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SOME RESULTS ON THE ASYMPTOTIC BEHAVIOR
OF FINITE CONNECTION PROBABILITIES IN PERCOLATION

MASSIMO CAMPANINO AND MICHELE GIANFELICE

We review results of two previous papers on the asymptotic behavior of finite
connection probabilities in three or more dimensions for Bernoulli percolation
and the Fortuin–Kasteleyn random-cluster model. In the introduction, we prove
a multidimensional renewal theorem that is needed for these results and previous
results on Ornstein–Zernike behavior; the proof is significantly simpler than that
originally derived by Doney (1966) and those of other subsequent works on this
subject.

1. Introduction

In the last few decades, much progress has been made in the rigorous study of
the asymptotic behavior of connection functions in percolation outside the critical
point. This problem is related to that of typical fluctuations of clusters and, in two
dimensions, of interfaces [Gallavotti 1972; Greenberg and Ioffe 2005].

In the case of the subcritical regime for Bernoulli percolation or the Fortuin–
Kasteleyn (FK) random-cluster model on a regular lattice, connection functions,
i.e., the probabilities that two points are connected, decay exponentially as the dis-
tance between the points tends to infinity [Grimmett 1999; 2006]. In [Campanino
and Ioffe 2002; Campanino et al. 2008], the exact asymptotic behavior of this
decay has been established. It is called Ornstein–Zernike behavior [1914] since
they derived it in statistical mechanics for systems outside the critical point. More-
over, in [Campanino and Ioffe 2002; Campanino et al. 2008], the strict convexity
with positive Gaussian curvature and the analyticity of equidecay surfaces were
established.

An extension of the techniques developed in [Campanino and Ioffe 2002] has
been developed in [Campanino and Gianfelice 2009], where the exact asymptotics
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for the probability that three points are connected has been derived. We refer the
reader to [Coquille et al. 2014] for an application of this result.

In this paper, we review some recent results related to the case of finite con-
nections in the supercritical regime. Here an infinite cluster exists and ordinary
connection functions between two points converge to a positive constant as their
distance tends to infinity. Indeed, in order to be connected between each other,
it is enough for them to be both connected to the infinite cluster that is spread
everywhere. One is therefore led to consider finite connection functions, i.e., the
probabilities that two points are connected between each other but not to the infinite
cluster. In this case, the points are surrounded by a surface in the dual lattice, where
plaquettes of the dual lattice are occupied when the dual bond is vacant. One can
expect in three or more dimensions that these surfaces have similar fluctuations as
the connecting clusters in the subcritical regime and therefore that finite connection
functions also exhibit Ornstein–Zernike behavior. The situation in two dimensions,
where the dual surface is basically composed of two random paths that can freely
fluctuate with the only constraint being no intersection, is different. In this case,
for Bernoulli percolation on the square lattice above the critical point, [Campanino
et al. 2010] established that finite connection functions exhibit a different behavior,
corresponding to that of two independent random paths.

Here we expose some recent results on the asymptotic behavior of finite con-
nection functions in three or more dimensions that appeared in [Campanino and
Gianfelice 2011; 2015]. These results refer both to Bernoulli percolation and to
the FK random-cluster model in the highly supercritical regime, i.e., when the pa-
rameter p related to the occupation probability of a bond is close to 1. It would be
desirable to extend the validity of the results to a larger region of parameter values.

1.1. Notation. We denote |x | :=
∑d

i=1|xi |, by 〈 · , · 〉 the scalar product in Rd

and by ‖ · ‖ :=
√
〈 · , · 〉 the associated Euclidean norm. We then set, for x 6= 0,

x̂ := x/‖x‖ and Sd−1
:= {z ∈Rd

: ‖z‖ = 1}, and denoting by B the closed unit ball
in Rd , for r > 0, we let r B := {x ∈ Rd

: ‖x‖ ≤ r} and Br (x) := x + r B.
For any t ∈ Rd , we define

Ht
x := {y ∈ Rd

: 〈t, y〉 = 0} (1)

to be the (d − 1)-dimensional hyperplane in Rd orthogonal to the vector t passing
through x .

