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A REMARK ON EIGENVALUE PERTURBATION THEORY
AT VANISHING ISOLATION DISTANCE

FIORELLA BARONE AND SANDRO GRAFFI

Let T be a self-adjoint operator in a separable Hilbert space X, admitting com-
pact resolvent and simple eigenvalues with possibly vanishing isolation distance,
and let V be symmetric and bounded. Consider the self-adjoint operator family
T(g):g €Rin X defined by T + gV on D(T). A simple criterion is formulated
ensuring, for any eigenvalue of 7'(g), the existence to all orders of its perturba-
tion expansion and its asymptotic nature near g = 0, with estimates independent
of the eigenvalue index. An application to a class of Schrédinger operators is
described.

1. Introduction and formulation of the result

The standard Rellich—Kato regular perturbation theory [Kato 1976] applies to iso-
lated eigenvalues of finite multiplicity of a densely defined, closed operator T in a
Banach space X. We consider here only the particular case in which

» X is a separable Hilbert space,
T is a self-adjoint operator in X with compact resolvent and simple spectrum, and
« the perturbation is symmetric, regular and linear on the perturbation parameter.
Let the operator V : D(V) — X be symmetric and T-bounded with relative
bound b; i.e., let D(T) C D(V), and let there exist a > 0 and b > 0 such that
IVull <b|Tull+alul| forallu e D(T). (1-1)
With g € C, consider the operator family in X defined as
g—>T(g)=Tu+gVu, D(T(g)) = D(T). 1-2)

Then T (g) is closed with nonempty resolvent set for |g| < 1/b and T(g)* =T (g)
sothat T(g) =T (g)* if g € R. Let A € R be an isolated eigenvalue of T (simple by
the above assumption), with isolation distance d (1) > 0. Here, let us recall that

d(A) :=dist(Spec(T) \ {r}, A) > 0. (1-3)
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Then for |g| suitably small, 7'(g) has one and only one simple eigenvalue A(g)
such that lim, .o A(g) = A (see, e.g., [Kato 1976, §§VII.2-3] or [Reed and Simon
1978, §XII.1]). The function g +— A(g) is holomorphic in a disk centered at the
origin because its Taylor expansion at g =0

o0
NOETE IS (1-4)
=1
exists and converges for |g| < ry(A), with ry(A) > 0. The coefficients A, are
generated by (Rayleigh—Schrodinger) perturbation theory. This existence and con-
vergence result depends in a critical way on the positivity of d(A) and therefore
does not apply to nonisolated eigenvalues.

To the best of our knowledge, a simple, explicit criterion ensuring existence, let
alone convergence, of (Rayleigh—Schrodinger) perturbation theory when r;y(A) — 0
is still missing, even under much stronger assumptions such as rz(A) — 0 only if
A — oo and boundedness of V. (For related questions involving the behavior of
rq(A) as A — oo, we refer the reader to [Reed and Simon 1978, §XIII.5] and
to [Brownell and Clark 1961; McLeod 1961; Tamura 1974]). Within this last
class of Hilbert space operators, we formulate and prove here a similar criterion,
working out the necessary estimates on the behavior of A, uniform with respect
to the eigenvalue index n. Under more restrictive assumptions on the vanishing
of ry(X), the explicit dependence on n of the above estimates is actually determined.

Our hypotheses are formulated as follows.

(A1) T is a nonnegative self-adjoint operator in the separable Hilbert space X,
with compact resolvent and simple spectrum. Its eigenvalues are denoted
by {A, : n € N}, s > 1, and the corresponding (normalized) eigenvectors
by {Y, :n e N}

(A2) d(m,n):=|Ay—A,|— O0ifand only if |m —n| — oo. Here |n| :=n+- - -+ny,
neN°.

(A3) There are A > 0 and y > s — 1 such that

A = Aol T < Alm —nl”, m#n. (1-5)

Here |)_cy:=xi/+---+x;/.

