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The set GU f of possible effective elastic tensors of composites built from two
materials with elasticity tensors C1 > 0 and C2 = 0 comprising the set U =
{C1,C2} and mixed in proportions f and 1− f is partly characterized. The ma-
terial with tensor C2 = 0 corresponds to a material which is void. (For technical
reasons C2 is actually taken to be nonzero and we take the limit C2→ 0). Specifi-
cally, recalling that GU f is completely characterized through minimums of sums
of energies, involving a set of applied strains, and complementary energies, in-
volving a set of applied stresses, we provide descriptions of microgeometries
that in appropriate limits achieve the minimums in many cases. In these cases
the calculation of the minimum is reduced to a finite-dimensional minimization
problem that can be done numerically. Each microgeometry consists of a union
of walls in appropriate directions, where the material in the wall is an appro-
priate p-mode material that is easily compliant to p ≤ 5 independent applied
strains, yet supports any stress in the orthogonal space. Thus the material can
easily slip in certain directions along the walls. The region outside the walls
contains “complementary Avellaneda material”, which is a hierarchical laminate
that minimizes the sum of complementary energies.

1. Introduction

Here we consider what effective elasticity tensors can be produced in the limit
δ→ 0 if we mix in prescribed proportions two materials with positive definite and
bounded elasticity tensors C1 and C2 = δC0. In the limit δ→ 0 this represents a
mixture of an elastic phase and an extremely compliant phase. Thus we are given a
set U = {C1, δC0} and we are aiming to characterize as best we can the set GU f of
all possible effective tensors of composites having a volume fraction f of phase 1.
The elasticity tensor C1 need not be isotropic but if it is anisotropic we require that
it has a fixed orientation throughout the composite. Our results are summarized by
the theorems in Section 10.
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To get an idea of the enormity of the problem one has to recognize that in three
dimensions elasticity tensors can be represented by 6× 6 matrices and these have
21 independent elements. The set of possible elasticity tensors is thus represented
as a set in a 21-dimensional space. Even a distorted multidimensional cube in a 21-
dimensional space needs about 44 million real numbers to represent it (specifying
the position in 21-dimensional space of each of the 221 vertices). In the case where
the two phases are isotropic, one is free to rotate the material to obtain an equivalent
structure. Thus the set of possible elasticity tensors is invariant under rotations. As
rotations involve three parameters (the Euler angles) this reduces the number of
constants needed to describe the elasticity tensor from 21 to 21− 3 = 18, and
thus the elasticity tensor can be represented in an 18-dimensional space of tensor
invariants. For example, in the generic case, one can take these 18 invariants as
follows: the six eigenvalues of the elasticity tensor; the two independent elements
of the normalized eigenstrain associated with the lowest eigenvalue that can be
assumed to be diagonal by an appropriate choice of the coordinate axes (which
then fixes these axes); the four independent elements of the normalized eigenstrain
associated with the second lowest eigenvalue that is orthogonal to the first eigen-
strain; the three independent elements of the normalized eigenstrain associated
with the third lowest eigenvalue that is orthogonal to the first two eigenstrains; the
two independent elements of the normalized eigenstrain associated with the third
lowest eigenvalue that is orthogonal to the first three eigenstrains; and the one
independent element of the normalized eigenstrain associated with the third lowest
eigenvalue that is orthogonal to the first four eigenstrains. This brings the total to
6+ 2+ 4+ 3+ 2+ 1= 18. In the same way that it takes two parameters (the bulk
and shear moduli) to specify the elastic behavior of an isotropic material, it takes
18 parameters to specify the elastic behavior of a fully anisotropic material.

A distorted cube in this 18-dimensional space still requires about 4.7 million
numbers to represent it. This makes exploring the range of possible elasticity ten-
sors a daunting, if not impossible, numerical task. Some numerical exploration of
this space has been done by Sigmund [1994; 1995], but we emphasize that this
exploration covers only a tiny fraction of the number of possibilities.

Furthermore, the microstructures we found that lie near the boundary of GU f

have quite complicated multiscale architectures and thus would be difficult to find
numerically. Also, it is not clear whether there are significantly simpler microstruc-
tures that can do the job. The numerical route of Sigmund should provide some
simpler alternatives for the strut configurations in the multimode structures in the
walls, although even then one needs to make subtle multiscale replacements (such
as those appearing later in Figures 9 and 10) to achieve the desired performance.
Numerical tests need to be made to see whether one can achieve the same perfor-
mance with simpler structures. While strut configurations might be suitable at low
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volume fractions they are unlikely to be ideal at high volume fractions. Work by
Allaire and Aubry [1999] shows that sometimes optimal microstructures necessar-
ily have structure on multiple length scales. Even if one could numerically explore
the question, it is not clear how one could summarize the results in a concise way.

From the applied side there is growing interest in trying to characterize the ef-
fective elasticity tensors of microstructures that can be produced by 3-dimensional
or 2-dimensional printing. A dramatic example of such a microstructure is given in
Figure 1. Our results have obvious relevance to this problem in the case where the 3-
dimensional printed material uses only one isotropic material plus void. Although
our microstructures are somewhat extreme, they provide benchmarks that show
what is theoretically possible. What is possible in practice will be a subset of this.

The microstructures we consider involve taking three limits. First, as they have
structure on multiple length scales, the homogenization limit where the ratio be-
tween length scales goes to infinity needs to be taken. Second, the limit δ→ 0 needs
to be taken. Third, as the structure involves thin walls of width ε, along which the
material can “slip”, the limit ε→ 0 needs to be taken so the contribution to the
complementary energy of these walls goes to zero, when the structure supports an
applied stress. (Here ε should not be confused with the size of the unit cell, as
is common in homogenization theory). The limits should be taken in this order,
as, for example, standard homogenization theory is justified only if δ 6= 0, so
we need to take the homogenization limit before taking the limit δ→ 0. In the
walled structures the material may only occupy a small volume fraction, but this
is ultimately irrelevant as the thin walled structures themselves occupy only a very
small volume fraction in the final material (which goes to zero as ε→ 0).

The case, applicable to printed materials, when phase 2 is actually void, rather
than almost void, requires special care. To justify the homogenization steps taken
here one has to first replace the void phase 2 with a composite foam having a
small amount of phase 1 as the matrix phase, so that its effective elasticity tensor
is nonzero, but approaches zero as the proportion of phase 1 in it tends to zero. The
microgeometry in this composite needs to be much smaller than the scales in the
geometries discussed here, which would involve mixtures of it and phase 1.

We emphasize, too, that our analysis is valid only for linear elasticity, and ig-
nores nonlinear effects such as buckling. In reality the structures will easily buckle
under compression. This buckling will occur, for example, in the square beam
array structure of Figure 10. Additionally, some of the multimode materials are
constructed via a superposition of appropriately shifted and deformed pentamode
materials, and these substructures will interact under finite deformations. Also, in
practice it would be difficult to realize the delicate multiscale materials that come
close to attaining the bounds. Thus what is practically realizable will be just a
subset, dependent on the current state of technology, of the set GU f .
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While the title refers only to printed materials, the results are also applicable to
any periodic, or statistically homogeneous, material containing voids or pores in a
homogeneous material. Printed materials are more interesting than typical porous
materials as they allow one to explore a wider range of interesting structures.

In a companion paper [Milton et al. 2017] we consider the opposite limit δ→∞,
corresponding to a mixture of an elastic material and an almost rigid material.

2. Review of some bounds on the elastic moduli of two-phase composites
and geometries that attain them

Here we review a selection of results on sharp bounds on the elastic response of two-
phase composites and the associated problem of identifying optimal geometries
that attain them. The interested reader is encouraged to look at the books of Nemat-
Nasser and Hori [1998], Cherkaev [2000], Milton [2002], Allaire [2002], Torquato
[2002] and Tartar [2009], which provide a much more comprehensive survey.

The most elementary bounds on the elastic properties of composites are the
classical bounds of Hill [1952], who implicitly showed that

〈[C(x)]−1
〉
−1
≤ C∗ ≤ 〈C(x)〉. (2-1)

Here the angular brackets 〈 · 〉 denote a volume average, and the inequality holds
in the sense of quadratic forms, i.e., for fourth-order tensors A and B satisfying
the symmetries of elasticity tensors we say that A ≥ B if ε : Aε ≥ ε : Bε for all
matrices ε. While these bounds were not explicitly stated by Hill in his 1952 paper
they are an immediate and obvious consequence of his equation (2). If the two
phases are isotropic the spectral decomposition of the elasticity tensors C1 and C2

of the two phases is

C1 = 3κ13h + 2µ13s and C2 = 3κ23h + 2µ23s, (2-2)

where κ1 and κ2 are the bulk moduli of the two phases, µ1 and µ2 are the shear
moduli, and

{3h}i jk` =
1
3δi jδk`, {3s}i jk` =

1
2 [δikδ j`+ δi`δk j ] −

1
3δi jδk` (2-3)

act as projections. The tensor 3h projects onto the 1-dimensional space of matri-
ces proportional to the second-order identity matrix, while 3s projects onto the
5-dimensional space of trace-free matrices. Similarly if the effective elasticity ten-
sor C∗ is isotropic we have that C∗ = 3κ13h + 2µ13s , where κ∗ and µ∗ are the
effective bulk and shear moduli of the composite. In this paper we are interested
in the case where the two phases are well-ordered in the sense that

C1 ≥ C2, (2-4)
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and we will take the limit as C2 → 0, meaning that all the eigenvalues of C2

approach zero. In the case of isotropic components this well-ordering assumption
is satisfied if κ1 ≥ κ2 and µ1 ≥ µ2, and we will take the limit as κ2, µ2→ 0.

For isotropic composites of two well-ordered materials Hashin and Shtrikman
[1963] and Hill [1963] obtained the celebrated bounds

κ∗ ≥ f κ1+(1− f )κ2−
f (1− f )(κ1−κ2)

2

(1− f )κ1+ f κ2+4µ2/3
,

κ∗ ≤ f κ1+(1− f )κ2−
f (1− f )(κ1−κ2)

2

(1− f )κ1+ f κ2+4µ1/3
,

µ∗ ≥ f µ1+(1− f )µ2−
f (1− f )(µ1−µ2)

2

(1− f )µ1+ f µ2+µ2(9κ2+8µ2)/[6(κ2+2µ2)]
,

µ∗ ≤ f µ1+(1− f )µ2−
f (1− f )(µ1−µ2)

2

(1− f )µ1+ f µ2+µ1(9κ1+8µ1)/[6(κ1+2µ1)]
.

(2-5)

In fact these bounds (and the variational principles they derive from) hold even if
one component has a negative bulk modulus, so long as the composite is stable
[Kochmann and Milton 2014]. For 2-dimensional composites (fiber reinforced ma-
terials) analogous bounds on the effective elastic moduli were found by Hill [1964]
and Hashin [1965]. Bounds on the complex effective bulk and shear moduli of
isotropic two-phase 2-dimensional or 3-dimensional composites were also obtained
[Gibiansky and Milton 1993; Milton and Berryman 1997; Gibiansky et al. 1993;
1999; Gibiansky and Lakes 1993; 1997]: these are appropriate to the propagation
of fixed frequency elastic waves in composites when one or both of the phases is
viscoelastic, and when the wavelength is much larger than the microstructure.

An important “attainability principle” is that bounds obtained by substituting a
trial field in a variational principle will be attained when the geometry is such that
the actual field matches this trial field. This principle was used, for example, in
[Milton 1981c] to find geometries that attain the Hashin–Shtrikman bounds on the
effective bulk modulus of composites with three or more phases (see also [Gibian-
sky and Sigmund 2000]). The Hashin–Shtrikman variational principles involve a
minimization over trial polarization fields, and the actual polarization field depends
on the choice of the elasticity tensor C0 of a “reference medium” (typically chosen
to be positive definite) and is defined by

P(x)= (C(x)−C0)ε(x)= σ (x)−C0ε(x). (2-6)

The variational principles require that C(x)−C0 be either positive semidefinite or
negative semidefinite, so in the case of a well-ordered material natural choices of
C0 are C1 or C2 and correspondingly the field will be zero in phase 1 or phase 2,
respectively. The bounds are obtained by assuming it is constant in the other phase
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(proportional to the identity in case of the bulk modulus bounds, and trace-free
for the shear modulus bounds). Hashin and Shtrikman [1963] recognized that
the effective bulk modulus would be attained by the Hashin assemblage of coated
spheres [Hashin 1962]. A single coated sphere can be a neutral inclusion: if the
surrounding “matrix” material has an appropriate bulk modulus (with a specific
value between κ1 and κ2) one can insert it in the matrix material without disturbing
a surrounding hydrostatic field (this is the principle behind the unfeelability cloak
of Bückmann, Thiel, Kadic, Schittny and Wegener [Bückmann et al. 2014]). The
inclusion is invisible to the surrounding field and one can continue to insert similar
inclusions, scaled to sizes ranging to the very small, until one essentially obtains a
two-phase composite with effective bulk modulus the same as the original matrix
material. Due to radial symmetry the forces acting on the spherical inner core will
be equally distributed around the boundary and directed radially: thus the field
inside the core material is hydrostatic and constant, and hence by the attainability
principle, and due to their neutrality, sphere assemblages must attain the effective
bulk modulus bounds in (2-5).