In the sequel, we will omit the dependence on x in the notation if the point is
taken to be the origin.

1.2. A note on the multidimensional renewal process. We first consider a simple
model of a “multidimensional renewal process” that, with suitable adaptations, is
at the basis of the arguments used in most of these works.
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Let {X i }i≥1 be a sequence of independent and identically distributed random
vectors with values in Zd . We assume that E[et |X1|]<∞ for some t > 0. Moreover,
we assume that the support of the law of X1 spans all of Zd and that µ := E[X1] is
such that µ 6= 0.

The exact asymptotics of the expected number of visits to a point x ∈ Zd by
the random walk just defined, as ‖x‖ tends to infinity, was derived for the first
time in [Doney 1966] under the hypothesis of the existence of the first l moments,
with l an explicit function of the lattice dimensions. Extensions of this result to
the renewal measure of x + B, with B a bounded subset of Rd , are given in [Stam
1969], as well as in [Carlsson and Wainger 1984] where the exponential decay of
the tail of X1 is also assumed.

Here, under this last assumption, we present a proof of the multidimensional
theorem on which Theorem 1 relies; the proof is considerably simpler than that
originally derived in [Doney 1966].

Under the hypotheses just given on the law of X1, the following properties are
satisfied:

Local limit theorem: There exists α ∈ (0, 1
2) such that, uniformly in x ∈ Zd

with ‖x − nµ‖< n1/2+α as n tends to infinity,

P

{ n∑
i=1

X i = x
}
=

exp{−〈A−1(x − nµ), (x − nµ)〉/2n}√
(2πn)d det A

(1+ o(1)), (2)

where A is the covariance matrix of X1.

Large deviation estimate from the mean: This follows from the exponential
tail of the distribution of X1.

To estimate the asymptotic behavior in n of the series

∑
k≥1

P

{ k∑
i=1

X i = nµ
}
, (3)

we decompose it as

∑
k≥1

P

{ k∑
i=1

X i = nµ
}
=

n−bn1/2+α
c∑

k=1

P

{ k∑
i=1

X i = nµ
}

(4)

+

n+bn1/2+α
c−1∑

k=n−bn1/2+αc+1

P

{ k∑
i=1

X i = nµ
}

(5)

+

∑
k≥n+bn1/2+αc

P

{ k∑
i=1

X i = nµ
}
. (6)
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Then we estimate the second term on the right-hand side by using the local limit
theorem estimate and the sum of the first and the third terms by using the large
deviation upper bound.

Therefore, we get

∑
k∈N:|k−n|<n1/2+α

exp{−〈A−1(kµ− nµ), (kµ− nµ)〉/2k}√
(2πk)d det A

(1+ o(1))

=

∑
k∈N:|k−n|<n1/2+α

exp{−|k− n|2〈A−1µ,µ〉/(2n(1+ O(nα−1/2)))}√
(2πn(1+ O(nα−1/2)))d det A

(1+ o(1))

=
1√

(2πn)d−1(det A)〈A−1µ,µ〉
(1+ o(1)). (7)

Moreover, by the standard large deviation estimate for the sums of independent
and identically distributed random variables with exponential tails, we obtain

∑
k∈N:|k−n|≥n1/2+α

P

{ k∑
i=1

X i = nµ
}
≤ e−c1n2α

. (8)

Summing up (7) and (8),

∑
k≥1

P

{ k∑
i=1

X i = nµ
}
=

c2

n(d−1)/2 (1+ o(1)), (9)

with c2 a positive constant.

1.3. Possible developments. It would be desirable to extend the results of [Cam-
panino and Gianfelice 2011; 2015] to values of p larger than some critical pc.
Moreover, it should be possible to extend the results of [Campanino et al. 2010]
from independent percolation to the FK random-cluster model.