(A4) V : X — X is symmetric and bounded (hence self-adjoint). Moreover, there
exist A > « and o > 0 such that

| (Y V)| < Ae™*2720 m —n| — oc. (1-6)

Since V is bounded, it is a fortiori 7-bounded with T-bound 0. Thus, the operator
family g +— T'(g) =T + gV with D(T(g)) = D(T) is type-A real-holomorphic in
the sense of Kato [1976, §VIL.2] for all g € C.
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Consider now the Rayleigh—Schrédinger perturbation expansion near any eigen-
value 1, (g) of H(g). The initial point of A,(g) is the eigenvalue A, of T, n € Z°.
Thus,

0.¢]
In(8)=In+ ) Be(m)g", (1-7)
=1
The expansion (1-7) has positive radius of convergence r,, n € Z*, by the bound-
edness of V, which implies

d) |Vl
Fp 22—,
- 2

The vanishing of the convergence radius r(n) | 0 as d(4,) | 0 not only may cause
the divergence of the perturbation expansion but may prevent its very existence
also for a bounded perturbation V; see Remarks 1.3 and 2.1. Then the purpose of
this paper is to explicit determine, under the above assumptions, the dependence
of the perturbation series on the vanishing rate of the isolation distance d(A,) by
proving the following quantitative estimate.

Theorem 1.1. Let T and V fulfill assumptions (A1)—(A3). Set

d(ry) = dist(Spec[(T) \ {An}], An)- (1-8)

A
R(A,a,y):= o (1-9)

Then the following n-independent estimate holds:
|Be)| < R(A, &, ) @O [y (€ = D! foralln € Z. (1-10)
The uniform estimate (1-10) makes it possible to establish the uniform asymp-
totic nature to all orders of the perturbation expansion.

Corollary 1.2. The perturbation expansion , + Y, Be¢(n) gt represents an as-
ymptotic expansion to all orders of the eigenvalue A,(g) uniformly with respect
ton € N*; i.e, for any fixed N € N,

o (@) = 30 Bewst]

1-11
1810 lgIV (-0

uniformly with respect ton € N°.

Remark 1.3. The very existence of perturbation theory at the vanishing of the iso-
lation distance, i.e., at the limit # — oo in the present case, requires the validity of
estimates independent of n on the coefficients By ,. The conditions (1-5) and (1-6)
imply the existence of g(n) > 0 such that

I’l’l?V n —
||Z ‘” Wl g < 2. (1-12)

meZ*®
‘m#n
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Now
1 2
sup —— < —.
m#n p‘m - )‘n| dfz

Moreover, since V is bounded and symmetric,

4 =max( sup > (W Vrudl, sup D [, Vw,m),

mez* neZs nezs mezs
whence U V)| 5
> M’ﬁTl =—IvI.
me’ m n n
m#n

Thus, if n is fixed, i.e., if A, is isolated with isolation distance d, > 0, the standard
convergence criterion valid for the perturbation series of the isolated eigenvalue A,
under the bounded perturbation V (see, e.g., [Kato 1976, §VIL.2])

2(g|
dy

VIl <1 (1-13)

implies a fortiori the inequality (1-12). On the other hand, as n — oo, i.e., d, — 0,
in general the inequality (1-13) has a meaning only for g = 0, while (1-12) can be
rewritten (again by (1-5) and (1-6), which are an adaptation of the small-denominator
conditions of classical perturbation theory) in the form of an inequality independent
of n:

dy N
|g|AA|:W(2e°‘V)j| <1. (1-14)

This inequality is the starting point for the n-independent estimates of Theorem 1.1.

Remark 1.4 (notation). The underlining operation always transforms into vector
indices with s components the corresponding scalar ones. Namely,

m:=(my,...,mg) €2, myeZ i=1,...,s. (1-15)

The star operation transforms a positive integer index into a nonnegative one; i.e.,

g € N, means ¢ =0, 1, .... Furthermore, |m| denotes the length of the multi-
index m:

Im|:=mi|+-- -+ |mq]. (1-16)

Products and powers of multi-indices abbreviate products and powers of the com-
posing indices:

Vi=my! - omy!,

n.— z'lnl ezl (1-17)

INaz) :=T(az1) - T'(azs), aeR.