One very important class of microgeometries for which the field is constant
in one phase are the sequentially layered laminates (first introduced by Maxwell
[1873]) built by layering phase 2 with phase 1 in a direction n1 (by which we mean
n1 is perpendicular to the layers), then taking this laminate and layering it again on
a much larger length scale with phase 1 in a direction n2 to obtain a “rank 2” lam-
inate, and continuing this process until one obtains a rank m laminate, containing
in a sense a “core” of phase 2 surrounded by layers of phase 1. The field is then
constant in the core material of phase 2. An explicit formula for the effective elas-
ticity tensor of such sequentially layered laminates was obtained by Francfort and
Murat [1986], generalizing the analogous formulas obtained by Tartar [1985] for
conductivity. Of course one can switch the roles of the phases in this construction
and thus obtain a material where the field is constant in phase 1. It then immediately
follows from the attainability principle (without requiring any calculation!) that
one can attain the Hashin–Shtrikman shear modulus bounds (2-5) (and simultane-
ously the bulk modulus bounds) if one can find a sequentially layered laminate
that has an isotropic elasticity tensor, and the easiest way to do this is to do the
lamination sequentially by adding infinitesimal layers in random directions. This
established the attainability of the Hashin–Shtrikman shear modulus bound [Milton
1986], also established independently and at the same time by Norris [1985], using
the differential scheme that was known to be realizable [Milton 1985; Avellaneda
1987a] — in fact Roscoe [1973] had earlier realized the differential approximation
scheme could produce the desired shear modulus — and at the same time elegantly
by Francfort and Murat [1986], using sequentially layered laminates with just five
directions of lamination (in the case of 3-dimensional composites).
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Hill [1963] proved that the bulk modulus bounds are valid also in the non-well-
ordered case where µ1 ≥µ2 but κ1 ≤ κ2. As far as we know, the tightest bounds on
the effective shear modulus of 3-dimensional composites in the non-well-ordered
case where µ1 ≥ µ2 but κ1 ≤ κ2 are those of Milton and Phan-Thien [1982]:

min
ζ

0≤ζ≤1

8〈6/µ+ 7/κ〉ζ + 15/µ2

2
(
〈21/µ+ 2/κ〉ζ/µ2+ 40〈1/µ〉ζ 〈1/κ〉ζ

)
≤

f (1− f )(µ1−µ2)
2

f µ1+ (1− f )µ2−µ∗
− (1− f )µ1− f µ2

≤ max
ζ

0≤ζ≤1

8µ1〈6κ + 7µ〉ζ + 15〈µ〉ζ 〈κ〉ζ
2
(
〈21κ + 2µ〉ζ + 40µ1

) , (2-7)

where for any quantity a taking values a1 and a2 in phase 1 and phase 2, respec-
tively, we define 〈a〉ζ ≡ ζa1+ (1− ζ )a2. These bounds are obtained by eliminating
the geometric parameters from the bounds of Milton and Phan-Thien [1982] and
are tighter than the better-known Walpole bounds [1966], and are in fact sharp (as
they coincide with the Hashin–Shtrikman formula, which corresponds to particular
geometries as we have discussed) when the moduli are slightly non-well-ordered.
Specifically, the first bound in (2-7) is sharp when the minimum over ζ is attained
at ζ = 0, which occurs when

κ1− κ2 ≥−
(3κ2+ 8µ2)

2

42κ2
2

κ1κ2

µ1µ2
(µ1−µ2), (2-8)

and the second bound in (2-7) is sharp when the maximum over ζ is attained at
ζ = 1, which occurs when

κ1− κ2 ≥−
(3κ1+ 8µ1)

2

42µ2
1

(µ1−µ2). (2-9)

The bounds (2-5) and (2-7) constrain the pair (κ∗, µ∗) to lie in a rectangular box.
Berryman and Milton [1988] obtained tighter coupled bounds which slice off two
opposing corner regions of the box by eliminating the geometric parameters from
the bulk modulus bounds of Beran and Molyneux [1966] (as simplified by Milton
[1981b]) and from the shear modulus bounds of Milton and Phan-Thien [1982].
There is good reason to believe these bounds can be improved as the analogous
2-dimensional bounds are not as tight as the bounds of Cherkaev and Gibiansky
[1993] coupling κ∗ and µ∗, which were derived using the translation method.

For anisotropic composites with an effective tensor C∗, the microstructure inde-
pendent bounds that are directly analogous to the Hashin–Shtrikman–Hill bounds,
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given by (2-5), are the “trace bounds”

f Tr[3h(C∗−C2)
−1
] ≤

1
3(κ1− κ2)

+
1− f

3κ2+ 4µ2
,

(1− f )Tr[3h(C1−C∗)−1
] ≤

1
3(κ1− κ2)

−
f

3κ1+ 4µ1
,

f Tr[3s(C∗−C2)
−1
] ≤

5
2(µ1−µ2)

+
3(κ2+ 2µ2)(1− f )
µ2(3κ2+ 4µ2)

,

(1− f )Tr[3s(C1−C∗)−1
] ≤

5
2(µ1−µ2)

−
3(κ1+ 2µ1) f
µ1(3κ1+ 4µ1)

,

(2-10)

obtained independently by Milton and Kohn [1988] and Zhikov [1988; 1991a;
1991b]. In these expressions the fourth-order tensors 3h multiply the fourth-order
tensors on their right, and

Tr[A] = Ai j i j (2-11)

defines the “trace” of a fourth-order tensor (see also [Francfort and Murat 1986]
and [Nemat-Nasser and Hori 1993] for related bounds). From the attainability
principle it follows that these bounds will be achieved whenever the composite is
a sequentially layered laminate, with a core of one phase, surrounded by layers
(on widely separated length scales) of the other phase. When C∗ is isotropic these
bounds (2-10) reduce to the Hashin–Shtrikman–Hill bounds (2-5). In the case
where the two phases, and hence the composite, are incompressible we can define
the five effective shear moduli µ∗1, µ

∗

2, µ
∗

3, µ
∗

4, µ
∗

5 to be the five finite eigenvalues
of 1

2 C∗, and the second pair of bounds in (2-10) reduce to

5∑
i=1

f
2(µ∗i −µ2)

≤
5

2(µ1−µ2)
+

3(κ2+ 2µ2)(1− f )
µ2(3κ2+ 4µ2)

,

5∑
i=1

1− f
2(µ1−µ∗i )

≤
5

2(µ1−µ2)
−

3(κ1+ 2µ1) f
µ1(3κ1+ 4µ1)

.

(2-12)

Lipton [1988] established that the analogous bounds for the two effective shear
moduli µ∗1 and µ∗2 of 2-dimensional composites of two incompressible isotropic
phases completely characterize GU f .

Earlier, Willis [1977] considered anisotropic composites and used the Hashin–
Shtrikman variational principle with a trial polarization that was zero in one phase
and constant in the other to obtain bounds on the elastic energy of a two-phase
composite. He found that these bounds are not microgeometry independent, but
rather involve the two-point correlation function, i.e., the probability that a rod
with fixed orientation lands with both ends in phase 1 when thrown randomly in a
composite. It follows from the attainability principle that the Willis bounds will be
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achieved when the composite is a sequentially layered laminate, with a core of one
phase, surrounded by layers (on widely separated length scales) of the other phase.

In a major advance, Avellaneda [1987b] recognized that for any composite of
two phases with well-ordered tensors not all the information contained in the two-
point correlation function was relevant to determining the bounds: what was rele-
vant was a “reduced two-point correlation function” that could be represented as a
positive measure µ(ξ) (with unit integral) on the sphere |ξ | = 1. Roughly speaking
one takes the Fourier transform of the two-point correlation function and integrates
it over rays k= kξ in “Fourier space” keeping ξ fixed and integrating over k from 0
to infinity. Most importantly, every such measure could be realized to an arbitrarily
high degree of approximation by the measure of a suitable sequentially layered lam-
inate. For example, a measure with weighted delta functions in directions ξ 1 and
ξ 2 would be realized by a second-rank sequentially layered laminate with layers
normal to ξ 1 and ξ 2. (We note in passing that these reduced two-point correlation
functions of Avellaneda are a special case of the H -measures introduced at the same
time by Tartar [1989; 1990], in terms of which he could calculate second-order cor-
rections to the effective tensor of a nearly homogeneous composite. H -measures
were also introduced independently by Gérard [1989; 1994] under the name of
microlocal defect measures. For composites of two isotropic phases the Hashin–
Shtrikman conductivity bounds, and indeed variational conductivity bounds at any
order, can be naturally expressed in terms of the series expansion coefficients of the
effective tensor up to a corresponding order for a nearly homogeneous composite,
as shown by Milton and McPhedran [1982].)

The fantastic implication was that by summing the Willis bounds [1977], and
then minimizing over all positive measures on the sphere, one would get sharp
bounds on the sum of elastic complementary energies

W 0
f (σ

0
1, σ

0
2, σ

0
3, σ

0
4, σ

0
5, σ

0
6)= min

C∗∈GU f

6∑
j=1

σ 0
j : C

−1
∗
σ 0

j , (2-13)

and similarly one could get sharp bounds on the sum of elastic energies

W 6
f (ε

0
1, ε

0
2, ε

0
3, ε

0
4, ε

0
5, ε

0
6)= min

C∗∈GU f

6∑
i=1

ε0
i : C∗ε

0
i . (2-14)

Here some of the applied stresses σ 0
j or the applied strains ε0

i could be zero. So the
evaluation of the functions W 0

f (σ
0
1,σ

0
2,σ

0
3,σ

0
4,σ

0
5,σ

0
6) and W 6

f (ε
0
1,ε

0
2,ε

0
3,ε

0
4,ε

0
5,ε

0
6)

reduces to a finite-dimensional minimization problem which can be done numer-
ically. Hence we will treat the functions W 0

f (σ
0
1, σ

0
2, σ

0
3, σ

0
4, σ

0
5, σ

0
6) as being

known, and we will call an “Avellaneda material” an associated sequentially lay-
ered laminate material with effective tensor C∗ = C A

f (ε
0
1, ε

0
2, ε

0
3, ε

0
4, ε

0
5, ε

0
6) that
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attains the minimum in (2-14), and similarly we call a “complementary Avella-
neda material” an associated sequentially layered laminate material with effec-
tive tensor C∗ = C̃ A

f (σ
0
1, σ

0
2, σ

0
3, σ

0
4, σ

0
5, σ

0
6) ∈ GU f that attains the minimum in

(2-13). Explicit analytical formulas for the tensors C A
f (ε

0
1, ε

0
2, ε

0
3, ε

0
4, ε

0
5, ε

0
6) and

C̃ A
f (σ

0
1, σ

0
2, σ

0
3, σ

0
4, σ

0
5, σ

0
6) are not generally available, but rather have to be found

by numerical computation. When C1 ≥ C2 one needs to take the minimum in
(2-13) over the C∗ of sequentially layered laminates with a core material of phase 2.
Similarly, when C−1

1 ≥ C−1
2 the minimum in (2-14) also can be taken over the C∗

of sequentially layered laminates with a core material of phase 2. We remark that
although Avellaneda assumed the tensors C1 and C2 were isotropic, his analysis
easily extends to the case where the tensors are anisotropic but well-ordered (either
with C1 ≥ C2 or C2 ≥ C1) and with constant orientation throughout the composite:
see, for example, Section 23.3 in [Milton 2002].

These C∗ of sequentially layered laminates are given by the formula of Francfort
and Murat [1986] and Gibiansky and Cherkaev [1997b]:

(1− f )(C1−C∗)−1
= (C1−C2)

−1
− f

r∑
j=1

cj0(nj ), (2-15)

where r is the rank of the sequential laminate, the positive weights cj sum to 1, the
ni are the lamination directions, and 0(n) is the fourth-order tensor with elements
given by

{0(n)}hik` =
1
4

(
nh{C(n)−1

}ikn`+ nh{C(n)−1
}i`nk

+ ni {C(n)−1
}hkn`+ ni {C(n)−1

}h`nk
)
, (2-16)

in which C(n) = n · C1n is the 3× 3 matrix known as the acoustic tensor, with
elements

{C(n)}ik = {n ·C1n}ik = nh{C1}hik`n`. (2-17)

Thus the minimum needs to be taken over the rank r of the sequential laminate,
over the positive weights cj , which sum to 1, and over the lamination directions nj .
In the case where phase 1 is isotropic, with bulk modulus κ1 and shear modulus µ1,
C(n) can be easily calculated and one obtains

{0(nj )}hik`

=
3nhni nkn`
3κ1+ 4µ1

+
1

4µ1
(nhδikn`+nhδi`nk+niδhkn`+niδh`nk−4nhni nkn`). (2-18)

Francfort, Murat, and Tartar [Francfort et al. 1995] proved that when C1 is isotropic
it suffices to limit attention to laminates of rank r ≤ 6. When C1 is anisotropic we
extend an argument due to Avellaneda [1987b]. Consider the set A consisting of
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all fourth-order tensors A of the form

A=
∫
|n|=1

0(n)m(dn), (2-19)

where m(dn) is a nonnegative measure on the unit sphere having an integral of 1
over the sphere. Since A satisfies

{A}hik`{C1}hik` =

∫
|n|=1
{C(n)−1

}ik{C(n)}ik m(dn)= 3, (2-20)

it follows that A is a convex set in a space of dimension ν = 20 (with 20 of the
21 independent matrix elements of A as coordinates, and the remaining element
being determined by (2-20)). The extreme points correspond to point masses on
the unit sphere. Hence any tensor of the form (2-19) is a convex combination of at
most ν + 1 extreme points. Thus the sum (2-15) can be limited to r ≤ 21; i.e., it
suffices to consider laminates up to rank 21. Lipton [1991; 1992; 1994] obtained a
complete algebraic characterization of the possible sequentially layered laminates
having transverse or orthotropic symmetry and derived explicit expressions for
many of the associated bounds. The Avellaneda materials are of course difficult to
build in practice since they have structure on multiple length scales. However, if
f is small and one phase is void, Bourdin and Kohn [2008] showed that it suffices
to use a walled structure (similar to the structure on the right in Figure 4, but with
walls in many directions, not just two, and with the wall thickness depending on
orientation).