2. Ornstein–Zernike behavior for the finite connectivity function
in highly supercritical percolation models

2.1. Bernoulli percolation and the FK random-cluster model. Let Ld denote the
graph associated to (Zd , Ed), with

Ed
:= {{x, y} ∈ P2(Z

d) : |x − y| = 1}. (10)

Let L0 be the collection of subgraphs of Ld of finite order. If G ∈ L0, V (G) is
the set of vertices and E(G) is the set of edges of G. We denote by G the graph
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induced by the union of V (G)1 with the sets of vertices of the components of Ld
\G

of finite size. We define the boundary of G as the set

∂G := {e ∈ Ed
\ E(G) : |e∩ V (G)| = 1} ⊂ Ed (11)

and the external boundary of G to be ∂G := ∂G.
Considering the realization of Ld as a geometric graph embedded in Rd , which

with abuse of notation we still denote by Ld , we can look at it as a cell complex,
i.e., as the union of Zd and Ed representing the collections of 0-cells and of 1-cells,
respectively. We denote by (Zd)∗ the collection of d-cells dual to 0-cells in Ld , that
is, the collection of Voronoi cells of Ld , and by (Ed)∗ the collection of (d−1)-cells
dual to 1-cells in Ld , usually called plaquettes in the physics literature.

A bond percolation configuration on Ld is a map Ed
3 e 7→ ωe ∈ {0, 1}. Setting

� := {0, 1}E
d
, we define

� 3 ω 7→ E(ω) := {e ∈ Ed
: ωe = 1} ∈ P(Ed). (12)

Denoting by G := {G ⊆ Ld
: G = G(E), E ∈ P(Ed)} the collection of spanning

subgraphs of Ld , we define the random graph

� 3 ω 7→ G(ω) := G(E(ω)) ∈ G (13)

and by κ(ω) the number of its components. Then, given l ≥ 1 and x1, . . . , xl ∈ Zd ,
we denote by

� 3 ω 7→ C{x1,...,xl }(ω) ∈ P(Zd) (14)

the common open cluster of the points x1, . . . , xl ∈ Zd , that is, the set of vertices
of the component of the random graph G to which these points belong, provided
it exists, and set

� 3 ω 7→ E{x1,...,xl }(ω) := E(C{x1,...,xl }(ω))∩ E(ω)⊆ Ed . (15)

We also define, in case C{x1,...,xl } is finite, the random set ∂C{x1,...,xl } to be equal
to ∂G if G is the component of G whose set of vertices is C{x1,...,xl } and the random
set

S{x1,...,xl } := (∂C{x1,...,xl })
∗. (16)

Let F be the σ -algebra generated by the cylinder events of �. If 3 is a finite
subset of Zd , let E3 be the subset of Ed such that V (E3) =3 and denote �3 :=
{0, 1}E

3

, by F3 the corresponding product σ -algebra and by T3 the σ -algebra
generated by the cylinder events {ω ∈� :ω1 ∈ A}, where1⊂3c and A ∈F1. The
random-cluster measures on Zd [Fortuin and Kasteleyn 1972; Edwards and Sokal

1We refer the reader to [Campanino and Gianfelice 2011; 2015] for the notions of graph theory
needed in the study of percolation theory.
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1988] with parameters q ≥ 1 and p ∈ [0, 1] are the dependent bond percolation
probability measures P on (�,F) specified by

P(A | T3)= P ·3;q,p(A)P− a.s., A ∈ F, (17)

where, setting, for any π ∈ �c
3, �π3 := {ω ∈ � : ωe = πe, e ∈ Ed

\ E3},Pπ3;q,p is
the probability measure on (�,F) with density

Pπ3;q,p(ω) :=
1

Zπ3(q; p)
p|E(ω)|(1− p)|E

3
\E(ω)|qκ3(ω)1�π3(ω), (18)

where κ3(ω) is the number of the components of G(ω) intersecting 3.
For q = 1, the FK random-cluster model coincides with Bernoulli percolation.

Therefore, we omit in this case the value of q in the specification of P.
Random-cluster measures satisfy the FKG inequality; that is, for any couple f, g

of random variables increasing with respect to the natural partial order defined
on �, P( f g) ≥ P( f )P(g). Moreover, the partial order of � induces a stochastic
ordering on the elements of the collection of probability measures defined by (18);
namely, for any increasing random variable f , P

π1
3;q,p( f )≤ P

π2
3;q,p( f ) if π1 ≤ π2.