I3
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Example 1.5. Let T be the Schrodinger operator in L?(R*) with domain and action
defined as

D(T) = H*R*)NL3(RY),

18 1-18
Tu:—%AM+§Z[w,%x,%—S/2]M, u € D(T). o

k=1

T is the self-adjoint, compact-resolvent Schrodinger operator generated by the p-

dimensional quantum harmonic oscillator, with frequencies 1 > w; >0,k =1, ..., s.
Thus, condition (A1) is fulfilled.
The rescaling map (U, £)(x) = (@ - - 0,) /2 f (@x), @x := (@1x1, ..., 0,%,),

is unitary in L?(R*), and by an abuse of notation, we still denote by 7' the unitary
image U,TU, !, Hence, the action Tu becomes

N

1 d*u
Tu=— E wk|:——2+x,%u—1u].
2 — dx;;

The corresponding eigenvalues are

S
(@)=Y woemi = (@, n), neN,). (1-19)
k=1
Since w; > 0 and n; > 0,i =1,...,s, the difference |A, — A,| = (@, (r —n))
can vanish only if [r —n| — oo, with at least two of the components r; — n;,
j=1,...,s, having different sign. Hence, condition (A2) is fulfilled. Assume
now irrational independence of the frequencies, i.e.,

o+ +ov; =0, yyeZ, ifandonlyif v,=0, k=1,...,s. (1-20)

Then all eigenvalues A, (w) are simple, and condition (A3) is equivalent to requiring
the diophantine condition

Ho, V)| > A, y>s—1, m—n:=v#£0 (1-21)

on the frequencies w. The set of the diophantine values of w is dense in [0, 1]°.
By condition (1-20), the eigenvalues A, () are simple. The corresponding nor-
malized eigenvectors are

1
Va(x) = ———=¢ "2 H,(x) == In), (1-22)
n /72&’1! n
where x — H,(x),n=0,1, ..., is the n-th Hermite polynomial in R and
x=(x,..,x) R, 2m =t
—x2 2

— —_———— 2
e =e " xs’ HQ()_C) =Hn1(xl)"‘Hn5(xs)-
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Now let 2 < ¢ < 6. Consider the function V(x) € C*°(R*; R) such that

V) =e o), sup|d@)| <1, [x[7:=|x/74 - +|x7.  (1-23)

xeRs

Denote by V (x) the maximal multiplication operator by V(x) in L?(R®). Then
IVlz2- 2 < 1. Thus, the operator H = T + V defined on D(T) is self-adjoint
in L2(R*) with compact resolvent. In Proposition 2.6 below we will prove the
estimate

|<1ﬁm, V¢E>L2(R‘V)| < e—E(VﬂI-HﬂI)’

with ¥ > 0 independent of (m, n). Hence, (A4) is fulfilled in this example.

2. Proof of the result

We recall the basic definitions of (Rayleigh—Schrddinger) eigenvalue perturbation
theory [Kato 1976, §11.1.5 and §§VII.1-3] in this context. Consider an eigenvalue
An, n € Z°, of T corresponding to the (normalized) eigenvector v,, henceforth
abbreviated |n).

P, denotes the (one-dimensional) orthogonal projection operator from X to the
one-dimensional subspace spanned by |n).

. Py
e S denotes the reduced resolvent of T, i.e., S(A) := Z —.
A=A
k#nezs =
. ) Py
o S, is the reduced resolvent evaluated at A = A,, i.e., S, := Iy *A .
ktnezs “E T 00
. = 3 T ys1 qs0=p (2-1)
o Gi—hpt = e T

k#nezs

In this situation we can use the explicit expressions (2.32)—(2.33) in [Kato 1976,
Chapter II] for the coefficients By(n) of the perturbation series (1-7):

L
1P
B =y E0 Yo VISV VISP 22)
p=1 kit Akp=p—1
ki=0,1,...
i=l1,..., p—1

Since

[S,171n) =0, k, >0,  [S,1°ln) = In),
T VIS, 1V - VIS, 1] = (n, VS, 1V - - - VErn), (2-3)
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(2-2) becomes

AR
Be(’l)zz( " By, (2-4)
p=1 p
where
Beym)= Y (n, VIS,V VIS, V). (2-5)

k1+"'+kp—l=[1—1

Remark 2.1. For £ =2, we have p =2 and the above formulas yield the standard
second-order term of the Rayleigh—Schrdinger expansion:

[(n, Vk)|?
Bya(n) =) ———.
i TP

In the absence of a condition controlling the vanishing of [Ax — A,| as |k —n| — oo,
the above series can of course diverge even if

sup ) (In, VK|)* < +oo.
neNs keNs

On the other hand, this last inequality is implied by the standard Schur condition
ensuring the boundedness of V2 and hence of V.