As observed by Avellaneda [1987b], the implications of course also apply to
2-dimensional elasticity. Define

W 0
f (σ

0
1, σ

0
2, σ

0
3)= min

C∗∈GU f

3∑
j=1

σ 0
j : C

−1
∗
σ 0

j (2-21)

and

W 3
f (ε

0
1, ε

0
2, ε

0
3)= min

C∗∈GU f

3∑
i=1

ε0
i : C∗ε

0
i . (2-22)

Then there is an Avellaneda material with effective tensor C∗ = C A
f (ε

0
1, ε

0
2, ε

0
3)

that attains the minimum in (2-22), and a complementary Avellaneda material with
effective tensor C∗ = C̃ A

f (σ
0
1, σ

0
2, σ

0
3) ∈ GU f that attains the minimum in (2-21).

In 2-dimensional elasticity, sequentially layered laminates have elasticity tensors
given by (2-15)–(2-17) when the tensor C1 is anisotropic. When the elasticity
tensor C1 of phase 1 is isotropic, the sequentially layered laminates of rank r
have effective compliance tensors S∗ = (C∗)−1 given by the Gibiansky–Cherkaev
formula

(1− f )(S1− S∗)−1
= (S1− S2)

−1
− f [(4κ2)

−1
+ (4µ2)

−1
]M (2-23)
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(see [Gibiansky and Cherkaev 1997b, equations (2.37) and (2.38)] and see also
[Lurie et al. 1982], in which Lurie, Cherkaev, and Fedorov derived an equivalent,
but less simple, formula), where S1 = (C1)

−1 and S2 = (C2)
−1 are the compliance

tensors of the two phases, occupying volume fractions f and 1− f , respectively,
and M has elements

{M}hik` =

r∑
j=1

cj t j h t j i t j k t j `, (2-24)

in which the t j are unit vectors perpendicular to the directions of lamination (i.e.,
parallel to the layer boundaries), and the cj are any set of positive weights, summing
to 1, giving the proportions of phase 1 laminated in the various directions. The
tensor M is clearly positive semidefinite and has the property that

{M}hkhk = {M}hhkk = 1. (2-25)

Conversely, Avellaneda and Milton [1989] have shown that given a positive semi-
definite fourth-order tensor M satisfying (2-25) there is a sequential layered lam-
inate of rank r ≤ 3 that corresponds to it, i.e., such that (2-23) holds for some
choice of unit vectors t j and weights cj (see also Theorem 2.2 of [Francfort et al.
1995]). Thus when C1 is isotropic, the computation of the complementary Avella-
neda tensor C̃ A

f (σ
0
1, σ

0
2, σ

0
3) reduces to a minimization over positive semidefinite

fourth-order tensors M satisfying (2-25). When C1 is anisotropic, by the same
argument as in the 3-dimensional case, it suffices to consider sequential layered
laminates of rank at most 6.

We also remark that aside from hierarchical laminates there are many other
structures that have a uniform field in one phase, sometimes only for certain ap-
plied fields. These include assemblages of confocal ellipses and ellipsoids [Milton
1980; 1981a; Grabovsky and Kohn 1995a], the periodic Vigdergauz geometries
[Vigdergauz 1986; 1994; 1996; 1999; Grabovsky and Kohn 1995b], the Sigmund
structures [2000], and the periodic E-inclusions of Liu, James, and Leo [Liu et al.
2007] (see also Section 23.9 of [Milton 2002]). Usually these attain the bounds
when the measure µ(ξ) minimizing the sum of Willis bounds is not required to be
a discrete measure. Allaire and Aubry [1999] have shown that sometimes the best
microstructure necessarily has structure on multiple length scales (like sequentially
layered laminates).

For single energies for anisotropic two-phase composites, the Hill bounds (2-1)
imply

ε0 : [ f C−1
1 +(1− f )C−1

2 ]
−1ε0≤ ε0 :C∗ε0≤ ε0 : [ f C1+(1− f )C2]ε0,

σ 0 : [ f C1+(1− f )C2]
−1σ 0≤ σ 0 :C−1

∗
σ 0≤ σ 0 : [ f C−1

1 +(1− f )C−1
2 ]σ 0.

(2-26)
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Improved, and in fact sharp, upper and lower bounds on the elastic energy ε0 : C∗ε0

in terms of the given applied strain ε0 and sharp upper and lower bounds on the com-
plementary elastic energy σ 0 : C−1

∗
σ 0 in terms of the given applied stress σ 0 were

obtained for isotropic component materials by Gibiansky and Cherkaev [1997a],
Kohn and Lipton [1988], and Allaire and Kohn [1993a; 1993b; 1994]. The paper
of Gibiansky and Cherkaev [1997a] was for the fourth-order plate equation, but
this can be mapped to the equivalent 2-dimensional elasticity problem considered
by Allaire and Kohn [1993b]. Their lower bounds on σ 0

: C−1
∗
σ 0 are equivalent to

the bounds that for any tensor C∗ ∈ GU f ,

σ 0
: C−1
∗
σ 0
≥ σ 0

: [C̃ A
f (σ

0, 0, 0)]−1σ 0, (2-27)

and they provided an explicit formula for the right-hand side for any 2× 2 sym-
metric matrix σ 0 representing the applied stress. This bound can be viewed in two
ways: in the way originally interpreted, i.e., as a bound on the possible (elastic
energy, average stress, volume fraction) triplets; or as a bound

σ 0
: ε0
≥ σ 0

: [C̃ A
f (σ

0, 0, 0)]−1σ 0 (2-28)

on the possible (average stress, average strain, volume fraction) triplets. Here ε0
=

C−1
∗
σ 0 is the strain associated with σ 0. Significantly, Milton, Serkov, and Movchan

[Milton et al. 2003] found that the inequality (2-28) completely characterizes the
possible (average stress, average strain, volume fraction) triplets in the limit in
which one phase becomes void, when the other phase is isotropic. Specifically,
given any triplet (σ 0, ε0, f ) satisfying (2-28) as an inequality, they give a recipe for
constructing a 2-dimensional microstructure with effective tensor C∗ and having
phase 1 occupy a volume fraction f such that σ 0

= C∗ε0.
For 3-dimensional composites explicit expressions for the optimal upper energy

bound were found by Gibiansky and Cherkaev [1997b] and Allaire [1994] for the
case of a two-phase composite where one of the phases is void or rigid [Gibiansky
and Cherkaev 1997b]. Grabovsky [1996] obtained energy bounds for two-phase
composites containing anisotropic phases, each with a constant orientation.

Another major advance was made by Milton and Cherkaev [1995], who showed
that any desired positive definite fourth-order tensor which has the symmetries of
an elasticity tensor could be realized as the effective elasticity tensor C∗ of a com-
posite of a sufficiently stiff isotropic material and a sufficiently compliant isotropic
material. One key to this advance was the realization that certain structures called
pentamode materials could be (arbitrarily) stiff to one applied stress σ 0

1 and yet have
five mutually orthogonal strains ε0

1, ε0
2, ε0

3, ε0
4, ε0

5, each orthogonal to σ 0
1 as five

(arbitrarily compliant) easy modes of deformations (hence the name pentamode).
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Figure 1. An electron micrograph of the pentamode structure cre-
ated by Kadic, Bückmann, Stenger, Thiel and Wegener [Kadic
et al. 2012] using a 3-dimensional lithography technique. (Used
with the kind permission of Martin Wegener.)

For such a pentamode

W 5
f (σ

0
1, ε

0
1, ε

0
2, ε

0
3, ε

0
4, ε

0
5)= min

C∗∈GU f

[( 5∑
i=1

ε0
i : C∗ε

0
i

)
+ σ 0

1 : C
−1
∗
σ 0

1

]
(2-29)

approaches zero as the constituent stiff isotropic material becomes increasingly stiff
and the constituent compliant isotropic material becomes increasingly compliant.
The lattice structure of a pentamode is similar to that of diamond with a stiff double
cone structure replacing each carbon bond. This structure ensures that the tips
of four double cone structures meet at each vertex. This is the essential feature:
treating the double cone structures as struts, the tension in one determines uniquely
the tension in the other three. This is simply the balance of forces. Thus the
structure as a whole can essentially support only one stress. Pentamode structures
were experimentally realized by Kadic, Bückmann, Stenger, Thiel and Wegener
[Kadic et al. 2012] in an incredible feat of precision three-dimensional lithography.
One of their electron micrographs of the structure is shown in Figure 1. Pentamode
structures were also independently discovered in 1995 by Sigmund, although he
did not find the complete span of pentamode structures needed here: one needs
pentamodes that can support any chosen stress, not just a hydrostatic one. It is
this aspect of pentamodes that makes them more interesting than, for example,
a gel. Gels are examples of pentamodes as they are easy to shear, but difficult
to compress under a hydrostatic loading σ 1 = I . By contrast the pentamodes of
Milton and Cherkaev could be stiff to any desired stress σ 0

1: this desired stress
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may be a mixture of shear and compression, and may have eigenvalues of mixed
signs. A simple argument for seeing that these pentamodes can achieve any desired
elasticity tensor was given in the foreword of the book edited by Phani and Hussein
[2017]. To recapitulate that argument, one expresses the desired C∗ in terms of its
eigenvectors and eigenvalues,

C∗ =
6∑

i=1

λivi ⊗ vi . (2-30)

The idea, roughly speaking, is to find six pentamode structures each supporting a
stress represented by the vector vi for i = 1, 2, . . . , 6. The stiffness of the material
and the necks of the junction regions at the vertices need to be adjusted so each
pentamode structure has an effective elasticity tensor close to

C(i)
∗
= λivi ⊗ vi . (2-31)

Then one successively superimposes all these six pentamode structures, with their
lattice structures being offset to avoid collisions. Additionally one may need to
deform the structures appropriately to avoid these collisions as described in [Mil-
ton and Cherkaev 1995], and when one does this it is necessary to readjust the
stiffness of the material in the structure to maintain the value of λi . Then the
remaining void in the structure is replaced by an extremely compliant material.
(Its presence is needed just for technical reasons, to ensure that the assumptions of
homogenization theory are valid so that the elastic properties can be described by
an effective tensor.) But it is so compliant that essentially the effective elasticity
tensor is just a sum of the effective elasticity tensors of the six pentamodes, i.e.,
the elastic interaction between the six pentamodes is negligible. In this way we
arrive at a material with (approximately) the desired elasticity tensor C∗.

It is worth mentioning that with extremely high contrast materials the homoge-
nized equations are not necessarily the usual linear elasticity equations, but can also
include nonlocal terms. Nonlocal interactions can be obtained for example with an
extremely stiff dumbbell-shaped inclusion with the balls arbitrarily distant. If the
bar joining them is not only extremely stiff but also extremely thin, then it does
not directly couple with the surrounding elastic material (except in the very near
vicinity of the bar, where it is obviously deformed by it), but provides a nonlocal
interaction between the balls. In fact, amazingly, Camar-Eddine and Seppecher
[2003] have completely characterized all possible linear macroscopic behaviors of
any high contrast composite: they showed that any energetically stable behavior
can be obtained using materials with such dumbbell-shaped inclusions interacting
at many length scales. Some interesting examples of high contrast materials with
exotic effective behaviors have been given by Seppecher, Alibert, and dell’Isola
[Seppecher et al. 2011].
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n

c∗

f (n)

G

c∗ cA
n

G

Figure 2. Left: A convex set is the envelope of its tangent planes.
The positions of the two tangent planes with normal n are deter-
mined by the Legendre transform f (n) and f (−n) defined by
(3-1). Specifically f (n) and f (−n) give the distances of the tan-
gent planes from the origin. Right: An example highlighting an
interesting case discussed in the text that helps give a geometrical
interpretation of the results of the paper.

3. Characterizing convex sets and G-closures for elasticity

Let G be a convex set of real d-dimensional vectors, meaning that if c1, c2 ∈ G
then θ c1+ (1− θ)c2 ∈ G for all θ ∈ [0, 1]. As shown in Figure 2 (left) for d = 2
such a convex set can be completely characterized by its Legendre transform,

f (n)=min
c∈G

n · c. (3-1)

Clearly this function satisfies the homogeneity property that

f (λn)= λ f (n) for all λ > 0, (3-2)

and consequently it suffices to know f (n) for all unit vectors n to recover the
function f (n) for any vector n. The values of f (n) and f (−n) give the positions
of the two planes with normals ±n that are tangent to G: specifically | f (n)| and
| f (−n)| give the distances from these tangent planes to the origin. By varying n
and taking the intersection of the regions between the planes one recovers G: the
set G is the envelope of its tangent planes as illustrated in Figure 2 (left). Thus the
Legendre transform function f (n) with |n| = 1 completely characterizes G.