Hence, denoting by � such an ordering, for all π ∈�c
3, Pf

3;q,p �Pπ3;q,p �Pw
3;q,p,

where Pf
3;q,p and Pw

3;q,p stand for the probability measure with density (18) cor-
responding to the free (π ≡ 0) and to the wired (π ≡ 1) boundary conditions,
respectively. Since, for #= f,w, the (weak) limit of the sequence {P#

3;q,p} along
any exhaustion {3} ↑ Zd exists (see, e.g., [Grimmett 2006, Theorem 4.19]) and
is the random-cluster measure that we denote by P#

q,p, the ordering � extends as
well to random-cluster measures and Pf

q,p � P� Pw
q,p.

Furthermore, denoting by Pp′ := P1,p′ the independent Bernoulli bond percola-
tion probability measures on Zd with parameter p′, by Theorem 3.21 of [Grimmett
2006, p. 43], we obtain the stochastic domination inequalities

Pp(q) � Pf
q,p � Pw

q,p � Pp, (19)

where p(q) := p/(p+ q(1− p)).
In the following, we assume the random-cluster measure Pq,p to be translation-

invariant.

2.2. Results.

Theorem 1. For any d ≥ 3 and any q ≥ 1, there exists p0 = p0(q, d) such that, for
all p > p0, uniformly in x ∈ Zd as ‖x‖→∞,

Pq,p{0↔ x, |C{0,x}|<∞} =
8q,p(x̂)√
(2π‖x‖)d−1

e−τq,p(x)(1+ o(1)), (20)
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where 8q,p is a positive real analytic function on Sd−1 and τq,p an equivalent
norm in Rd .

As a byproduct of the proof, we also obtain the following result.

Theorem 2. For any d ≥ 3 and any q ≥ 1, there exists p0 = p0(q, d) such that, for
all p > p0, the equidecay set of the two-point finite connectivity function is locally
analytic and strictly convex. Moreover, the Gaussian curvature of the equidecay
set is uniformly positive.

These theorems are proven for the independent percolation case in [Campanino
and Gianfelice 2011] and for the general case in [Campanino and Gianfelice 2015].

2.3. Analysis of connectivities. The following result appears as Proposition 4 in
[Campanino and Gianfelice 2015].

Proposition 3. Given q ≥ 1 and p ∈ (0, 1), let Pq,p be a translation-invariant
random-cluster measure on Zd with parameters q and p. Then for any x ∈ Rd ,

τq,p(x) := − lim
n→∞

1
n

log Pq,p{0↔bnxc, |C{0,bnxc}|<∞} (21)

exists and is a convex and homogeneous-of-order-1 function on Rd .

Proof. For any 1⊆ Zd , let us denote by E1 :=
⋃

x∈1 E{x} ⊆ Ed the set of edges
belonging to open paths starting at the vertices of 1.

Now let 3 be a finite subset of Zd such that 3 3 0. For any two distinct
lattice points x, y ∈ 3, looking at 1{0↔x, 0=3c} and 1{x↔y, y=3c} as functions
of (E{x}, E3c), they are both nondecreasing on E{x} and nonincreasing on E3c .
Therefore, by Theorem 2.1 in [van den Berg et al. 2006],

Pq,p({0↔ x, 0 =3c
} ∩ {x↔ y, y =3c

} | {x =3c
})

≥ Pq,p({0↔ x, 0 =3c
} | {x =3c

})Pq,p({x↔ y, y =3c
} | {x =3c

}); (22)

that is,

Pq,p{x =3c
}Pq,p{0↔ x, x↔ y, x =3c

}

≥ Pq,p{0↔ x, x =3c
}×Pq,p{x↔ y, x =3c

}, (23)

which implies

Pq,p{0↔ x, x↔ y, C{0,x,y} ∩3c
=∅}

≥ Pq,p{0↔ x, C{0,x} ∩3c
=∅}×Pq,p{x↔ y, C{x,y} ∩3c

=∅}. (24)

But

Pq,p{0↔ y, C{0,y} ∩3c
=∅} ≥ Pq,p{0↔ x, x↔ y, C{0,x,y} ∩3c

=∅}; (25)
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hence,

Pq,p{0↔ y, C{0,y} ∩3c
=∅}

≥ Pq,p{0↔ x, C{0,x} ∩3c
=∅}×Pq,p{x↔ y, C{x,y} ∩3c

=∅}. (26)

