 2000] for more explanations and references.

The state space is K = {1, 2, 3}, and the state at time n is xn . The Markov
chain uses a different rule (A or B) at even and odd times n. Alternating, the
following two games are played. Game A is fair coin tossing: we simply move
x→ x ± 1 mod 3 with equal probability at even times. Game B is played at odd
times and with two biased coins, a good one and a bad one. In game B, the good
coin is tossed when xn ∈ {1, 2} and the bad coin is used each time when xn = 3.
Winning takes xn+1= xn+1; losing at time n means xn+1= xn−1, always modulo 3.
The transition probabilities are then

Prob[xn+1 = x ± 1 | xn = x] = 1
2 when n is even,

Prob[xn+1 = x + 1 | xn = x] = 3
4 when n is odd and x 6= 3,

Prob[xn+1 = x + 1 | xn = x] = 1
10 when n is odd and x = 3.

(17)

Both games, when played separately at all times, are reversible. For example, for
game B (at all times), consider the cycle 3→ 1→ 2→ 3. Its stationary probability
(always for game B alone) is Prob[3→ 1→ 2→ 3] = ρ(3)× 1

10×
3
4×

3
4 =

9
160ρ(3).

For the reversed cycle, the probability Prob[3→ 2→ 1→ 3] = ρ(3)× 9
10×

1
4×

1
4 =

9
160ρ(3) is the same. The equilibrium distribution for game B is then found to be
ρ(1) = 2

13 , ρ(2) = 6
13 and ρ(3) = 5

13 . Obviously then, there is no current when
playing game B and clearly the same is trivially verified for game A when tossing
with the fair coin. Yet, and here is the paradox, when periodically playing game B
after game A, a current arises.

As in the previous case of the Triangula, the very fact that a current arises is
again not so strange, but the question is what really decides its direction. We will
show how to solve that question for a continuous-time version at low temperature
in Section 4.

3B. Multiple cycles. It is not uncommon in nonequilibrium to have multiple cy-
cles in state space along which the dynamics can proceed. We give here two ex-
amples of one-dimensional random walks, visualized in Figures 4–6. Look first at
Figure 4, where we denote the states by {0, u, 1} in an elementary triangle. For
horizontal motion, there are two “channels” to move to the right, 0→ u→ 1 and
0→ 1, and two “channels”, 0→ u→−1 and 0→−1, to move to the left. Going
right, the system prefers the “channel” 0→ u→ 1, and for going left, the system
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u u u

−1 0 1 2
Figure 4. Necklace of three-state cycles with rotational current
inducing a horizontal current.

prefers the channel 0→−1 as we take the transition rates

k(1, 0)= ϕeε/2, k(0, u)= eε/2, k(u, 1)= eε/4,

k(0, 1)= ϕe−ε/2, k(u, 0)= 1, k(1, u)= e−ε/4
(18)

for parameters ϕ, ε > 0. That is periodically repeated to obtain a random walk on
the line. We are interested in the physical “translational” current towards the right,
that is,

J = ρ(0)[eε/2+ϕe−ε/2] − [ρ(u)+ ρ(0)ϕeε/2]

where we restrict ourselves to translation-invariant stationary occupations satisfy-
ing the normalization ρ(0)+ ρ(u)= 1 and

ρ(0)[eε/2+ e−ε/4] = ρ(u)[1+ eε/4].

We claim that entropy production decides the orientation of the rotational current
within each triangle but not the direction of the induced translational current J .
The ε in (18) decides the direction of the rotational current and is responsible for
the breaking of detailed balance. It stands for an entropy flux (per kB). For example,
the trajectory 0→u→ 1 (taking the walker one step to the right) expends an entropy
flux ε (e.g., in the sense of [Maes et al. 2000]), as seen from the calculation

k(0, u)k(u, 1)
k(u, 0)k(1, u)

=
eε/2eε/4

1 · e−ε/4
= eε,

but so does the step 0→−1 exactly: taking the walker one step to the left,

k(1, 0)
k(0, 1)

= eε.

In all, there is no entropic preference to go right or left. In other words, the effective
bias is also decided by the parameter ϕ. We see that in Figure 5.

