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Correlation inequalities are presented for ferromagnetic Potts models with ex-
ternal field, using the random-cluster representation of Fortuin and Kasteleyn,
together with the FKG inequality. These results extend and simplify earlier
inequalities of Ganikhodjaev and Razak, and also of Schonmann, and include
GKS-type inequalities when the spin space is taken as the set of q-th roots
of unity.

1. Introduction

Correlation inequalities are key to the classical theory of interacting systems in
statistical mechanics. The Ising model, especially, has a plethora of associated
inequalities that have played significant roles in the development of a coherent the-
ory of phase transition (see, for example, the books [7; 22]). These inequalities are
frequently named after their discoverers, and include inequalities of Griffiths [14;
15; 16], Griffiths, Kelly, and Sherman (GKS) [20], Griffiths, Hurst, and Sherman
(GHS) [17], Ginibre [13], Simon and Lieb [21; 24], and so on.

A more probabilistic theory of Ising/Potts models has emerged since around
1970, initiated partly by the work of Fortuin and Kasteleyn [8; 9; 10] on the
random-cluster representation of the Potts model and the random-current method
championed by Aizenman [1] and co-authors. Probably the principle inequality in
the probabilistic formulation is that of Fortuin, Kasteleyn, and Ginibre (FKG) [11].

Inequalities are rarer for the Potts model, and our purpose in this note is to
derive certain correlation inequalities for a ferromagnetic Potts model with external
field, akin to the GKS inequalities for the Ising model. The main technique used
here is the random-cluster representation of this model and particularly the FKG
inequality.

Our results generalize and simplify the work of Ganikhodjaev and Razak [12],
who have shown how to formulate and prove GKS-type inequalities for the Potts
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model with a general number q of local states. Furthermore, our Theorems 3.5
and 3.7 extend the two correlation inequalities of Schonmann [23], which in turn
extended inequalities of [6]. Some of the arguments given here may be known to
others.

The structure of this paper is as follows. The Potts and random-cluster models
are introduced in Section 2, and the results of the paper (Theorems 3.5–3.7) follow
in Section 3. The proofs are given in Sections 4, 5, and 6.

2. The Potts model with external field

Let G = (V, E) be a finite graph, and let J = (Je : e ∈ E) and h = (hv : v ∈ V ) be
vectors of nonnegative reals and q ∈ {2, 3, . . . }. An edge e ∈ E joins two distinct
vertices x and y, and we write e = 〈x, y〉.

We take the “local state space” for the q-state Potts model to be the set Q :=
{0, 1, . . . , q − 1} of “spins”. The configuration space of the model is the product
space 6 :=QV , and a typical configuration is written σ = (σv : v ∈ V ) ∈6. The
Potts measure on G with parameters J and h has sample space 6 and probability
measure given by

π(σ)=
1
Z

exp
{ ∑

e=〈x,y〉∈E

Jeδe(σ )+
∑
v∈V

hvδv(σ )
}
, σ ∈6,

where δe(σ )= δσx ,σy and δv(σ )= δσv,0 are Kronecker delta functions and Z is the
appropriate normalizing constant. Thus, the Je are edge-coupling constants, and
the hv are external fields relative to the local state 0. The Potts measure is said to
be ferromagnetic since Je ≥ 0 for e ∈ E .

We shall make use of the random-cluster representation, for a recent account
and bibliography of which we refer the reader to [18]. The graph G is augmented
by adding a “ghost” vertex g, which is joined by edges 〈g, v〉 to each vertex v ∈ V ;
the ensuing graph is denoted G+ = (V+, E+). The relevant sample space is the
product space � := {0, 1}E

+

. For ω = (ωe : e ∈ E+) ∈�, an edge e is called open
if ωe = 1 and closed otherwise.

An edge e∈ E is assigned parameter pe=1−e−Je , and an edge of the form 〈g, v〉
is assigned parameter pv = 1− e−hv . The random-cluster probability measure φ
on G has sample space � and is given by

φ(ω)=
1

ZRC

{ ∏
e=〈x,y〉∈E+

pωe
e (1− pe)

1−ωe

}
qk(ω), ω ∈�,

where k(ω) is the number of connected components of the graph with vertex set V+

and edge set η(ω) := {e ∈ E+ : ωe = 1}.
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The relationship between the Potts model and the random-cluster model is ex-
plained in [18, §1.4], where it is shown in particular that ZRC = e−|E |Z .