We can rewrite in more detail the factor (n, VSQ‘l e VS;" ~'Vn) making explicit
all factors with at least one k; = 0. Namely, consider the g-partition

p—l=j+-+j;. Jjs=zl l=g=p-1 (2-6)

The number of the g-partitions is (see, e.g., [Andrews 1976]) N(p, q) = (5:;)
Furthermore, let m(p, g) = p — 1 — g be the total number of zeros in the g-partition
of (ki, ..., kp—1). We can thus rearrange the sequence (ki, ..., k,_1) as

kit+--tkp1=p—l=mi+ji+ma+jp+mg+j,, m=mi+---+my. (2-7)

As a consequence,
(p=1)

VIS, 1% -+ VIS,V = Y N(p, q)H[VP VIS,

q 1
my

XH[VPE]h- H[VP] VIS, 1V, (2-8)

whence:
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Lemma 2.2. Letky, ..., k,,my,...,mgy, ji1,..., jq berelated through (2-7). Then

BZ,p(@) = Z (,2, V[Srl]kl . V[S,l]k”_l VILL)
k1+"'+kp,1:p71
-1
—pZN@ Dvnym-m Y eVl Vel (n.Vrg) P
! S PIFN, . g F G =2 Ay =An)? Ay, —An) e
-1
_pZN(p q){n Vn)p_l_‘l Z |<E,V1’1>|2 ) |<7},VZ'2)|2 |(,1’qu>|2
= S FIFM L g 718 Gy =2 Ay =2) 2 Oy =)

Proof. The product (2-8) is unchanged if P, is replaced by P,lz. Recalling that

o0

Pf
— (= 1)

S/ =

and denoting

m
Qi(m, jin) = [LVR1'VS,
h=1
m—1
Q(m—1, jin) = [[IVPI'VP,P, VS,

h=1

m—1

Q3(m—1, jin,r):=[[IVP)'VP,P,V PP,

h=1

this yields
p—1

Bep(m) =Y N(p.q)(n. Qi(mi, ji;n) - Qi(mg, jgin)Vn)
qg=1

p—1 mp—1
=Y N(p. q)<r_l, [ Q20mi—1,jiin) - Qalmy — 1, i n)Vf_1>
qg=1

h=1
p—1
= N(p,q)(A, — )‘r,t)_]l (A, — )‘fz)_n T ()"!q - )‘E)_jq
qg=1
XY (ma0my— 1, jiin ) - Qa0mg — 1, jgin,rg) V).
FIFEN,. N
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Hence, by (2-8),

> VIS, VIS, V)
k1+“'+kp71=p—1

mi—1

—ZN(p q>< [P VP,PVE, P,
h=1
my—1
< [Ttve've,p, ve,P, - ] VP,qP[qVI_a>
p—1
=Y N(p,q){n, V)™ -+ (n, V)"
qg=1
x ¥ (. Ve{e, Vi) (o, Vra)(ra, Vi) - (2, Vig)irg, Vi)
ity (py = An)t Ay = An)? (Apy = An)e
p-1 2 2 2
.V ,Vr n,Vr
=Y N@p.@)n, vm)yr'¢ " |<f imjl ' |<f f)ljz |§: iqﬂj '
g=1 ,17&,1’“”,4#@( r At (=) (g =2n) e
Jitig=p=1
This concludes the proof. U

The first step in estimating the coefficients B, (n) is therefore estimating the
fractions |{(n, Vr) |2 /(A — kn)j . In turn, this requires an analysis of the vanishing
mechanism of the denominators (A, — A,)’. A preliminary remark is:

Lemma 2.3. With the assumptions of Lemma 2.2,
(1, Vr)?| _ra

E ——— =< ( Y (2-9)
|)\r - )\n |] al

r#nezs - -

Proof. Equation (2-9) is a direct consequence of assumptions (A3) and (A4) be-
cause

> [(n, Vr)? NS —nleelnl = ANT Y el
_ j =
r#nez’ Ar =P l r#nez* x#0
where
Zpﬂ)’je—alll — Z[|xl|y+, . _+|xp|)/]je—a\;€\ < pj(|x1|yj—|—- . ,+|xp|7j)e—a|)£|.
x7#0 x#0

Hence,

Jj+1 )!
el < pitt 3 gy pigmabl < P w(l’;
x#0 x1#£0 o
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and summing up we get

3 l(n, Vr)?| pA< )'( A

vipeps e = hall Tl

and this proves the lemma. (|

Corollary 2.4. Recalling thatky+---+k,_1=p—1, p=2, ..., inthe assumptions
of Lemma 2.3, the following bounds hold:

|Be,p(n)| < Sl VIS, VIS, V)

k1+"'+kp—1:p_1

2AN [ pAN TR
g(;) (’;—y) Z Yo il il (2-10)

= Jittjg=p—1

Proof. It is enough to insert (2-9) in the statement of Lemma 2.2 on account of the
bounds N(p, q) <27, |{n, Vn)| <1 and the fact that j; +---+j,=p—1. [

We can now state and prove the main estimate.