The current J is plotted in Figure 5, left, as a function of ε for two different
choices of ϕ. Fixing say ε = 6, we see a positive current for ϕ = 0.75 and a
negative current for ϕ = 0.90. In other words, the direction of the current is not
simply decided. The current diverges like (1−ϕ) exp[ε/4] for ϕ 6= 1 as ε ↑∞. If ϕ
is large, the current is to the left, and if ϕ is small, the current becomes positive.
For ϕ > 1

2 , there is a sign-reversal in the current as a function of the entropy flux ε.
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Figure 5. The horizontal current towards the right as a function
of ε corresponding to (left) Figure 4 for ϕ = 0.75 (upper) and
ϕ = 0.90 (lower curve) and to (right) Figure 6 for ϕ = 0.75 (upper)
and ϕ = 1.25 (lower curve).

u u u

d d d

−1 0 1 2

Figure 6. Four-state necklace with top versus bottom symmetry
for ϕ = 1.

We can add more symmetry in the construction by considering, minimally, a
four-state Markov process as an elementary unit. Then we look at Figure 6, denot-
ing the states by {0, u, 1, d} (where u stands for “up” and d stands for “down”),
and the transition rates are

k(1, d)= ϕeε/4, k(d, 0)= ϕeε/4, k(0, u)= eε/4, k(u, 1)= eε/4,

k(d, 1)= ϕe−ε/4, k(0, d)= ϕe−ε/4, k(u, 0)= e−ε/4, k(1, u)= e−ε/4.

We again have two elementary paths in the opposite direction, which are now R1 :

0→ u→ 1 and R2 : 0→ d →−1, for which the entropy fluxes are both equal
to ε. (Of course, R2 can be identified with the path 1→ d→ 0.) It will again be
the “reactivity” ϕ > 0 that also decides the direction of the current; see Figure 5,
right. Or what starts out as a time-symmetric parameter turns out to give rise to
time-asymmetry.

The above scenario has natural realizations, e.g., in the motion of some molec-
ular motors like Myosin V studied in [Maes and O’Kelly de Galway 2015]. The ϕ
then corresponds to the activity of the leading head. Because it is lower than that
of the trailing head, the motor moves forward. The relation between dynamical
activity or “happy feet” (of Paulo Conte’s song) and the direction of current has
been anticipated in the Inferno (Canto I) of the Divine Comedy, where Dante writes,
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“E come quei che con lena affannata,
uscito fuor del pelago a la riva,
si volge a l‘acqua perigliosa e guata,

così l’animo mio, ch’ancor fuggiva,
si volse a retro a rimirar lo passo
che non lasciò già mai persona viva.

Poi ch’èi posato un poco il corpo lasso,
ripresi via per la piaggia diserta,
sì che ’l piè fermo sempre era ’l più basso” [Dante 1787, p. 2].

In Figure 6, one should imagine the top corresponding to lifting the trailing foot
and the bottom to lifting the leading foot; ϕ > 1 corresponds to a more “active”
trailing foot which easily moves you forward. In the case of Dante leaving the
valley and climbing the mountain, as the firm or more stable foot was always the
lower (ϕ < 1), it becomes very difficult to go forward and not to retreat.

3C. Nonequilibrium internal degrees of freedom. We are used to thinking of in-
ternal degrees of freedom as an equilibrium reservoir. When a ball bounces off
the ground, it slightly deforms and warms up, indicating a restitution coefficient
which is less than 1 [Maes and Tasaki 2007]; the entropy gets dissipated in these
many internal degrees of freedom. But what if the ball is “alive” or “active”, or
to put it in less suggestive language, what if the internal degrees of freedom are
in steady nonequilibrium? Can that not produce extra interesting effects? The
problematic case of the Triangula in Section 3A1 can be seen as an example. The
two triangles connected by the vertical rod shown in Figure 3 make one extended
object which internally is subject to heat conduction (vertical energy current from
higher to lower temperature).