The measures π and φ may be coupled as follows. Suppose ω is sampled from�

according to φ, and let Cv be the connected component of (V, η(ω)) containing
v ∈ V+; the Cv are called open clusters. Every vertex in Cg is allocated spin 0. To
an open cluster of ω other than Cg, we allocate a uniformly chosen spin from Q
such that every vertex in the cluster receives this spin and the spins of different
clusters are independent. The ensuing spin vector σ = σ(ω) has law π . See [18,
Theorem 1.3] for a proof of this standard fact and for references to the original
work of Fortuin and Kasteleyn.

This paper will make use of the FKG inequality and the comparison inequalities
for the random-cluster model. These are presented in a number of places already
and are not repeated here. The reader is referred instead to [18, Theorem 3.8] for
the FKG inequality and to [18, Theorem 3.21] for the comparison inequalities.

3. The correlation inequalities

We begin with a space of functions. Let Fq be the set of functions f :Q→ C such
that, for all integers m, n ≥ 0,

E( f (X)m) is real and nonnegative, (3.1)

E( f (X)m+n)≥ E( f (X)m)E( f (X)n), (3.2)

where X is a uniformly distributed random variable on Q. The above conditions
may be written out as follows. We have that f ∈ Fq if, for m, n ≥ 0,

Sm :=
∑
x∈Q

f (x)m is real and nonnegative,

q Sm+n ≥ Sm Sn.

For I ∈Q, let F I
q be the subset of Fq containing all f such that

f (I )=max{| f (x)| : x ∈Q}. (3.3)

This condition entails that f (I ) is real and nonnegative.
Let f :Q→ C. For σ ∈6, let

f (σ )R
:=

∏
v∈R

f (σv), R ⊆ V . (3.4)

Thinking of σ as a random vector with law π , we write 〈 f (σ )R
〉 for the mean value

of f (σ )R .
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Theorem 3.5. Let f ∈ F0
q . For R ⊆ V , the mean 〈 f (σ )R

〉 is real-valued and
nondecreasing in the vectors J and h and satisfies 〈 f (σ )R

〉 ≥ 0. For R, S ⊆ V , we
have

〈 f (σ )R f (σ )S
〉 ≥ 〈 f (σ )R

〉〈 f (σ )S
〉.

If there is no external field, in that h ≡ 0, it suffices for the above that f ∈ Fq in
place of f ∈ F0

q .

Here are three classes of functions belonging to F0
q .

Theorem 3.6. Let q ≥ 2. The following functions f :Q→ C belong to F0
q :

(a) f (x)= 1
2(q − 1)− x ,

(b) f (x)= e2π i x/q , a q-th root of unity, and

(c) f :Q→ [0,∞), with f (x)≤ f (0) for x ∈Q.

When combined with Theorem 3.5, case (a) yields the inequalities of Ganikhod-
jaev and Razak [12], but with simpler proofs. When q = 2, the latter reduce to
the GKS inequalities for the Ising model; see [14; 15; 16; 20]. We do not know if
the implications of Theorem 3.5 with case (b) are either known or useful. Perhaps
they are examples of the results of Ginibre [13]. In case (c) with f (x) = δx,0,
Theorem 3.5 yields the first correlation inequality of Schonmann [23].

Our second main result follows next.

Theorem 3.7. Let q ≥ 2 and f0 ∈F0
q , and let f1 :Q→C satisfy (3.1). If f0 and f1

have disjoint support in that f0 f1 ≡ 0, then for R, S ⊆ V ,

〈 f0(σ )
R f1(σ )

S
〉 ≤ 〈 f0(σ )

R
〉〈 f1(σ )

S
〉.

If h ≡ 0, it is enough to assume f0 ∈ Fq in place of f0 ∈ F0
q .

Two correlation inequalities were proved in [23]: a “positive” inequality that is
implied by Theorems 3.5 and 3.6(c) and a “negative” inequality that is obtained as
a special case of Theorem 3.7 on setting f0(x)= δx,0 and f1(x)= δx,1. Recall that
Schonmann’s inequalities were themselves (partial) generalizations of correlation
inequalities of [6].

Amongst the feasible extensions of the above theorems that come to mind, we
mention the classical space-time models used to study the quantum Ising/Potts
models [2; 3; 4; 5; 19].

4. Proof of Theorem 3.5

We use the coupling of the random-cluster and Potts model described in Section 2.
Let ω ∈�, and let Ag, A1, A2, . . . , Ak be the vertex sets of the open clusters of ω,
where Ag is that of the open cluster Cg containing g.
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Let R ⊆ V , and let f ∈ F0
q . By (3.4),

f (σ )R
= f (0)|R∩Ag |

k∏
r=1

f (Xr )
|R∩Ar |,

where Xr is the random spin assigned to Ar . This has conditional expectation
gR :�→ C given by

gR(ω) := E( f (σ )R
| ω)

= f (0)|R∩Ag |

k∏
r=1

E( f (X)|R∩Ar | | ω).