Taking the limit 3 ↑ Zd ,

Pq,p({0↔ y, |C{0,y}|<∞})
≥ Pq,p({0↔ x, |C{0,x}|<∞})×Pq,p({x↔ y, |C{x,y}|<∞}). (27)

Proceeding as in the proof of Proposition 15 in [Campanino and Gianfelice 2011],
we obtain the thesis. �

2.4. The independent percolation case. We will show, without going too much
into details for which we refer the reader to [Campanino and Gianfelice 2011],
how the proof of Theorem 1 in the independent percolation case can be reduced to
that of an estimate of the form presented in (9).

Given x, y ∈ Zd , we set

ϕ(x, y) :=
{

min{|S{x,y}(ω)| : ω ∈ {x↔ y}}, x 6= y,
0, x = y.

(28)

Here ϕ is symmetric and translation-invariant, so we write ϕ(x, y)= ϕ(x − y).
We remark that, given Gi := (Vi , Ei ), i = 1, 2, two connected subgraphs of Ld

of finite size, by (11), ∂(G1 ∪G2)⊆ ∂G1 ∪ ∂G2. Moreover,

∂(G1 ∪G2)= ∂(G1 ∪G2)⊆ ∂G1 ∪ ∂G2. (29)

This allowed us to prove (see Lemma 4 and Proposition 5 in [Campanino and Gian-
felice 2011]) that the sequence {ϕn}n∈N, where, for any n ∈N,Rd

3 x 7→ ϕn(x) :=
ϕ(bnxc)/n ∈ R+, converges pointwise to ϕ, which is a convex, homogeneous-of-
order-1 function on Rd . Furthermore, {ϕn}n∈N converges uniformly on Sd−1.

Conjecture 4. We conjecture that ϕ is the l1 norm in Rd , i.e., ϕ(x) = |x | :=∑d
i=1|xi |.

In the limit of p tending to 1, the support of the probability distribution of the
finite cluster containing two sites x and y, conditioned to its existence, is given
by the configurations minimizing ϕ(x − y). Therefore, given p sufficiently close
to 1, we can estimate the probability that the finite cluster of two points has an
external boundary of size larger than (1+ δ)ϕ(x − y), for δ larger than a given
value δ∗(p, d) that tends to 0 as p tends to 1. Indeed, we have:

Proposition 5. There exist c3=c3(d)>1 and δ∗=δ∗(p, d), with limp↑1 δ
∗(p, d)=

0, such that, for any p ∈ (1− 1/c3, 1) and any δ > δ∗,

Pp({|S{0,x}| ≥ (1+ δ)ϕ(x)} | {|C{0,x}|<∞})≤ c4e−c5ϕ(x), (30)



ON THE ASYMPTOTIC BEHAVIOR OF FINITE CONNECTION PROBABILITIES 319

with c4 = c4(d, p) > 1 and c5 = c5(d, p, δ) > 0.

Hence, we are left with the estimate of the probability that the external boundary
of C{0,x} has size smaller than (1+ δ)ϕ(x) for δ > δ∗.

Renewal structure of connectivities. Given t ∈ Sd−1, we define

Ht
y := {x ∈ Rd

: 〈t, x〉 = 〈t, y〉}, y ∈ Rd , (31)

to be the (d − 1)-dimensional hyperplane in Rd orthogonal to the vector t passing
through a point y ∈ Rd and the corresponding half-spaces

Ht,−
y := {x ∈ Rd

: 〈t, x〉 ≤ 〈t, y〉}, (32)

Ht,+
y := {x ∈ Rd

: 〈t, x〉 ≥ 〈t, y〉}. (33)

Let t ∈Sd . Given two points x, y ∈Zd such that 〈x, t〉 ≤ 〈y, t〉, we denote by C t
{x,y}

the cluster of x and y inside the strip St
{x,y} :=Ht,+

x ∩Ht,−
y provided it exists.