Look now at Figure 7 for greater simplification. Our object has position q ∈ S1

on the ring suspended in a thermal bath at inverse temperature β. For its dynamics,
we assume the overdamped Langevin dynamics

γ q̇ =−
∂

∂q
E(x, q)+

√
2γ
β
ξt (19)

in the usual physics notation with ξt standard white noise, γ the damping coefficient
and E(x, q) some interaction potential with an “internal” degree of freedom, here
a four-state Markov process with x = 1, 2, 3, 4. We assume that the x relaxes fast
to stationarity compared to the walker where the time scale is set by γ , and we
take transition rates

kq(x, x ′)= e−(β/2)[E(x
′,q)−E(x,q)]ϕ(x, x ′)es(x,x ′)/2. (20)



288 CHRISTIAN MAES

1 2

34

a

b

c

d

q
x

Figure 7. Walker (probe or colloid) on a ring with position q with
rotating stomach x ∈ {1, 2, 3, 4}. The joint dynamics is specified
in (19)–(20). The colloid’s position is the slow degree of freedom.

The driving or nonequilibrium sits in s(1, 2)= s(2, 3)= s(3, 4)= s(4, 1)= βε and
the symmetric ϕ(x, x ′) are ϕ(1, 2)=a, ϕ(2, 3)=b, ϕ(3, 4)= c and ϕ(4, 1)=d; see
the “stomach” in Figure 7. Under the hypothesis of infinite time-scale separation,
the colloid is subject to the mean force

f (q)=−
∑

x

ρq(x)
∂

∂q
E(x, q) (21)

which can be calculated exactly from the stationary distribution ρq(x) for the in-
ternal degree of freedom x . When the rotational part of the force frot =

∮
f (q) dq

is nonzero, then the colloid will start moving around the circle. In fact, the steady
current J , as plotted in Figure 8, is essentially just given by it. Obviously, there
are many parameters: the form of the potential E(x, q) but also the coefficients a,
b, c and d . We ask here what determines the sign of that rotational force, which of
course determines the direction of the current of the walker.

We observe here that we can get a sign-reversal of the current by solely varying
the kinetic factors a, b, c and d . More specifically, we consider the energy function
E(x, q) for q ∈ [−1, 1], E(2, q)= E(4, q)= 0,

E(1, q)=
{4

7(1+ q) for q ≤ 3
4 ,

4(1− q) for q ≥ 3
4

and E(3, q)=
{

4(1+ q) for q ≤− 3
4 ,

4
7(1− q) for q ≥− 3

4 .

In Figure 8, left, we see the rotational current J = frot as a function of c for
a = b = d = 1 (first negative then positive) and as a function of a for b = c =
d = 1 (first positive then negative), both at driving ε = 5 and β = 1. The same is
represented in the right panel but now as a function of the driving ε. We clearly
get information about the time-symmetric part in the transition rates (20) from
coupling that process xt to the position qt in (19) of the walker and measuring its
induced current.
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Figure 8. The rotational current J = frot =
∮

f (q) dq of the col-
loid as it depends on the reactivities ϕ and the driving ε of the
internal nonequilibrium in Figure 7; see (20). Left: the direction
of the current can change as a function of a, b, c and d; we see the
current at ε= 5 and β = 1 as a function of ϕ = a and as a function
of ϕ = c, while the other reactivities equal 1 when not specified.
Right: the current as a function of the driving ε for various choices
of ϕ(x, x ′). From low to high, the curves correspond to c = 0.2,
a = 2.0, c = 2.0 and a = 0.2 again with all other reactivities fixed
to the value 1 when not specified.

3D. Wrong direction! The response to an external field can be negative. It is then
the case that by pushing harder the particle gets slower. It could even happen that
by pushing in one direction the particle moves in the opposite direction making
negative absolute conductivity. In [Cleuren and Van den Broeck 2002], one uses
memory to achieve that result, but one also gets it from considering the Markov
models of Section 3B.