The example of Figure 2 (right) is also illuminating for the purposes of this
paper. Let n and m be the vectors

n=
(

0
1

)
, m =

(
1
0

)
, (3-3)

and consider f (n+αm) for α≥ 0 in the context of this example. (Of course n+αm
is only a unit vector when α = 0.) As the boundary of G contains a flat section
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orthogonal to n, the vector c which attains the minimum in (3-1) is not unique. In
the diagram both cA and c∗ are minimizers. However, for an infinitesimal value of
α > 0, c∗ is selected as the unique minimizer and remains the minimizer no matter
how large α > 0 becomes. Furthermore, since c∗ is orthogonal to m the value of
f (n+αm) remains constant for all α ≥ 0.

If G is a convex set of, say, real d × d matrices it can be similarly characterized
by its Legendre transform,

f (N)= min
C∈G

(N,C), (3-4)

defined for all d × d matrices N , where (N,C) is an inner product on the space of
matrices which we may take to be

(N,C)= Ni j Ci j ≡ N : C, (3-5)

where we have adopted the Einstein summation convention that sums over repeated
indices are assumed, and the double dot “:” denotes a double contraction of indices.
This is exactly equivalent to (3-1) if we think of the matrix C being represented
by the vector c of its matrix elements. Note that if G only contains symmetric
matrices, then it suffices to take N as a symmetric matrix since (A,C)= 0 if C is
symmetric and A is antisymmetric.

Similarly, if G is a convex set of fourth-order elasticity tensors C satisfying the
usual symmetries

Ci jk` = C j ik` = Ck`i j , (3-6)

then it can be characterized by the Legendre transform (3-4) with an inner product

(N,C)= Ni jk`Ci jk`, (3-7)

and again it suffices to assume N has the same symmetries as C , i.e., those in (3-6).
However, G-closures (i.e., sets of all possible effective tensors) are not gen-

erally convex sets. Nevertheless, they do have some convexity properties as a
consequence of their stability under lamination. In the case of the set GU f where
U = {C1, δC2}, we can take two materials with effective tensors C∗1,C∗2 ∈ GU f

and laminate them together in a direction n (representing the vector perpendicular
to the layers) in proportions θ and 1− θ to obtain an effective tensor C∗(n, θ)
which necessarily lies in the set GU f for all θ ∈ [0, 1]. While C∗(n, θ) is not a
linear average of C∗1 and C∗2, there exist fractional linear transformations Tn of
fourth-order tensors such that lamination in direction n reduces to a linear average
[Backus 1962; Milton 1990] (see also [Tartar 1979]):

Tn(C∗(n, θ))= θTn(C∗1)+ (1− θ)Tn(C∗2) for all θ ∈ [0, 1]. (3-8)

Thus Tn(GU f ) must be a convex set of fourth-order tensors. In the particular case
where a set of effective tensors has no interior, i.e., is constrained to lie on a mani-
fold of dimension m smaller than the dimension of the space of fourth-order tensors
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satisfying the symmetries of elasticity tensors (i.e., m < 21 for 3-dimensional com-
posites and m < 6 for 2-dimensional composites), then as recognized by Grabovsky
[1998] (see also [Grabovsky and Sage 1998]) Tn must map this manifold to a subset
of a hyperplane of dimension m for any value of n. This places rather severe
constraints on the form of such manifolds. Identifying such manifolds is important
as they represent exact relations satisfied by effective tensors, no matter what the
geometry of the composite happens to be. Thus these constraints provide necessary
conditions for an exact relation. Later, sufficient conditions for an exact relation to
hold were obtained [Grabovsky et al. 2000].

Unfortunately, the use of Legendre transforms of the convex set Tn(GU f ) is
not useful to us as we are unaware of any direct variational principles for Tn(C∗).
An alternative approach was prompted by work of Cherkaev and Gibiansky [1992;
1993], who found that bounding sums of energies and complementary energies
could lead to very useful bounds on G-closures. It was proved by Francfort and
Milton [Francfort and Milton 1994; Milton 1994] that minimums over C∗ ∈GU f of
such sums of energies and complementary energies completely characterize GU f

in much the same way that Legendre transforms characterize convex sets: the sta-
bility under lamination of GU f is what allows one to recover GU f from the values
of these minimums (see also Chapter 30 in [Milton 2002]). Figure 3 captures the
idea of this characterization.

sum of energies and
complementary
energies

sum of complementary
energies

G-closure

sum of energies

Figure 3. G-closures are characterized by minimums of sums of
energies and complementary energies. The coordinates here rep-
resent the elements of the effective elasticity tensor C∗. Then a
plane represents a surface where a sum of energies is constant, and
when this sum takes its minimum value the plane is tangent to the
G-closure. The convexity properties of the G-closure guarantee
that the surfaces corresponding to the minimums of sums of ener-
gies and complementary energies wrap around the G-closure and
touch each point on its boundary. (Reproduction of Figure 30.1 in
[Milton 2002].)
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Specifically, in the case of 3-dimensional elasticity, the set GU f is completely
characterized if we know the seven “energy functions”,

W 0
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]
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∗
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W 4
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(3-9)

In fact, it suffices [Milton and Cherkaev 1995] to know these functions for sets of
applied strains ε0

i and applied stresses σ 0
j that are mutually orthogonal:

(ε0
i , σ

0
j )= 0, (ε0

i , ε
0
k)= 0, (σ 0

j , σ
0
`)= 0,

for all i, j, k, ` with i 6= j , i 6= k, j 6= `. (3-10)

Each of these terms in the minimums has a physical significance. For example, in
the expression for W 2

f ,

2∑
i=1

ε0
i : C∗ε

0
i +

4∑
j=1

σ 0
j : C

−1
∗
σ 0

j (3-11)

has the physical interpretation of being the sum of energies per unit volume stored
in the composite with effective elasticity tensor C∗ when successively subjected to
the two applied strains ε0

1 and ε0
2 and then to the four applied stresses σ 0

1, σ 0
2, σ 0

3
and σ 0

4. To distinguish the terms ε0
i : C∗ε

0
i and σ 0

j : C
−1
∗
σ 0

j , the first is called an
energy (it is really an energy per unit volume associated with the applied strain ε0

i )
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and the second is called a complementary energy, although it too physically repre-
sents an energy per unit volume associated with the applied stress σ 0

j . Note that
the quantity (3-11) can be equivalently written as

(C∗, N)+ (C−1
∗
, N ′), (3-12)

where

N =
2∑

i=1

ε0
i ⊗ ε

0
i , N ′ =

4∑
j=1

σ 0
j ⊗ σ

0
j , (3-13)

in which for any d × d symmetric matrix A, the tensor A⊗ A is defined to be the
fourth-order tensor with elements

{A⊗ A}i jk` = {A}i j {A}k`. (3-14)

If we decompose the positive semidefinite tensors N and N ′ into their spectral
decompositions

N =
2∑

i=1

λivi ⊗ vi , N ′ =
4∑

j=1

λ′jv
′

j ⊗ v
′

j , (3-15)

with eigenmatrices vi and v′j and corresponding nonnegative eigenvalues λi and λ′j ,
then, with the orthogonality constraints (3-10), we can make the identifications

ε0
i =

√
λivi , σ 0

j =

√
λ′jv j . (3-16)

Note that due to the orthogonality conditions (3-10) the fourth-order tensors N
and N ′ have the property that the product N N ′ is zero. Here the product of two
fourth-order tensors C and C ′ is given by

{CC ′}i jk` = {C}i jmn{C ′}mnk`. (3-17)

Thus in the same way that convex sets are the envelope of planes, the G-closure
GU f is the envelope of special surfaces parametrized by positive semidefinite
fourth-order tensors N and N ′ satisfying the symmetries of elasticity tensors, and
having zero product N N ′= N ′N = 0 (i.e., the range of N ′ is in the null space of N,
and conversely the range of N is in the null space of N ′). These special surfaces
consist of all positive definite fourth-order tensors C satisfying

(C, N)+ (C−1, N ′)= c, (3-18)

where c is a positive real constant. In the case N ′ = 0 this does represent a hy-
perplane, but its orientation is restricted by the fact that the outward normal to the
surface N is restricted to be a positive definite fourth-order tensor (by outward nor-
mal we mean the normal pointing away from the origin). Knowledge of the seven
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functions W i
f given by (3-9) is clearly equivalent to knowledge of the function

W f (N, N ′)= min
C∗∈GU f

(C∗, N)+ (C−1
∗
, N ′) (3-19)

for all positive semidefinite fourth-order tensors N and N ′ satisfying the symme-
tries of elasticity tensors and having N N ′ = 0. The formula for recovering GU f

from W f (N, N ′) is then⋂
N,N ′≥0
N N ′=0

{
C : (C, N)+ (C−1, N ′)≥W f (N, N ′)

}
= GU f . (3-20)

More generally if we replace GU f in (3-19) by another set G of positive definite
matrices, and if the left-hand side of (3-20) is again G, then we may say G is
“W-convex”.

An explicit definition of W-convexity is as follows: a set G of positive definite
symmetric matrices is said to be strictly W-convex if G is simply connected and
if for every pair of positive semidefinite symmetric matrices N and N ′, not both
zero, the minimum in

min
C∈G

(C, N)+ (C−1, N ′) (3-21)

is uniquely attained by only one C ∈ G. Geometrically, G is strictly W-convex
if for all positive semidefinite symmetric matrices N and N ′, not both zero, the
surface that consists of all positive definite matrices C satisfying

(C, N)+ (C−1, N ′)= k, (3-22)

where k is chosen as the smallest value for which this surface touches G, has the
property that it touches G at only one point. A set G is W-convex if it is a limit of
strictly W-convex sets. If the set G has a smooth boundary, then the condition for
W-convexity can be expressed in terms of the curvature of the boundary of G: when
G is a set of matrices, this curvature at each point on the surface of G is a fourth-
order tensor; when G is a set of fourth-order elasticity tensors, this curvature is an
eighth-order tensor. (See equation (3.51) in [Milton 1994], or equation (30.11) in
[Milton 2002], for the explicit inequalities that the curvature must satisfy.)

The stability of GU f under lamination implies it is W -convex, but W -convexity
probably does not imply stability under lamination, as stability under lamination
depends on the underlying partial differential equations. Associated with any set G
of symmetric positive definite matrices C is its W -transform, defined as

W (N, N ′)= min
C∈G

(C, N)+ (C−1, N ′), (3-23)

where N and N ′ are symmetric positive semidefinite matrices satisfying N N ′ = 0,
and the inner product of two symmetric matrices A and B can be taken as (A, B)=



62 GRAEME W. MILTON, MARC BRIANE AND DAVIT HARUTYUNYAN

Tr(AB), where Tr denotes the trace (sum of diagonal elements) of a matrix. To see
some of the properties of W -transforms it is helpful to extend the definition of the
transform to allow for matrices N and N ′ that have a nonzero product, N N ′ 6= 0.
The defining equation, (3-23), remains the same. Then consider a weighted average
of (N1, N ′1) and (N2, N ′2), with weights θ and 1− θ , where the four matrices
N1, N ′1, N2, N ′2 are positive semidefinite. Then for any θ ∈ (0, 1), we have

W (θN1+(1−θ)N2,θN ′1+(1−θ)N
′

2)

= min
C∈G

{
θ [(C,N1)+(C−1,N ′1)]+(1−θ)[(C,N2)+(C−1,N ′2)]

}
≥ θ

{
min
C∈G

(C,N1)+(C−1,N ′1)
}
+(1−θ)

{
min
C∈G

(C,N2)+(C−1,N ′2)
}

≥ θW f (N1,N ′1)+(1−θ)W f (N2,N ′2), (3-24)

which (by definition) implies W (N, N ′) is a jointly concave function of N and N ′.
This concavity is a well-known property of Legendre transforms.