Proposition 2.5. Under assumptions (A1)—(A3),
|Be(n)] < (4D TRA, &, y) [y (€ — D]!. (2-11)
Proof. We have, by (2-4),

l
B
|Be(w)| 52%@

p=1
Clearly,

> it i < (p = Dly(p— DI
Jitetig=p=1
Moreover,

p—1

2 p's

g=1
Therefore, by Corollary 2.4,

pAN'!

2A -
|Be,p(n)] <(2p)”(p—1)p< > <ay> ly(p— DI,

whence since A < «

14 —1
|Be(m)| < B p(n) < 20) 2" ((%) ly (€ —D]!
p=1
< @R, o, ) Ty (€= D11,
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where
A
R(A,a,y):=—. (2-12)
024
Thus, the proof of the proposition is complete. ([
Proof of Theorem 1.1. The assertion is just (2-11). U

Proof of Corollary 1.2. The validity of (1-11) is a direct consequence of the exis-
tence of the perturbation expansion for all n € N”. The uniformity with respect to
n follows from the n-independent bound (1-10). ([

Example 1.5 (continued). Consider again the normalized eigenvectors of 7':
S
1 2
V@ = [ [¥n 0. ¥ = == PH, (1), n=0,1,.... (2-13)
n ]E ng \ Ak n «/W n

where H, (x), x € R, is the n-th Hermite polynomial. The vectors {,(x) : n € N*}
form an orthonormal basis in L2(R?). Recall that

V(x) =e " d(x).

Consequently, considering the potential V(x) and the corresponding maximal mul-
tiplication operator V in L*(R®), we have:

Proposition 2.6. Condition (A4) is fulfilled in this example; i.e., there is ¥(q) > 0
such that

(Y, V) 1= (m, V(x)n) < e~ >lmitlll, (2-14)

Proof. Consider first the case s = 1. Recall the formula

[n/2] k n—2k
LAy
H”(x)_”lg K (n—2k)!

where as usual [n/2] is the integer part of n. We can thus write

[m/2][n/2]

_1\h+k m—2h n—2k
Y ()P (x) = v/ 2-n4m 21 ) ZZ( Dk 2x)m =2 (2x)

= = hl(m—2h)'k! (n —2k)!

whence

[m/2][n/2] m+n—2(h+k) ,—|x|?
RIENCTITETD 3 DF = P
= £— L bl (m —20)1 k! (n — 2K)!
[m/2](n/2]

< 2 2 1 >y C(lm+n—=2(h+K) +11/9)

= M m =2k (n =20
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Now,
min _[h! (m —2h)!] =T (m/3+ 1),
0<h=[m/2]
i '(n—2k)!1=T 1)?
051{21[2/2][h (n=2)1=Tn/3+1)",
O<£rg[1></2][l“([m +n—=2h+k)+1]/g) =T (m+n+1]/q),
o‘ské[;"/zl

and this implies

[(m, V)| < V204021 1 - [%] . [”] L(m+n+11/q)

2

Now apply the Stirling formula. Since

6 2mAm /4 p=(m+n)/2 y—m+n-+11/g ,(m+n)/3 [%} . ["] <1

for m 4 n large enough,

((m+q)/q) " +9/4
[m, vm)| = =
Without loss, we can take m =n + k&, k > 0. Then
[(2n +k)/q) s

[om, V)l = It Ve k)| < = =2 e

C(m/3+1)2-T(n/3+1)2

(2-15)

Now (n+k) > (2n+k)/qg > n+k)/6if 2 <g <6 and hence thereis 0 < L < 1

such that

- [(2n+k)/q]("+k)/6 Ltk B Lm
= (n + k)0 +0/6pn/6 = pnf6 ~ ynf6’

[{(n, V(n+k))

whence, a fortiori, with L = ¢~ %

[(m, Vn)| < e =0+,

This concludes the proof for s = 1. The general case follows through an immediate

product argument.
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