Consider again the setup of Figure 4 and the resulting Figure 5, left, for the hor-
izontal current in the positive direction. There are possible stalling points (ε∗, ϕ∗)
where that current vanishes. Taking these values or, more generally, fixing arbitrary
(ε, ϕ), we perturb the rates (18) as

kE(1, 0)= [ϕ+ E]eε/2, kE(0, u)= e[ε+E]/2, kE(u, 1)= e[ε+E]/4,

kE(0, 1)= [ϕ+ E]e−ε/2, kE(u, 0)= 1, kE(1, u)= e−ε/4,

pushing a bit harder with E > 0 in the upper channel (only) and also changing
the time-symmetric coefficient ϕ→ ϕ+ E . We get a new value of the horizontal
current JE , and we can ask how it changes, that is, find the conductivity

σ =
dJE

dE

∣∣∣∣
E=0

. (22)
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Figure 9. The conductivity σ (22), rescaled by a factor of
exp[−ε/4], as a function of ε for ϕ = 0.55 (lowest curve) having
its stalling point at ε∗ ' 0.80, for ϕ = 0.8 with stalling point at
ε∗' 5.54 and ϕ= 1.5 (upper curve). There is negative conductivity
σ < 0, including at stalling points where the pushing makes the
walker go back instead of forward.

We see in Figure 9 that σ gets negative for large-enough values of ε, including
at stalling values. Thus, there, the current actually goes backward while pushing
forward.

4. Low temperature analysis

We consider here a continuous-time version of the Parrondo game of Section 3A2
with random flipping between a flat potential and a nontrivial energy landscape.
It gives an approach to the problems of Sections 3A2–3B by considering low-
temperature asymptotics. In particular, we use the Freidlin–Wentzell theory of
[Maes et al. 2014] to obtain an expression for the low-temperature ratchet current.
Its direction is not determined by entropic considerations (only) but involves the
reactivities.

Look at Figure 10. States of a continuous-time Markov process are on two rings,
each having N > 2 of states, denoted by x = (i, n) where i ∈ {1= N+1, 2, . . . , N }
and n = 0, 1.

On the outer ring (n = 0), energies E1 < · · ·< EN are associated to the states
and transition rates are thermal:

k((i, 0), (i+1, 0))=e(β/2)(Ei−Ei+1), k((i+1, 0), (i, 0))=e(β/2)(Ei+1−Ei ) (23)

for inverse temperature β. The inner ring (n = 1) corresponds to a walker in a flat
potential landscape so that

k((i, 1), (i + 1, 1))= k((i + 1, 1), (i, 1))= 1. (24)
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Figure 10. Continuous-time Parrondo game.
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Figure 11. Trajectories ω1 (clockwise, blue) and ω2 (counter-
clockwise, red) with the same entropy flux yet in opposite direc-
tions.

The random flipping between the two potentials is realized by moves between the
rings n = 0, 1, at transition rates k((i, n), (i, 1− n))= a for some a > 0. There is
no explicit driving except that for a = 0 there is detailed balance of course and for
very strong coupling a� 1 the model is effectively running on a single ring. In
the limit a ↑∞, there is again detailed balance with inverse temperature β/2.

The question for the nonequilibrium situation is in what sense the walker will
typically move: either clockwise of counterclockwise. Again, the direction of
that current, which we now call the ratchet current, is not decided by the pos-
itivity of the entropy production. Consider for example Figure 11, where two
trajectories ω1 = ((N , 0), (N − 1, 0), . . . , (1, 0), (1, 1), (N , 1), (N , 0)) and ω2 =

((N , 0), (1, 0), (1, 1), (2, 1), . . . , (N , 1), (N , 0)) are depicted that wind in oppo-
site directions yet whose entropy fluxes are exactly identical, equal to s(ω1) =

s(ω2)= β(EN − E1) > 0.
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The stationary ratchet current JR in the clockwise direction is

JR = j ((i + 1, 0), (i, 0))+ j ((i + 1, 1), (i, 1)) (25)

with j (x, y)= k(x, y)ρ(x)−k(y, x)ρ(y) where ρ is the stationary probability law
for the Markov dynamics (23)–(24). JR is the current over both rings together,
and of course, that current also depends on the size N , on the energies and on
temperature. We will look at the case a = 1 but at low temperatures so that the
transitions (i, 0)→ (i + 1, 0) are exponentially damped. It simplifies the structure
of the stationary distribution ρ; see [Maes et al. 2014], where a type of Freidlin–
Wentzell analysis is applied to find its low-temperature asymptotics. The following
combines proofs in [Maes et al. 2014] and in [Louis 2015] to show that the ratchet
current is clockwise and saturates:

Proposition 4.1. JR = 0 for N = 3, JR > 0 for all N > 3 and limN↑∞ JR =
1
2−

1
√

5
.