4. Variational principles

Upper bounds on the sums of energies and complementary energies can easily be
obtained from classic energy minimization variational principles. For example, in
the case of the sum (3-11), we have

2∑
i=1

ε0
i : C∗ε

0
i +

4∑
j=1

σ 0
j : C

−1
∗
σ 0

j

= min
ε1,ε2,σ 1,σ 2,σ 3,σ 4

〈 2∑
i=1

εi (x) :C(x)εi (x)+
4∑

j=1

σ j (x) : [C(x)]−1σ j (x)
〉
, (4-1)

where the minimum is over a set of two trial strain fields ε1(x) and ε2(x) and a set
of four trial stress fields σ 1(x), σ 2(x), σ 3(x), and σ 4(x) that have the prescribed
average values

〈εi 〉 = ε
0
i for i = 1, 2, 〈σ j 〉 = σ

0
j for j = 1, 2, 3, 4, (4-2)

and are subject to the differential constraints that

εi (x)= 1
2

(
∇ui (x)+ (∇ui (x))T

)
for i = 1, 2,

∇ · σ j (x)= 0 for j = 1, 2, 3, 4,
(4-3)

where T denotes the transpose (reflecting the matrix about its diagonal) and ui (x)
is the trial displacement field associated with the trial stress field εi (x). The trial
strain fields εi (x) and the trial stress fields σ j (x) (but not the trial displacement
fields) should be chosen to be periodic (if the composite is periodic), quasiperiodic
(if the composite is quasiperiodic), or statistically homogeneous (if the composite
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is statistically homogeneous). It may be the case that the material has structure
on widely separated length scales. Maybe it can be viewed as a mixture of two
composites, one with effective tensor C1

∗
and a second with effective tensor C2

∗
,

so that at the mesoscale it has a geometry described by a characteristic function
χ∗(x), where χ∗(x) is 1 in the composite with effective tensor C1

∗
and 0 in the

material with effective tensor C2
∗
. Naturally the length scale, or length scales, of

variations in χ∗(x) should be much larger than the variations in the microstructure
of the materials that have the effective tensors C1

∗
and C2

∗
. Then we can treat the

material having effective tensor as a composite of the materials C1
∗

and C2
∗

and we
have the variational principle

2∑
i=1

ε0
i : C∗ε

0
i +

4∑
j=1

σ 0
j : C

−1
∗
σ 0

j

= min
ε1,ε2,σ 1,σ 2,σ 3,σ 4

〈 2∑
i=1

εi (x) :
[
χ∗(x)C1

∗
+ (1−χ∗(x))C2

∗

]
εi (x)

+

4∑
j=1

σ j (x) :
[
χ∗(x)C1

∗
+ (1−χ∗(x))C2

∗

]−1
σ j (x)

〉
, (4-4)

where again the minimum is over fields subject to the appropriate average values
and differential constraints. Particular choices of trial fields will then lead to an
upper bound on this sum of energies and complementary energies. To bound the
quantities on the right one may again use variational principles. When x is in the
material Ck

∗
for k = 1 or 2, one has the variational principles

εi (x) : Ck
∗
εi (x)=min

εi

〈
εi (x, y) : Ck( y)εi (x, y)

〉
y,

σ j (x) : [Ck
∗
]
−1σ j (x)=min

σ j

〈
σ j (x, y) : [Ck( y)]−1σ j (x, y)

〉
y,

(4-5)

where 〈 · 〉 y now denotes an average over the y variable (x is the “slow variable”
and y is the “fast variable”) and

Ck( y)= χ k( y)C1+ (1−χ k( y))C2, (4-6)

in which χ k( y) is the characteristic function representing the geometry associated
with the effective tensor Ck

∗
, taking a value 1 in the material with tensor C1 and 0 in

the material with tensor C2. Here the trial fields have the prescribed average values

〈εi (x, y)〉 y = εi (x) for i = 1, 2, 〈σ j (x, y)〉 y = σ j (x) for j = 1, 2, 3, 4, (4-7)

and are subject to the differential constraints

εi (x, y)= 1
2

(
∇y ui (x, y)+ (∇ui (x, y))T

)
for i = 1, 2,

∇ ·y σ j (x, y)= 0 for j = 1, 2, 3, 4,
(4-8)
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where ∇y and ∇·y are the gradient and divergence with respect to the y variables.
We call the step of replacing the variational principle (4-1) by the variational prin-
ciples (4-4) and (4-5) the “homogenization at intermediate scales step”.

In this paper we will choose trial fields that satisfy the local orthogonality con-
dition that

εi (x) : σ j (x)= 0, for all x. (4-9)

Using the differential constraints satisfied by the trial fields, and integration by
parts, one sees that the associated average fields are necessarily orthogonal too:

ε0
i : σ

0
j = 〈εi (x)〉 : 〈σ j (x)〉 = 〈εi (x) : σ j (x)〉 = 0. (4-10)

5. Finding most of the energy functions

Recall from Section 2 that an complementary Avellaneda material is a sequentially
layered laminate material with phase 1 occupying a volume fraction f and with
effective tensor

C̃ A
f (σ

0
1, σ

0
2, σ

0
3, σ

0
4, σ

0
5, 0)

that attains equality in (2-13). It is found by minimizing the right-hand side of
(2-13) as C∗ varies within the class of tensors given by (2-15)–(2-17) with C2 = 0,
as the rank r , the positive weights cj which sum to 1, and the unit vectors ni are
varied. Here some of the applied stresses σ 0

j could be zero. Since the energy
σ 0

j : C
−1
∗
σ 0

j associated with any applied stress σ 0
j is necessarily nonnegative, we

obtain from (3-9) the bounds
5∑

j=1

σ 0
j : [C̃

A
f (σ

0
1, σ

0
2, σ

0
3, σ

0
4, σ

0
5, 0)]−1σ 0

j ≤W 1
f (σ

0
1, σ

0
2, σ

0
3, σ

0
4, σ

0
5, ε

0
1),

4∑
j=1

σ 0
j : [C̃

A
f (σ

0
1, σ

0
2, σ

0
3, σ

0
4, 0, 0)]−1σ 0

j ≤W 2
f (σ

0
1, σ

0
2, σ

0
3, σ

0
4, ε

0
1, ε

0
2),

3∑
j=1

σ 0
j : [C̃

A
f (σ

0
1, σ

0
2, σ

0
3, 0, 0, 0)]−1σ 0

j ≤W 3
f (σ

0
1, σ

0
2, σ

0
3, ε

0
1, ε

0
2, ε

0
3),

2∑
j=1

σ 0
j : [C̃

A
f (σ

0
1, σ

0
2, 0, 0, 0, 0)]−1σ 0

j ≤W 4
f (σ

0
1, σ

0
2, ε

0
1, ε

0
2, ε

0
3, ε

0
4),

σ 0
1 : [C̃

A
f (σ

0
1, 0, 0, 0, 0, 0)]−1σ 0

1 ≤W 5
f (σ

0
1, ε

0
1, ε

0
2, ε

0
3, ε

0
4, ε

0
5),

0≤W 6
f (ε

0
1, ε

0
2, ε

0
3, ε

0
4, ε

0
5, ε

0
6).

(5-1)

The last inequality is clearly sharp, being attained when the composite consists of
islands of phase 1 surrounded by a phase 2 (so that C∗ approaches 0 as δ→ 0).
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The objective of this paper is to show that many of the other inequalities are also
sharp in the limit δ→ 0, at least when the spaces spanned by the applied strains
ε0

j for j = 1, 2, . . . , p satisfy certain properties. This space of applied strains Vp,
associated with W p

f , has dimension p and is spanned by ε0
1, ε

0
2, . . . , ε

0
p.

The recipe for doing this is to simply insert into a relevant complementary Ave-
llaneda material a microstructure occupying a thin walled region, such that the ma-
terial can slip along the walls when the applied strain lies in appropriate spaces Vp,
yet which is such that the combination of Avellaneda material and walled material
can support without slip any applied stress in the subspace orthogonal to Vp. This
will be possible only when Vp is spanned by symmetrized rank 1 matrices, taking
the form

ε(k) = 1
2(aknT

k + nk aT
k ), for k = 1, . . . , p. (5-2)

The existence of such matrices ε(k) is proved in Section 7. The proof uses small
perturbations of the applied stresses and strains. But, due to the continuity of
the energy functions W k

f established in Section 9, the small perturbations do not
modify the generic result. The vectors nk determine the orientation of the walls in
the structure. For each nk there is a set of parallel walls perpendicular to nk that
allow slip given by the strain ε(k). We say slip but it should be recognized that ε(k)

is not generally a pure shear, but rather a combination of dilation and shear, since
it does not generally have zero trace.

To define the thin walled structure, introduce the periodic function Hc(x) with
period 1 which takes the value 1 if x − [x] ≤ c, where [x] is the greatest integer
less than x , and c ∈ [0, 1] gives the thickness of each wall relative to the spacing
between walls (which is unity). Then for the unit vectors n1, n2, . . . , np appearing
in (5-2), and for a small relative wall thickness c = ε, define the characteristic
functions

ηk(x)= Hε(x · nk + k/p). (5-3)

This characteristic function defines a series of parallel walls, as shown on the left in
Figure 4, each perpendicular to the vector nj , where η j (x)= 1 in the wall material.
The additional shift term k/p in (5-3) ensures the walls associated with k1 and k2

do not intersect when it happens that nk1 = nk2 , at least when ε is small. Note
that ε is a volume fraction, not a homogenization parameter. We will be taking the
limit ε→ 0 after taking the homogenization limit.

Now define the characteristic function

χ∗(x)=
p∏

k=1

(1− ηk(x)). (5-4)

If p ≤ 3, this is usually a periodic function of x, an exception being if p = 3 and
there are no nonzero integers z1, z2, and z3 such that z1n1+ z2n2+ z3n3 = 0. More
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Figure 4. Example of walled structures. On the left we have a
“rank 1” walled structure and on the right a “rank 2” walled struc-
ture. The generalization to walled structures of any rank is obvious,
and precisely defined by the characteristic function (5-4) that is 0
in the walls, and 1 in the remaining material.

generally, χ∗(x) is a quasiperiodic function of x. The walled structure is where
χ∗(x) takes the value 0. In the case p = 2 the walled structure is illustrated on the
right in Figure 4.

Recall that a p-mode material is a material for which there are p independent
strains to which the material is easily compliant, yet the material is much more
resistant to any strain in the (6−p)-dimensional orthogonal subspace. In this sense
the microstructure of Figure 1 is a pentamode material. We consider a subclass of
multimode materials which can still support stresses in the limit δ→ 0. We say a
composite with effective tensor C∗ built from the two materials C1 and C2 = δC0

is easily compliant to a strain ε0
i if the elastic energy ε0

i :C∗ε
0
i goes to zero as δ→ 0,

and supports a stress σ 0
j if the complementary energy σ 0

j : C
−1
∗
σ 0

j has a nonzero
limit as δ→ 0. We desire p-mode materials for which there are p independent
strains to which the material is easily compliant, yet for which the material supports
any stress in the (6−p)-dimensional orthogonal subspace. The pentamode struc-
ture of Figure 1 needs to be modified as all its elastic moduli go to zero as δ→ 0.
The multimode structures we will introduce have structure on multiple length scales
and it is important that one takes the limit of an infinite separation of length scales
(so one can apply homogenization theory) before taking the limit δ→ 0.

Inside the walled structure, where χ∗(x) = 0, we put a p-mode material with
effective tensor C2

∗
= C∗(Vp) that supports any applied stress σ 0 in the space

orthogonal to Vp and which is easily compliant to any strain ε0 in the space Vp.
When we take the six matrices

v1= σ
0
1/|σ

0
1|, . . . , v6−p = σ

0
6−p/|σ

0
6−p|, v7−p = ε

0
1/|ε

0
1|, . . . , v6= ε

0
p/|ε

0
p| (5-5)

as an orthonormal basis for the space of 6× 6 matrices, we need to find a p-mode
material for which the elasticity tensor C2

∗
in this basis is such that

lim
δ→0

C2
∗
=

(
A 0
0 0

)
, (5-6)
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where A represents a (strictly) positive definite (6−p)× (6−p) matrix and the 0
on the diagonal represents the p× p zero matrix.

Outside the walled structure, where χ∗(x)= 1, we put the complementary Ave-
llaneda material with effective elasticity tensor

C1
∗
= C̃ A

f (σ
0
1, . . . , σ

0
6−p, 0, . . . , 0).

In a variational principle similar to (4-4) (i.e., treating the complementary Ave-
llaneda material and the p-mode material both as homogeneous materials with
effective tensors C1

∗
and C2

∗
, respectively) we choose trial stress fields that are

constant,
σ j (x)= σ 0

j , (5-7)

thus trivially fulfilling the differential constraints, and trial strain fields of the form

εi (x)=
p∑

k=1

εi,kηk(x)/ε, (5-8)

which are required to have the average values

ε0
i = 〈εi 〉 =

p∑
k=1

εi,k, (5-9)

and the matrices εi,k have the form

εi,k = ai,kε
(k), (5-10)

for some choice of constants ai,k which ensures they are symmetrized rank 1 ma-
trices lying in the space Vp (so they cost very little energy), and which ensures that
the ε0

i given by (5-9) are orthogonal. This symmetrized rank 1 form ensures that
εi (x) derives from a displacement field. Specifically we have

εi (x)= 1
2

(
∇ui (x)+ (∇ui (x))T

)
, (5-11)

with

ui (x)=
p∑

k=1

ai,k ak
{
(nk · x)ηk(x)/ε+ ([nk · x] + 1)(1− ηk(x))

}
, (5-12)

where, as before, [nj · x] is the greatest integer less than nj · x. One can easily
check that this displacement field is continuous at the wall interfaces.

To find upper bounds on the energy associated with this trial strain field, first
consider those parts of the walled structure that are outside of any junction regions,
i.e., where for some k we have ηk(x) = 1, while ηs(x) = 0 for all s 6= k. An
upper bound for the volume fraction occupied by the region where ηk(x)= 1 while
ηs(x)= 0 for all s 6= k is of course ε, as this represents the volume of the region
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where ηk(x) = 1. The associated energy per unit volume of the trial strain field
in those parts of the walled structure that are outside of any junction regions is
bounded above by

p∑
k=1

εi,k : C∗(Vp)εi,k/ε. (5-13)

We will see in Section 8 that with an appropriate choice of multimode material,
εi,k : C∗(Vp)εi,k is bounded above by a quantity proportional to δ, essentially
because all the strain is concentrated in phase 2. So we require that the limits
δ→ 0 and ε→ 0 be taken so that δ/ε→ 0 to ensure that the quantity (5-13) goes
to zero in this limit.