Let u be the first of the unit vectors in the direction of the coordinate axes
u1, . . . , ud such that 〈t, u〉 is maximal

Definition 6. Given t ∈ Sd−1, let x, y ∈ Zd such that 〈x, t〉 ≤ 〈y, t〉 be connected
in St

{x,y}. The points b ∈ C t
{x,y} such that

(1) 〈t, x + u〉 ≤ 〈t, b〉 ≤ 〈t, y− u〉 and

(2) C t
{x,y} ∩St

{b−u,b+u} = {b− u, b, b+ u}

are said to be t-break points of C{x,y}. The collection of such points, which we
remark is a totally ordered set with respect to the scalar product with t , will be
denoted by Bt(x, y).

Definition 7. Given t ∈ Sd−1, let x, y ∈ Zd such that 〈x, t〉 ≤ 〈y, t〉 be connected
in St

{x,y}. An edge {b, b+ u} such that b, b+ u ∈ Bt(x, y) is called a t-bond of
C{x,y}. The collection of such edges will be denoted by Et(x, y) while Bt

e(x, y)⊂
Bt(x, y) will denote the subcollection of t-break points b of C{x,y} such that the
edge {b, b+ u} ∈ Et(x, y).

Definition 8. Given t ∈ Sd−1, let x, y ∈ Zd such that 〈t, x〉 ≤ 〈t, y〉 be connected.
Then x, y ∈ Zd are said to be ht -connected if

(1) x and y are connected in St
{x,y} and |C t

{x,y}|<∞ and

(2) x + u, y− u ∈ Bt(x, y).

Moreover, denoting by {x
ht
←→ y} the event that x and y are ht -connected, we set

h(p)t (x, y) := Pp{x
ht
←→ y}. (34)
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Notice that, by translation invariance, h(p)t (x, y) = h(p)t (y − x, 0), so in the
sequel, we will denote it simply by h(p)t (y − x). We also define by convention
h(p)t (0)= 1.

Definition 9. Let t ∈ Sd−1 and x, y ∈ Zd be ht -connected. If Bt(x + u, y − u)
is empty, then x and y are said to be ft -connected and the corresponding event is
denoted by {x

ft
←→ y}. We then set

f (p)t (y− x) := Pp{x
ft
←→ y}. (35)

We define by convention f (p)t (0)= 0.

Definition 10. Given t ∈ Sd−1, let x, y ∈ Zd such that 〈t, x〉 ≤ 〈t, y〉 be connected.
Then:

(1) x, y are called ht -connected and the corresponding event is denoted by {x
ht
←→y},

if C{x,y} ∩St
{y−u,y} = {y− u, y} and |C{x,y} ∩Ht,−

y |<∞.

(2) x, y are called f t -connected and the corresponding event is denoted by {x
f t
←→y},

if they are ht -connected and Bt(x, y)=∅.

Definition 11. Given t ∈ Sd−1, let x, y ∈ Zd such that 〈t, x〉 ≤ 〈t, y〉 be connected.
Then:

(1) x and y are called h̃t -connected, and the corresponding event is denoted by
{x h̃t
←→ y} if

(a) C{x,y} ∩St
{x,x+u} = {x, x + u} and

(b) |C{x,y} ∩Ht,+
x |<∞.

(2) x and y are called f̃t -connected, and the corresponding event is denoted by
{x f̃t
←→ y} if they are h̃t -connected and Bt(x, y)=∅.

The functions h(p)t (x, y) := Pp{x
ht
←→ y} and h̃(p)t (x, y) := Pp{x

h̃t
←→ y} are

translation invariant.
Denoting by g(p)t (x, y), for t ∈ Sd−1, the probability of the event

{x
gt
←→ y} := {x↔ y, |C{x,y}|<∞, |Bt

e(x, y)| ≤ 1}, (36)

which is also translation invariant, we obtain

Pp{0↔ x, |C{0,x}|<∞} = g(p)t (x)+
∑

z1,z2∈Zd

f (p)t (z1)h
(p)
t (z2− z1) f̃ (p)t (x − z2),

(37)

h(p)t (x)=
∑
z∈Zd

f (p)t (z)h(p)t (x − z). (38)
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Proposition 12. Given t ∈Sd−1, for any p ∈ (0, 1) and x ∈Rd such that 〈t, x〉> 0,