Proof. Consider the set D := {(1, 0), (i, 1) : i = 1, . . . , N }, and let M(x) be the
number of in-spanning trees in the digraph obtained from Figure 10 by keeping only
the oriented bonds (v,w) where w is one of the most likely successors of v. From
[Maes et al. 2014], we learn that at low temperatures ρ(x)∝ |M(x)| for x ∈D and
ρ(y)' |M(y)|eβ0(y)/Z, with some 0(y)< 0 for y /∈D. By the matrix-tree theorem
(see, e.g., [Tutte 1984]), we need the Laplacian matrix L on the digraph K D , and
we erase the row and the column corresponding to vertex x to obtain the matrix L x .
Then

|M(x)| = det L x . (26)

The Laplacian of the digraph K D has a rather simple structure:

L =



(1, 0) (2, 0) · · · · · · (N , 0) (1, 1) (2, 1) · · · · · · (N , 1)
(1, 0) 1 −1
(2, 0) −1 1
...

. . .
. . .

... −1 1
(N , 0) −1 0 1

(1, 1) −1 3 −1 −1

(2, 1) −1 −1 3
. . .

...
. . .

. . .
. . .

. . .
...

. . .
. . .

. . . −1
(N , 1) −1 −1 −1 3



.
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The state for which the number of in-trees becomes maximal is (1, 0): there are
more combinations to form an in-tree to (1, 0) than to any other state (i, 1) on the
inner ring.

To compute the ratchet current, we take x = (1, 1) with ρ(1, 1)' A((1, 1))/Z.
Then

j ((2, 1), (1, 1))'
1
Z
(A((2, 1))− A((1, 1))).

Moreover,

j ((2, 0), (1, 0))'
A((2, 0))

Z
.

As a consequence,

JR '
1
Z
(det L(2,1)+ det L(2,0)− det L(1,1)).

Furthermore, by inspecting the Laplacian L , one finds that

• det L(2,0) = 2 det BN−1− 3 det BN−2− 3,

• det L(1,1) = det BN−1 and

• det L(2,1) = det BN−2+ 1

with

BN =


3 −1

−1 3
. . .

. . .
. . . −1
−1 3

 . (27)

BN satisfies the recursion relation det BN =3 det BN−1−det BN−2, where det B2 = 8
and det B1 = 3. Hence, by solving the recurrence, we get

det BN =
5− 3
√

5
10

(
3−
√

5
2

)N

+
5+ 3
√

5
10

(
3+
√

5
2

)N

to be used in

JR '
det BN−1− 2 det BN−2− 2

Z

which already proves that JR > 0 for all N ≥ 4 and JR = 0 when N = 3; the
direction is clockwise. For the N -asymptotics, we also need the normalization Z.
In fact, Z'

∑
x∈D|M(x)| =

∑
x∈D det L x . In [Louis 2015], it is shown that

Z' 2
(

3−
√

5
2

)N

+ 2
(

3−
√

5
2

)N

− 4,

which concludes the proof by a simple computation. �
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Note that adding particles and interactions we can get direction-reversal of cur-
rents as we had in the previous Sections 3B–3C. An experimentally accessible
example is described in [de Souza Silva et al. 2006]. That constitutes a big chal-
lenge in the discussion of the direction of currents that has not been touched upon
here: how density and interactions can modify it.

5. Conclusion

To discover what decides the direction of a current under steady nonequilibrium
conditions is a major challenge of statistical mechanics. In the present paper, we
have seen that many effects are possible, not least from the variation of time-
symmetric parameters in transition rates defining the process. That dependence on
nondissipative aspects thus provides a method to obtain kinetic parameters from
measuring the direction of the current.
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