Next, consider those junction regions where only two walls meet, i.e., where for
some k1 and k2 > k1, x is such that ηk1(x)= ηk2(x)= 1 while ηs(x)= 0 for all s
not equal to k1 or k2. Provided nk1 6= nk2 , an upper bound for the volume fraction
occupied by each such junction region is ε2. Then the associated energy per unit
volume of the trial strain field in these junction regions where only two walls meet
is bounded above by

p∑
k1=1

p∑
k2=k1+1

(εi,k1 + εi,k2) : C∗(Vp)(εi,k1 + εi,k2). (5-14)

Thus, the powers of ε cancel and this energy density goes to zero if the multimode
material is easily compliant to the strains εi,k1 + εi,k2 for all k1 and k2 with k2 > k1.

Finally, consider those junction regions where three or more walls meet, i.e.,
for some k1, k2 > k1, and k3 > k2, x is such that ηki (x) = 1 for i = 1, 2, 3. For
a given choice of k1, k2 > k1, and k3 > k2 such that the three vectors nk1 , nk2 ,
and nk3 are not coplanar, an upper bound for the volume fraction occupied by this
region is ε3. In the case that the three vectors nk1 , nk2 , and nk3 are coplanar, we can
ensure that the volume fraction occupied by this region is ε3 or less by appropriately
translating one or two wall structures, i.e., by replacing ηkm (x) with ηkm (x+αi nkm )

for m = 2, 3, for an appropriate choice of α2 and α3 between 0 and 1. Since the
energy density of the trial field in these regions scales as ε3/ε2

= ε, we can ignore
this contribution in the limit ε→ 0 as it goes to zero too.

From this analysis of the energy densities associated with the trial fields it
follows that one does not necessarily need the pentamode, quadramode, trimode,
bimode, and unimode materials as appropriate for the material inside the walled
structure. Instead, by modifying the construction, it suffices to use only unimode
and bimode materials. In the walled structure we now put unimode materials in
those sections where for some k we have ηk(x)= 1 while ηk′(x)= 0 for all k ′ 6= k.
Each unimode material is easily compliant to the single strain ε(k) appropriate to the
wall under consideration. A prescription for constructing 3-dimensional unimode
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materials that are multiple rank laminates, and which are easily compliant under
any desired single strain, is given in Section 5.1 of [Milton and Cherkaev 1995].
In each junction region of the walled structure where ηk1(x)= ηk2(x)= 1 for some
k1 6= k2 while ηk(x)= 0 for all k not equal to k1 or k2, we put a bimode material
which is easily compliant to any strain in the subspace spanned by ε(k1) and ε(k2)

as appropriate to the junction region under consideration. At present we do not
know of any recipe in three dimensions for constructing bimode materials that
have any desired pair of strains as their easy modes of deformation, other than to
superimpose four pentamode structures as described in Section 8. In the remaining
junction regions of the walled structure (where three or more walls intersect) we
put phase 1. The contribution to the average energy of the fields in these regions
vanishes as ε→ 0 as discussed above.

By these constructions we effectively obtain materials with elasticity tensors C∗
such that

lim
δ→0

C∗ = (I −5p)C̃
A
f (I −5p), (5-15)

where I is the fourth-order identity matrix, 5p is the fourth-order tensor that
is the projection onto the space Vp, I −5p is the projection onto the orthogonal
complement of Vp, and C̃ A

f is the relevant complementary Avellaneda material. In
the basis (5-5) I −5p is represented by the 6× 6 matrix that has the block form

I −5p =

(
I6−p 0

0 0

)
, (5-16)

where I6−p represents the (6−p)×(6−p) identity matrix and the 0 on the diagonal
represents the p× p zero matrix.

6. Simplifications for 2-dimensional printed materials

For 2-dimensional printed materials, or any 2-dimensional two-phase composite
with one phase being void, the analysis simplifies as then the space of 2×2 symmet-
ric matrices has dimension 3, so there are only four energy functions to consider:

W 0
f (σ

0
1, σ

0
2, σ

0
3)= min

C∗∈GU f

3∑
j=1

σ 0
j : C

−1
∗
σ 0

j ,

W 1
f (σ

0
1, σ

0
2, ε

0
1)= min

C∗∈GU f

[
ε0

1 : C∗ε
0
1+

2∑
j=1

σ 0
j : C

−1
∗
σ 0

j

]
,

W 2
f (σ

0
1, ε

0
1, ε

0
2)= min

C∗∈GU f

[( 2∑
i=1

ε0
i : C∗ε

0
i

)
+ σ 0

1 : C
−1
∗
σ 0

1

]
,

W 3
f (ε

0
1, ε

0
2, ε

0
3)= min

C∗∈GU f

3∑
i=1

ε0
i : C∗ε

0
i .

(6-1)
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Again W 0
f (σ

0
1, σ

0
2, σ

0
3) is attained for a “complementary Avellaneda material” con-

sisting of a sequentially layered laminate geometry having an effective tensor C∗ =
C̃ A

f (σ
0
1, σ

0
2, σ

0
3) ∈ GU f , and we have the inequalities

2∑
j=1

σ 0
j : [C̃

A
f (σ

0
1, σ

0
2, 0)]−1σ 0

j ≤W 1
f (σ

0
1, σ

0
2, ε

0
1),

σ 0
1 : [C̃

A
f (σ

0
1, 0, 0)]−1σ 0

1 ≤W 2
f (σ

0
1, ε

0
1, ε

0
2),

0≤W 3
f (ε

0
1, ε

0
2, ε

0
3),

(6-2)

where, as before, the last inequality is sharp in the limit δ→ 0 being attained when
the material consists of islands of phase 1 surrounded by a phase 2.

The recipe for showing that the bound (6-1) on W 1
f (σ

0
1, σ

0
2, ε

0
1) is sharp for

certain values of ε0
1 and that the bound (6-1) on W 2

f (σ
0
1, ε

0
1, ε

0
2) is sharp for certain

values of ε0
1 and ε0

2 is almost exactly the same as in the 3-dimensional case: insert
into the complementary Avellaneda material a thin walled structure of respectively
unimode and bimode materials so that slips can occur along these walls, allowing
with very little energetic cost the average strain ε0

1 in the case of W 1
f , or any strain

in the space spanned by ε0
1 and ε0

2 in the case of W 2
f .

7. The algebraic problem: characterizing those symmetric matrix pencils
spanned by symmetrized rank 1 matrices

We are interested in the following question: Given k linearly independent sym-
metric d × d matrices A1, A2, . . . , Ak , find necessary and sufficient conditions
such that there exist linearly independent matrices {Bi }

k
i=1 spanned by the basis

elements Ai so that each matrix Bi is a symmetrized rank 1 matrix, i.e., there exist
vectors ai and bi , with |bi | = 1, such that

Bi =
1
2(bi aT

i + ai bT
i ).

It is assumed that d = 2 or 3 and 1 ≤ k ≤ kd , where k2 = 2 and k3 = 5. Here we
are working in the generic situation, i.e., we prove the algebraic result for a dense
set of matrices. The continuity result of Section 9 will allow us to conclude for
the whole set of matrices. Actually, the proof below also shows that the algebraic
result holds for the complement of a zero measure set of matrices.

Theorem 7.1. The above problem is solvable if and only if the matrices Ai for
i = 1, . . . , k satisfy the following conditions:

(i) det(A1)≤ 0, if k = 1, d = 2, (7-1)

A1 has two eigenvalues of opposite signs and one zero eigenvalue,
or has two zero eigenvalues, if k = 1, d = 3. (7-2)
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(ii) If k = d = 2,
det(A1) < 0

or
f (t)= det(A1+ t A2) is quadratic and has two distinct roots for t,

or is linear in t with a nonzero coefficient of t . (7-3)

(iii) If k = 2 and d = 3, defining A(η, µ)= ηA1+µA2, the numbers

det(A(η, µ)), {A(η, µ)}11{A(η, µ)}22−{A(η, µ)}212, {A(η, µ)}11 (7-4)

are never simultaneously nonnegative for any choice of η and µ not both
zero (equivalently A(η, µ) is never strictly positive definite for any values of
η and µ), and

4= 18 det(A1) det(A2)S1S2− 4S3
1 det(A2)+ S2

1 S2
2 − 4S3

2 det(A1)

− 27 det(A1)
2 det(A2)

2 > 0, (7-5)

where Si =
∑3

j=1 si j for i = 1, 2 and si j is the determinant of the matrix
obtained by replacing the j-th row of Ai by the j-th row of Ai+1, where by
convention we have A3 = A1 (equivalently A(η, µ) has three distinct roots).

(iv) Always solvable if k ≥ 3, d = 3. (7-6)

Remark. In fact, the condition (7-2) and the last condition in (7-3), that f (t) is
linear in t , could be withdrawn since we are considering the generic case. They
are inserted because we can treat them explicitly.

Proof. Case (i): k = 1, d = 2 or 3. In this case A1 must be a multiple of B1 and
hence must be a symmetrized rank 1 matrix. To see more clearly the condition for a
matrix B to be a symmetrized rank 1 matrix, i.e., have the form B= 1

2(baT
+abT ),

let us, without loss of generality, choose our coordinates so that b= [1, 0]T when
d = 2 and b= [1, 0, 0]T when d = 3. Then B has the representation

B =

(
a1

1
2a2

1
2a2 0

)
when d = 2, B =

 a1
1
2a2

1
2a3

1
2a2 0 0
1
2a3 0 0

 when d = 3. (7-7)

These have eigenvalues

λ=
1
2

(
a1±

√
a2

1 + a2
2

)
when d = 2,

λ=
1
2

(
a1±

√
a2

1 + a2
2 + a2

3

)
and λ= 0 when d = 3.

(7-8)

So, clearly B is a symmetrized rank 1 matrix in two dimensions if and only if
det(B)≤ 0, and is a symmetrized rank 1 matrix in three dimensions if and only if
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it has two eigenvalues of opposite signs and one zero eigenvalue, or has two zero
eigenvalues.

Case (ii): k = 2, d = 2. In this case there should be two distinct values of t such
that det(A1+ t A2) < 0, which by continuity of this determinant as a function of t
is guaranteed if any of the conditions in (7-3) are met. Note that the case where
det(A1+ t A2)= 0 for all t can be ruled out from consideration since this can only
happen when A2 is proportional to A1, as can be easily seen by working in a basis
where A2 is diagonal.

Case (iii): k = 2, d = 3. Consider the matrix pencil (over reals η and µ) A(η, µ)=
ηA1 +µA2. Assuming that det A(η, µ) is not zero for all η and µ, there are at
least two matrices on the pencil which have nonzero determinant. Let us relabel
them as A1 and A2. Then the equation det(A(1, µ))= 0 must have either two or
three roots µ= zi for i = 1, 2 or i = 1, 2, 3, where the zi are obtained by changing
the sign of the generalized eigenvalues. This gives Cardan’s condition:

4= 18 det(A1) det(A2)S1S2− 4S3
1 det(A2)+ S2

1 S2
2 − 4S3

2 det(A1)

− 27 det(A1)
2 det(A2)

2
≥ 0. (7-9)

Suppose that A1+µA2 contains a symmetric matrix with two zero eigenvalues (a
rank 1 matrix) as µ is varied. Then by redefining A2 we can assume A2 is this
matrix, now with zero determinant, and by using a basis where A2 is diagonal, we
see that det(A1+µA2) depends linearly on µ and det(A1+µA2) can only have
one root: (7-9) must be violated. So we can exclude this possibility: A1+µA2 has
at most one zero eigenvalue for any value of µ. Now consider the eigenvalues of
A(θ)≡ A(cos θ, sin θ) as θ is varied. As A(−θ)=−A(θ) it suffices to consider
the interval of θ between 0 and π . Some scenarios for the eigenvalue trajectories
are plotted in Figure 5. At the values θi = arctan−1(zi ) at least one of the eigen-
values must be zero, and the favorable situation is when there are two remaining
eigenvalues of opposite signs or only one nonzero eigenvalue. Such angles θi are
marked by the vertical dashed lines in the figure. The unfavorable situation is when
there are two nonzero eigenvalues of the same sign, marked by the red vertical lines
in Figure 5 (left). First suppose that A(θ) is positive definite for some θ = θ0. By
refining θ as the old θ minus θ0, let us suppose A(0) is positive definite. Then the
scenario is that in Figure 5 (left), or some variant of it in which eigenvalues cross,
which is unfavorable. The only way to avoid this is for A(θ) to have two zero
eigenvalues at the smallest and largest values of θ ∈ [0, π] for which det A(θ)= 0,
as in Figure 5 (middle), but we have ruled out the possibility that A(θ) has two
zero eigenvalues for any value of θ . We are left with Figure 5 (right) as being the
only possible suitable scenario. In conclusion, we require that the matrix A(θ) not
be positive semidefinite for any choice of θ ; i.e., the three quantities
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λ λ λ

θ θ θ

Figure 5. Some scenarios for the eigenvalues λ of A(θ) =
cos θ A1+ sin θ A2 as θ is varied.

det(A(η, µ)), {A(η, µ)}11{A(η, µ)}22−{A(η, µ)}212, {A(η, µ)}11 (7-10)

are never simultaneously nonnegative for any choice of η and µ not both zero. This
condition could be made explicit by using the formula for the roots of a cubic to
determine the generalized eigenvalues −zi .

Case (iv): k ≥ 3, d = 3. The case k = 3 is a straightforward consequence of
Lemma 7.2 below.