τ t
p(x) := − lim

n→∞

1
n

log h(p)t (bnxc) (39)

exists and is a convex and homogeneous-of-order-1 function on Rd . Moreover, for
p ∈ (1− 1/c3, 1),

τ t
p(x)≥ ϕ(x) log

1
c3(1− p)

. (40)

The proof follows from the supermultiplicativity property of the function h(p)t ;
we refer the reader to Proposition 15 in [Campanino and Gianfelice 2011] for the
details.

Since, by Proposition 3, for any p ∈ (0, 1) and d ≥ 2, τp := τ1,p is an equivalent
norm in Rd , there exists c− = c−(p, d) > 0 such that

Pp{0↔ x, |C{0,x}|<∞} ≤ e−c−‖x‖, (41)

while as a byproduct of the proof of Proposition 5 we get that there exists c+ =
c+(p, d) > 0 such that

h(p)t (x)≥ e−c+‖x‖, (42)

it follows that τ t
p ≥ τp is finite and is an equivalent norm in Rd .

Renormalization. We define

W :=
⋂

x̂∈Sd−1

{w ∈ Rd
: 〈w, x̂〉 ≤ ϕ(x̂)}. (43)

Given x ∈ Zd , let t ∈ dW(x) := {w ∈ dW : 〈w, x〉 = ϕ(x)}.
For N ∈ N larger than 1, let us set tN = tN (x) := b‖x‖/Nc− 1 and

yi := bi N x̂c, Ht
i :=Ht

yi
, Ht,−

i :=Ht,−
yi
, Ht,+

i :=Ht,+
yi
, i = 0, . . . , tN , (44)

ytN+1 := x, Ht
ytN+1
:=Ht

x , Ht,−
ytN+1
:=Ht,−

x , (45)

St
i :=Ht,+

i ∩Ht,−
i+1 . (46)

With slight notational abuse, we still denote by S{0,x} its representation as a hyper-
surface in Rd and define

C t
i := C{0,x} ∩St

i , St
i := S{0,x} ∩St

i . (47)

Hence, C{0,x} =
⋃tN

i=0 C t
i and S{0,x} ∩St

0,x ⊆
⋃tN

i=0 St
i .

We call crossing any connected component s of St
i such that, denoting by K(s)

the compact subset of St
i whose boundary is s, there exist y ∈ Ht,−

i ∩ Zd and
y′ ∈ Ht,+

i+1 ∩ Zd , both belonging to C{0,x}, which are connected by an open path
in Ld

∩K(s).
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We remark that, since C{0,x} is connected, the existence of two crossings in St
i

implies the existence of two disjoint paths connecting Ht
i and Ht

i+1 while the con-
verse does not hold true in general.

We say that a slab St
i is good if St

i is connected and made by just a single
crossing of size smaller than twice the minimal one; otherwise, we call it bad.

In Section 3 of [Campanino and Gianfelice 2011], making use of a deterministic
statement, we proved that the number of bad slabs is at most 2δ‖x‖/N . There-
fore, it is possible to modify the configuration of at most c6 N d bonds, with c6 =

c6(d, δ), inside any 3-tuple of consecutive slabs containing a single crossing in
such a way that the resulting cluster will have at least one t-bond inside each of
these slabs. Since these modifications can be performed independently, this fact
and Proposition 5 imply the mass-gap condition f (p)t (x) ≤ e−c7‖x‖h(p)t (x) with
c7 = c7(p) > 0, uniformly in t ∈ Sd−1

x . Thus, from (37), we have τ t
p = τp for any

t ∈ Sd−1
x .