By (3.1) and (3.3), gR(ω) is real and nonnegative, whence so is its mean φ(gR)=

〈 f (σ )R
〉. (It will be convenient to use φ(Y ) to denote the expectation of a random

variable Y :�→ R.)
We show next that gR is a nondecreasing function on the partially ordered

set �. It suffices to consider the case when the configuration ω′ is obtained from
ω by adding an edge between two clusters of ω. In this case, by (3.2) and (3.3),
gR(ω

′)≥ gR(ω). That 〈 f (σ )R
〉=φ(gR) is nondecreasing in J and h follows by the

appropriate comparison inequality for the random-cluster measure φ [18, Theorem
3.21].

Now,

E( f (σ )R f (σ )S
| ω)= f (0)|R∩Ag |+|S∩Ag |

k∏
r=1

E( f (X)|R∩Ar |+|S∩Ar | | ω).

By (3.2),
E( f (σ )R f (σ )S

| ω)≥ gR(ω)gS(ω).

By the FKG property of φ [18, Theorem 3.8],

〈 f (σ )R f (σ )S
〉 = φ(E( f (σ )R f (σ )S

| ω))

≥ 〈 f (σ )R
〉〈 f (σ )S

〉,

as required.
When h ≡ 0, the terms in f (0) do not appear in the above, and it therefore

suffices that f ∈ Fq .

5. Proof of Theorem 3.6

We shall use the elementary fact that, if T is a nonnegative random variable,

E(T m+n)≥ E(T m)E(T n), m, n ≥ 0. (5.1)
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This trivial inequality may be proved in several ways, one of which is the following.
Let T1 and T2 be independent copies of T . Clearly,

(T m
1 − T m

2 )(T
n

1 − T n
2 )≥ 0 (5.2)

since either 0 ≤ T1 ≤ T2 or 0 ≤ T2 ≤ T1. Inequality (5.1) follows by multiplying
out (5.2) and averaging.

(a) Inequality (3.3) with I = 0 is a triviality. Since f (X) is real-valued, with the
same distribution as − f (X), E( f (X)m)= 0 when m is odd and is positive when m
is even. When m+ n is even, (3.2) follows from (5.1) with T = f (X)2, and both
sides of (3.2) are 0 otherwise.

(b) An easy calculation shows that

E( f (X)m)=
{

1 if q divides m,
0 otherwise,

and (3.1) and (3.2) follow.

(c) Inequality (3.2) follows by (5.1) with T = f (X).

6. Proof of Theorem 3.7

We may as well assume that f0 6≡ 0 so that f0(0) > 0 and f1(0)= 0. We use the
notation of Section 4, and let Fi :�→ C be given by

F0(ω)= f0(0)|R∩Ag |

k∏
r=1

E( f0(X)|R∩Ar | | ω), (6.1)

F1(ω)=

k∏
r=1

E( f1(X)|S∩Ar | | ω). (6.2)

By (3.1), F0 and F1 are real-valued and nonnegative. Since f0 ∈ F0
q , F0 is non-

decreasing (as in Section 4).
Since f0 f1 ≡ 0,

E( f0(σ )
R f1(σ )

S
| ω)= 1Z (ω)F0(ω)F1(ω),

where 1Z is the indicator function of the event Z = {S = R ∪ {g}}. Here, as usual,
we write A↔ B if there exists an open path in ω from some vertex of A to some
vertex of B. Let T be the subset of V+ containing all vertices joined to S by
open paths, and write ωT for the configuration ω restricted to T . Using conditional
expectation,

〈 f0(σ )
R f1(σ )

S
〉 = φ(1Z F0 F1)

= φ(1Z F1φ(F0 | T, ωT )), (6.3)
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where we have used the fact that 1Z and F1 are functions of the pair T , ωT only. On
the event Z , F0 is a nondecreasing function of the configuration restricted to V+\T .
Furthermore, given T , the conditional measure on V+ \ T is the corresponding
random-cluster measure. It follows that

φ(F0 | T, ωT )≤ φ(F0) on the event Z

by [18, Theorem 3.21]. By (6.3),

〈 f0(σ )
R f1(σ )

S
〉 ≤ φ(1Z F1φ(F0))

≤ φ(F0)φ(F1)

= 〈 f0(σ )
R
〉〈 f1(σ )

S
〉,

and the theorem is proved.
When h ≡ 0, Ag = {g} in (6.1), and it suffices that f0 ∈ Fq .
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