It remains to consider k≥ 4 and d = 3. By the previous step, in the space spanned
by A1, A2, and A3 there are three matrices A′1, A′2, and B3 = A3+ η3 A′1+µ3 A′2
that are linearly independent, symmetrized and of rank 1. Then, again by the
previous step, we can find linearly independent matrices B1, . . . , Bk that have the
form B1 = A′1, B2 = A′2, and Bi = Ai + ηi A′1+µi A′2 for 3 ≤ i ≤ k and that are
of rank 1. �

In the sequel we write

a⊗ b := abT and a� b := 1
2(a⊗ b+ b⊗ a) for a, b ∈ R3. (7-11)

Lemma 7.2. Let A, B,C be three symmetric matrices of R3×3.

(i) Up to small perturbations of A, B,C, there exist a basis (x, y, z) of R3 and
three vectors a, b, c of R3 satisfying

a ∈ {Ax, Bx,Cx}⊥ \ {0},
b ∈ {A y, B y,C y}⊥ \ {0},
c ∈ {Az, Bz,C z}⊥ \ {0},

(7-12)

or equivalently,

a� x, b� y, c� z ∈ {A, B,C}⊥ \ {0}. (7-13)

(ii) Up to small perturbations of A, B,C , there exist three independent symmetrized
rank 1 matrices in the space {A, B,C}⊥.

Proof. (i) Let F be the cubic function defined by

F(x) := det(Ax, Bx,Cx) for x ∈ R3. (7-14)
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If F ≡ 0 in R3, then condition (7-12) is immediately satisfied. Otherwise, there
exists a basis (x0, u0, v0) of R3 in the nonempty open set {F 6= 0}. Since we have

F(x0+ su0)
|s|→∞
∼ s3 F(u0)

|s|→∞
−→ ±∞, (7-15)

there exists s, t ∈ R \ {0} such that x := x0 + su0 and y := x0 + tv0 are two
independent vectors in the set {F = 0}.

First, assume that the set {F = 0} is not contained in the plane Span{x, y}. Then
there exists a basis (x, y, z) of R3 in the set {F = 0}. Therefore, there exist three
vectors a, b, c of R3 satisfying (7-12), or equivalently (7-13).

Now, assume that {F = 0} ⊂ Span{x, y}. First of all, up to small perturbations
we can assume that the matrices A, B,C are invertible. Since B−1C is a 3× 3
real matrix, it has at least a real eigenvalue λ. The perturbation procedure is now
divided into two cases.

First case: The matrix B−1C has two complex conjugate eigenvalues.

Then the eigenspace Ker(B−1C − λ I3) is a line of R3 spanned by e ∈ R3
\ {0}.

Consider a basis (x0, u0, v0) of R3 in the set {F 6= 0} such that (e, x0, u0) and
(e, x0, v0) are also two bases of R3. As previously there exist s, t ∈ R \ {0} such
that x := x0+su0 and y := x0+ tv0 are two independent vectors of the set {F = 0}.
Moreover, since (e, x) and (e, y) are two families of independent vectors and Re
is the unique real eigenspace of the matrix B−1C , we have

Bx×Cx 6= 0 and B y×C y 6= 0. (7-16)

Now, consider a vector u ∈ {x, y}⊥ \ {0} and the matrix M ∈ R3×3 defined by

Mx = ξ , M y = η, Mu = 0, (7-17)

where the vectors ξ , η will be chosen later. Define for τ > 0 the perturbed function

Fτ (z) := det(Az+ τ M z, Bz,C z) for z ∈ R3. (7-18)

We have {
Fτ (x+ τu)= τ ξ ·

(
Bx×Cx+ O(τ )

)
+ O(τ ),

Fτ ( y+ τu)= τ η ·
(
B y×C y+ O(τ )

)
+ O(τ ),

(7-19)

where the O(τ ) denote some first-order vectors in τ and O(τ ) some first-order real
numbers in τ which are independent of ξ , η. Condition (7-16) then allows us to
choose ξ = ξ τ and η = ητ such that Fτ (x + τu) = Fτ ( y+ τu) = 0. Therefore,
since (x, y, u) is a basis of R3, (x, x+ τu, y+ τu) is also a basis of R3, which in
addition lies in the set {Fτ = 0}. This leads us to condition (7-12) with the matrices
A+ τ M, B,C .
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Second case: The matrix B−1C has only real eigenvalues.

Then there exists a small perturbation Cτ of C such that the perturbed matrix
B−1Cτ has three distinct real eigenvalues. Hence, the matrix B−1Cτ admits a
basis (x, y, z) of eigenvectors, which implies that

Cτ x− λBx = Cτ y− λB y = Cτ z− λBz = 0. (7-20)

Therefore, the perturbed function

Fτ (u) := det(Au, Bu,Cτu) for u ∈ R3 (7-21)

satisfies Fτ (x)= Fτ ( y)= Fτ (z)= 0, which again leads us to condition (7-12) with
the matrices A, B,Cτ .

(ii) We will distinguish four cases according to whether the following conditions
are satisfied by the basis (x, y, z) of R3 and the vectors a, b, c ∈ R3

\ {0} obtained
in step (i): 

a ∈ Span{x, y} ∩Span{x, z},
b ∈ Span{ y, x} ∩Span{ y, z},
c ∈ Span{z, x} ∩Span{z, y}.

(7-22)

First case: a, b and c satisfy conditions (7-22).

Then, since (x, y, z) is a basis of R3, we have necessarily a ∈ R x, b ∈ R y, c ∈ R z.
Therefore, x� x, y� y, z� z are clearly three independent matrices of {A, B,C}⊥.

Second case: b and c satisfy conditions (7-22) but a does not.

Then, for example, (a,x, y) is a basis of R3, and b∈R y, c∈R z. Let u∈{ y, z}⊥\{0},
and let α, β, γ ∈ R be such that α a� x+ β y� y+ γ z� z = 0. Multiplying by
u we get that α(x · u)a+α(a · u)x = 0; hence α = 0 since x · u 6= 0. We deduce
immediately that β = γ = 0. Therefore, a� x, y� y, z� z are three independent
matrices of {A, B,C}⊥.

Third case: a and b do not satisfy conditions (7-22), with a /∈ Span{x, y} and
b /∈ Ra∪R x (respectively a /∈ Span{x, z} and c /∈ Ra∪R x).

Then (a, x, y) is a basis of R3. Let u ∈ {x, y}⊥ \ {0}, and let α, β ∈ R be such that
α a� x + β b� y = 0. Multiplying by u we get that α(a · u)x + β(b · u) y = 0;
hence α = 0 since a · u 6= 0, and thus β = 0. Therefore, a � x, b� y are two
independent matrices of {A, B,C}⊥, which have two eigenvalues of opposite sign
and one 0 eigenvalue.

Let us prove by contradiction that

∃ t ∈ R \ {0}, det(a� x+ t b� y) 6= 0. (7-23)
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Otherwise, for any t 6= 0, there exists zt ∈ Ker(a� x+ t b� y) \ {0}; hence

(x · zt)a+ (a · zt)x+ t ( y · zt)b+ t (b · zt) y = 0. (7-24)

Since (a, x, y) is a basis of R3 and zt 6= 0, we have necessarily y · zt 6= 0, which
implies that

−b=
x · zt

t ( y · zt)
a+

a · zt

t ( y · zt)
x+

b · zt

y · zt
y = α a+β x+ γ y, (7-25)

where α, β, γ are independent of t , and

(x−αt y) · zt = (a−βt y) · zt = (b− γ y) · zt = 0. (7-26)

Since zt 6= 0 there exists (pt , qt , rt) ∈ R3
\ {0} such that

pt(x−αt y)+ qt(a−βt y)+ rt(b− γ y)
= (qt −αrt)a+ (pt −βrt)x− (αtpt +βtqt + 2γ rt) y = 0, (7-27)

which implies that qt = αrt , pt = βrt and rt(αβt + γ )= 0. Since (pt , qt , rt) 6= 0,
we have rt 6= 0 and αβt + γ = 0 for any t 6= 0; hence αβ = 0 and γ = 0. This
yields a contradiction between (7-25) and b /∈ Ra∪R x.

By virtue of (7-23) there exist two nonzero real numbers α 6= β such that the
matrices

M := a� x+α b� y and N := a� x+β b� y (7-28)

are invertible. The function p(t) := det(βM − t N) is a polynomial of degree 3
whose α, β are two distinct roots. Then the polynomial p(t) must change sign by
crossing α, for example (the conclusion is similar for β). Let λ1(t)≤ λ2(t)≤ λ3(t)
be the well-ordered eigenvalues of the symmetric matrix βM − t N . Since the
vectors a, x are independent, a� x has two eigenvalues of opposite sign and one
0 eigenvalue; hence λ1(α) < λ2(α)= 0< λ3(α).

Now, let Pτ for a small τ > 0 be a symmetric matrix in the space {A, B,C}⊥,
such that |Pτ − a� x| = O(τ ), and such that the three matrices a� x, b� y, Pτ
are independent (note that the dimension of {A, B,C}⊥ is ≥ 3). Define the two
perturbed matrices

Mτ := Pτ +α b� y and Nτ := Pτ +β b� y. (7-29)

Since the well-ordered eigenvalues of a real symmetric matrix S are Lipschitz-
continuous with respect to S (see, e.g., [Ciarlet 1989], Theorem 2.3-2), the eigen-
values λτ1(t) ≤ λ

τ
2(t) ≤ λ

τ
3(t) of βMτ − t Nτ converge uniformly as τ → 0 to the

eigenvalues λ1(t)≤ λ2(t)≤ λ3(t) of βM− t N , with respect to t in a neighborhood
of α. Hence, for τ > 0 small enough, there exist ατ close to α such that ατ 6= β and
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λτ1(ατ ) < λ
τ
2(ατ )= 0< λτ3(ατ ). Then by (7-29) there exist cτ , zτ ∈ R3 such that

βMτ−ατ Nτ = cτ� zτ = (β−ατ )Pτ+β(α−ατ )b� y, with β−ατ 6= 0. (7-30)

Therefore, a� x, b� y, cτ � zτ are three independent symmetrized rank 1 matrices
in the space {A, B,C}⊥.

Fourth case: a and b do not satisfy conditions (7-22), with a /∈ Span{x, y} and
b ∈ Ra∪R x (respectively a /∈ Span{x, z} and c ∈ Ra∪R x).

For example, we have b∈Ra. We thus start from the matrices a�x and a� y in the
space {A, B,C}⊥, where (a, x, y) is a basis of R3. We will consider a perturbation
of A, B,C for leading us to the third case.

Let t ∈ {a, x}⊥ \ {0}, let d ∈ R3
\ (Ra+R x), and consider, for a small τ > 0,

the perturbed vector bτ := a+ τ d /∈ Ra∪R x and the perturbed matrices

Aτ := A+ τ t � uτ , Bτ := B+ τ t � vτ , Cτ := C + τ t �wτ , (7-31)

where the vectors uτ , vτ ,wτ will be chosen later. Clearly, a� x ∈ {Aτ , Bτ ,Cτ }
⊥.

On the other hand, we have

Aτ : bτ � y = τ(A : d� y+ t � uτ : a� y+ τ t � uτ : d� y). (7-32)

Since 2 t � uτ : a� y = (t · y)a · uτ with t · y 6= 0, we can choose uτ = O(1)
with respect to τ such that Aτ : bτ � y = 0. Hence, choosing vτ and wτ similarly,
we get that bτ � y ∈ {Aτ , Bτ ,Cτ }

⊥. Therefore, the vectors a, bτ , x, y satisfy the
conditions of the third case with the perturbed matrices Aτ , Bτ ,Cτ . �

8. Constructing suitable multimode materials for the wall microstructure

Let us specify the construction of the desired multimode materials in two dimen-
sions and then move to three dimensions. We begin by constructing bimode ma-
terials that can only support one stress. One could use the fourth-rank laminate
structure described in detail in Section 30.7 of [Milton 2002]. The analysis would
then be essentially a repeat of that analysis, which builds the appropriate trial stress
and strain fields at each length scale. The key feature is that these trial fields need
to be chosen so the trial stress associated with the average stress σ 0 we want to
achieve at the macroscopic scale is concentrated entirely in phase 1 (apart from
boundary layers that we ignore, whose contribution to the energy vanishes in the
homogenization limit), and so the trial strain associated with an average strain that
is orthogonal to σ 0 is concentrated entirely in phase 2.

Rather than doing this, it is more instructive to build trial stress and strain fields
that are concentrated in phase 1 and phase 2, respectively, for the honeycomb and
inverted honeycomb bimode structures of Figure 6, as the ideas here carry over
to pentamode materials. The trial stress is easy. It is taken to be macroscopically
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J0 J1
a0

a1

a2
a0

a1

a2

Figure 6. 2-dimensional bimode materials that can only support
one average stress field σ 0, and which are easily compliant to any
strain orthogonal to σ 0. Here the red struts are laminates of the
two phases with the interfaces in the laminate parallel to the di-
rection of the struts. The geometry on the left is appropriate if
det σ 0 > 0, the geometry on the right is appropriate if det σ 0 < 0,
and if det σ 0

= 0 it suffices to use a simple laminate with the layer
surfaces perpendicular to the null vector of σ 0.

constant with a value αi ai aT
i in each strut which is parallel to the unit vector ai in

Figure 7. Let wi denote the width of the strut parallel to ai , for i = 0, 1, 2. Since
the net “force” on the black junction regions in the top left and top right of Figure 7
must be zero, we obtain

0=−
2∑

k=0

wi (αi ai aT
i )ai =−

2∑
k=0

wiαi ai . (8-1)

Since w1 = w2 and a0 points in the horizontal direction, while a1 and a2 have the
same horizontal component and equal but opposite vertical components, we get

α1 = α2 =−w0α0/[2w1(a1 · a2)]. (8-2)

The symmetry of the trial stress field implies there is no associated torque acting
on the junction regions. The trial stress in the junction regions is really not that
important. One choice is the stress field that satisfies the elasticity equations ap-
propriate to phase 1 filling the junction region when constant tractions act on the
three sides. The average value of the trial stress does not depend on the choice of
trial stress in the junctions. Indeed, since ∇ · (σ ) = 0 it follows from integration
by parts of ∇ · (σ x) (where σ x is a third-order tensor) that∫

�

σ dx =
∫
∂�

t xT d S, where t = σn is the surface traction, (8-3)

in which � is any region with boundary ∂�. For example, the boundary of � could
be the outermost boundary of the shape in the top left or top right of Figure 7, where
we include the dashed lines as part of the boundary.
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Figure 7. The honeycomb structure of Figure 6 (left) can be taken
to have the unit cell shown at top left. Similarly the inverted hon-
eycomb structure of Figure 6 (right) can be taken to have the unit
cell shown at top right. The space outside the struts and junction
regions (which is occupied by phase 2) has been triangulated with
boundaries marked by the dashed lines to make the construction
of the trial stress fields easy.