Extending f (p)t to a function defined on the whole lattice by setting it equal to 0,
where it is undefined, set

Rd
3 s 7→ H (p)

t (s) :=
∑
x∈Zd

h(p)t (x)e〈s,x〉 ∈ R, (48)

Rd
3 s 7→ F (p)t (s) :=

∑
x∈Zd

f (p)t (x)e〈s,x〉 ∈ R. (49)

The renewal equation (38) implies

H (p)
t (s)=

1

1− F (p)t (s)
. (50)

Since (41) implies that, for all p ∈ (pc(d), 1), the effective domain of Ht(s),

D
p
t := {s ∈ Rd

: H (p)
t (s) <∞}, (51)

is not empty since D̊
p
t ⊇ K̊

p
t 3 0, where

K
p
t :=

⋂
x̂∈Sd−1

{s ∈ Rd
: 〈s, x̂〉 ≤ τ t

p(x̂)} (52)

is the convex body polar with respect to U
p
t := {x ∈ Rd

: τ
p

t (x)≤ 1}.
For s ∈ K

p
t , since

〈s, x〉 ≤max
s∈K

p
t

〈s, x〉 = τ t
p(x)≤ 1, (53)

h(p)t (x)≤ e−τ
t
p(x) and F (p)t (s) is finite, moreover continuous, then, for all s ∈ ∂K

p
t ,

Zd
3 x 7→ q(p)t;s (x) := f (p)t (x)e〈s,x〉 ∈ R (54)
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is the density of the probability measure Q(p)
t;s on (Zd ,B(Zd)), which has exponen-

tially decaying tails:

f (p)t (x)e〈s,x〉 ≤ e−c7‖x‖h(p)t (x)e〈s,x〉 ≤ e−c7‖x‖. (55)

If X is a random vector with probability distribution Q(p)
t;s , denoting by Et;s

p the
expectation of a random variable under Q(p)

t;s , we set

µ
p
t (s) := Et;s

p [X ] = grad log F (p)t (s), (56)

while
C p

t (s) := Hess log F (p)t (s) (57)

denotes the covariance matrix of X . Since f (p)t (x) > 0 on a whole half-space,
C p

t (s) is nondegenerate. Hence,

∂K
p
t = {s ∈ Rd

: F (p)t (s)= 1} ⊆ Rd
\D

p
t (58)

is a real analytic strictly convex surface with Gaussian curvature uniformly bounded
away from 0, and therefore, because Q(p)

t;s is supported on Ht,+
0 ∩Zd , µp

t (s) 6= 0
and (s, µp

t (s)) > 0 for any s ∈ Br (t)∩ ∂K
p
t with r sufficiently small.

Then let s ∈ Br (t)∩∂K
p
t ; for any µ∈ B(µp

t (s))∩Hs
µ

p
t (s)

, if {X i }i≥1 is a sequence
of independent and identically distributed random vectors distributed according to
Q(p)

t;s , for n ∈ N, we can rewrite (38) as

h(p)t (bnµc)= δ0(bnµc)+ e−〈bnµc,s〉
∑
k≥1

k⊗
i=1

Q(p)
t;s

{ k∑
i=1

X i = bnµc
}
. (59)

Then the proof of the Theorem 1 follow from (9).

2.5. The case of the FK random-cluster model. One can extend the previous re-
sult to finite connections of the FK random-cluster model when the parameter p
related to the occupation probability of a bond is close to 1. As in the independent
percolation case, an estimate on the size of the surface in the dual lattice surround-
ing a finite cluster of two points, as the one given in Proposition 5, is still in force
due to the stochastic domination inequalities given in (19).

This led us to consider only realizations of the cluster C{0,x} whose external
boundary has size smaller than or equal to (1+ δ)ϕ(x) for sufficiently small δ.
Moreover, a suitably modified deterministic statement, as the one presented be-
fore to prove mass-gap condition, allows us to give a probabilistic description
of C{0,x} in terms of a concatenation of subclusters stretching along the direc-
tion dual to x̂ with respect to τp,q , whose sizes, under the conditional measure
Pq,p( · | {0< |C{0,x}|<∞}), have exponentially decaying tails.
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When the parameter p is close to 1, one can perform a polymer expansion for
the supercritical random-cluster model. In this way, we can reduce the analysis of
the exact asymptotics of the finite two-point connection function to the proof of a
local limit theorem result for a random process via thermodynamic formalism as
in [Campanino et al. 2003].

We refer the reader to [Campanino and Gianfelice 2015] for the details.
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