In passing, we remark that if σ 0 is proportional to the identity matrix, then the
microstructure of Figure 7 (top left) resembles a Sigmund microstructure (see the
last subfigure in Figure 2 in [Sigmund 2000]). However, we do not require the
tuning of layer widths in the struts that makes his structure optimal. Suboptimal
structures are perfectly fine in the walls, since the walls ultimately occupy a van-
ishingly small volume fraction in the final material.

To obtain a trial easy strain it suffices to specify the trial displacement in the unit
cell. We only choose motions so the junction regions (triangular in Figure 7 (bottom
left) and quadrilateral in Figure 7 (bottom right)) undergo rigid body translations,
so there is no strain inside them. Thus associated with Figure 7 (bottom left) one
can clearly identify two independent macroscopic modes of motion. The first is
where the line RS moves vertically upwards while the line PU remains fixed, and
Q and T move in such a way that the lengths QR, QP, TS, and TU remain equal and
preserved in length. One can choose the displacement to be linear in each of the
three regions A, B, and C so that it matches the displacement on the boundary. The
second is where the line RS moves horizontally while the line PU remains fixed,
and Q and T move in such a way that the lengths QR, QP, TS, and TU remain equal
and preserved in length. In either case inside the horizontal laminate arm there is no
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Figure 8. 2-dimensional unimode materials that are easily compli-
ant to one average strain field ε0, and which can support any stress
orthogonal to ε0. In both, the red region represents a laminate as
indicated by the inserts. The second-rank laminate geometry on
the left is appropriate if det ε0 < 0 and the third-rank geometry on
the right is appropriate for any ε0.

strain, while inside the inclined laminate arms there is an infinitesimal shear so the
junction at P remains fixed, while the junction at Q moves perpendicular to a1 and
the junction at V moves perpendicular to a2. We also note that there is also an easy
microscopic motion which results in no macroscopic motion. Define the center of
each triangular junction to be the point which is at the junction of the perpendicular
bisector of the three faces. Then if all the triangular junctions undergo the same
infinitesimal rotation about these centers while the laminate material in the struts
shears at the same time, it will cost very little energy. The trial strain field is
bounded and nonzero only in phase 2, and therefore the associated upper bound
on the elastic energy scales in proportion to δ.

The situation in Figure 7 (bottom right) is basically similar. The two black
quadrilateral junction regions at the bottom of the figure can remain fixed. Then one
mode is the symmetric one, where the region A undergoes uniaxial compression
in the horizontal direction and at the same time moves downwards. The second is
where the region A undergoes pure shear, so the junction on the left side of it moves
up, while the right side moves down. The strain field can be taken constant in the
regions A, B, C , D, and E , and in the inclined laminate strut arms is also constant
and corresponds to pure shear. These strains are easily determined from the value
of the trial displacement field at the boundaries of each region. Again, the trial
strain field is bounded and nonzero only in phase 2, and therefore the associated
upper bound on the elastic energy scales in proportion to δ.

The structures of Figure 8 give suitable 2-dimensional unimode materials. We
will not specify the appropriate trial stress and strain fields which prove that these
structures have the desired elastic behavior, as they are exactly the same as those
given in Section 30.6 of [Milton 2002].

We now describe the pentamodes and the trial fields in them. Given four vectors
a0, a1, a2, and a4 (no longer required to be unit vectors) we position a point P at
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(a) (b) (c) (d)
a0

a1

a2

a3

P

Figure 9. The procedure for constructing the desired pentamodes.
In (d) a shearable section is inserted into each strut. This section,
shown in red, has the structure of parallel square fibers, as illus-
trated in Figure 10, with the fibers aligned parallel to the strut.

the origin, and join P to the four points x = ai for i = 0, 1, 2, 3, with four infinites-
imally thin rods, as in Figure 9(a). We then take as our unit cell of periodicity
the parallelepiped with the eight points x = ai , x = a1 + a2 + a3 − ai − a0

for i = 0, 1, 2, 3 (the three vectors vi = ai − a0 for i = 1, 2, 3 are the primitive
lattice vectors). We require that a0, a1, a2, a4 be chosen so P lies within this
parallelepiped. After periodically extending the rod structure (with rods joining
k1v1+ k2v1+ k3v1 with the four points k1v1+ k2v1+ k3v1+ ai for i = 0, 1, 2, 3,
for any integers k1, k2, and k3), we then coat this periodic rod structure with phase 1,
as illustrated in Figure 9(b), so that any point x is in phase 1 if and only if it is
within a distance r of the rod structure. Here r should be chosen appropriately
small so that the coatings of each rod contain a cylindrical section that we refer to
as a strut. Figure 9(b) is misleading as it suggests that the unit cell only contains
one junction region. The true structure which should be periodically repeated (by
making copies shifted by vectors k1v1+k2v1+k3v1 for all combinations of integers
k1, k2, and k3) is shown in Figure 9(c) and contains the junction of Figure 9(b) plus
the one obtained by inverting it under the transformation x→−x. The final step,
illustrated in Figure 9(d), is to take a cylindrical subsection of each cylindrical
section between junctions and replace it with a pentamode material that supports
any stress proportional to ai aT

i . It is convenient to take end faces of the cylindrical
subsection to be perpendicular to the cylinder axis, i.e., perpendicular to the vector
ai that is parallel to the cylinder axis. Now we define the junction regions to be
those connected regions of phase 1 that are bounded by the cylindrical subsections.

To obtain the trial stress field, we first solve for the tensions in the rods of
Figure 9(a) when the rods are completely rigid and supporting a stress. These are
found just by balance of forces at the junctions. If the rods parallel to ai have a
tension Ti (which could be negative) then we take in the cylindrical subsection of
the corresponding strut of the final pentamode a trial stress field Ti ai aT

i /(|ai |
2πr2)

giving rise to a net force Ti pulling (pushing if Ti is negative) on the adjacent
junction regions. Inside the junction region we take a stress field that satisfies the
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a n1

n2

Figure 10. A detailed view of the square beam array microstruc-
ture which is used as the easily shearable section in the pentamode
cylindrical struts. The vector a is chosen to be one of the four vec-
tors ak for k = 0, 1, 2, 3, as appropriate to each pentamode strut
orientated parallel to ak . The square beams can support tension
(or compression) in the direction of the beam, and in particular
can support a constant macroscopic stress σ B

k = αk ak aT
k . As we

are working in the framework of linear elasticity, we ignore the
very real possibility that the beams will buckle.

elasticity equations appropriate to phase 1 filling the junction region when constant
tractions Ti/(πr2) act on the four disks that border the cylindrical subsections, and
there are no forces on the remaining surface of the junction regions.

Obtaining appropriate trial strain fields is also not too difficult. We first consider
an infinitesimal motion that the rod model with Figure 9(a) as the unit cell can
undergo when the rods are rigid but the pin junctions are flexible. Then in the final
pentamode the junction regions are taken to undergo a rigid body translation which
is the same as that of the corresponding pin junction in the rod model. The cylindri-
cal subsections undergo appropriate shears to ensure continuity of the displacement.
The trial displacement in the remaining multiconnected region of phase 2 bordered
by the junction regions and the cylindrical subsection can be somewhat arbitrary,
and is not really important. One could take it as the solution for the displacement
field when phase 2 has some nonzero elastic moduli, and the displacement at the
boundary of the junctions and cylindrical subsections matches that of the trial field
just specified. The trial strain field is bounded and nonzero only in phase 2, and
therefore the associated upper bound on the elastic energy scales in proportion to δ.

It is clear from the choice of these trial stress and strain fields that the macro-
scopic stress the material supports and the easy motions it permits are exactly the
same as those for the ideal model with rods and pin junctions that has the unit cell
pictured in Figure 9(a), and which provided the basis for our construction. That this
structure can support any desired average stress, and only that average stress, is then
a direct consequence of the analysis in Section 5.2 of [Milton and Cherkaev 1995].
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Figure 11. Some of the replacements that are needed to obtain
desired unimode, bimode, trimode, or quadramode materials.

To obtain any desired unimode, bimode, trimode, or quadramode material, having
respectively p = 1, 2, 3, 4 independent easy modes of deformation, and supporting
respectively 6− p applied stresses σ 0

j for j = 1, . . . , 6− p, we follow the prescrip-
tion given by Milton and Cherkaev [1995]. That is, we superimpose, one at a time,
6− p pentamode structures, each supporting one of the stresses σ 0

j , with struts
which are sufficiently thin to ensure that one can (with appropriate modification
specified below) superimpose the structures without collision. When doing this
superimposition we first remove phase 2 and shift the lattice structures to try to
avoid unwanted intersections of phase 1. This may not always be possible, so in
the event two vertices clash we make the replacement in Figure 11 (left) in one of
the structures (which may of course then cause additional unwanted intersections
of the struts). Then if two (or more) struts intersect we make the replacement
in Figure 11 (right) in all but one of the struts (which then passes through each
hole). The remaining possibility we want to avoid is that two pentamode struts
are parallel and intersect when we superimpose the structures. Due to the freedom
in the choice of the ak that give a desired σ 0

j , we can always choose our 6− p
pentamode structures to avoid such clashes. Finally, the shearable section in each
pentamode strut should be placed in a section that has not been modified, so it still
is parallel to one of the ak . At the very end any remaining space that is not filled
by phase 1 should be filled by the extremely compliant phase 2.

9. Continuity of the energy functions

It follows from the preceding analysis that we can determine the three energy func-
tions

W 3
f (σ

0
1, σ

0
2, σ

0
3, ε

0
1, ε

0
2, ε

0
3),

W 4
f (σ

0
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0
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0
1, ε

0
2, ε

0
3, ε

0
4),

W 5
f (σ

0
1, ε

0
1, ε

0
2, ε

0
3, ε

0
4, ε

0
5)

in the limit δ→ 0 for almost all combinations of applied fields. Here we establish
that these energy functions are continuous functions of the applied fields in the
limit δ→ 0, and therefore we obtain expressions for the energy functions for all
combinations of applied fields in this limit.
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Recall that the set GU f is characterized by its W -transform. For example, part
of it is described by the function

W 4
f (σ

0
1, σ

0
2, ε

0
1, ε

0
2, ε

0
3, ε

0
4)= min

C∗∈GU f

[ 4∑
i=1

ε0
i : C∗ε

0
i +

2∑
j=1

σ 0
j : C

−1
∗
σ 0

j

]
. (9-1)

Here we want to show that such energy functions are continuous in their arguments.
Let the tensor C∗(σ 0

1, σ
0
2, ε

0
1, ε

0
2, ε

0
3, ε

0
4) be a minimizer of (9-1), and suppose we

perturb the applied stress fields σ 0
j by δσ 0

j and the applied strain fields ε0
i by δε0

i .
Now consider the walled material with a geometry described by the characteristic
function

χw(x)=
3∏

k=1

(1− Hε′(x · nk)), (9-2)

where n1, n2, and n3 are the three orthogonal unit vectors

n1 =

1
0
0

 , n2 =

0
1
0

 , n3 =

0
0
1

 , (9-3)

and ε′ is a small parameter that gives the thickness of the walls. Inside the walls,
where χw(x)= 0, we put an isotropic composite of phase 1 and phase 2, mixed in
the proportions f and 1− f with isotropic effective elasticity tensor C(κ0, µ0),
where κ0 is the effective bulk modulus and µ0 is the effective shear modulus,
which are assumed to have nonzero limits as δ → 0. (The isotropic composite
could consist of islands of void surrounded by phase 1.) Outside the walls, where
χw(x)= 1, we put the material that has an effective tensor

C1
∗
= C∗(σ 0

1, σ
0
2, ε

0
1, ε

0
2, ε

0
3, ε

0
4).

Let C ′
∗

be the effective tensor of the composite. We have the variational principle

4∑
i=1

(ε0
i + δε

0
i ) : C

′

∗
(ε0

i + δε
0
i )+

2∑
j=1

(σ 0
j + δσ

0
j ) : (C

′

∗
)−1(σ 0

j + δσ
0
j )

= min
ε1,ε2,ε3,ε4,σ 1,σ 2

〈 4∑
i=1

εi (x) : [χw(x)C1
∗
+ (1−χw(x))C(κ0, µ0)]εi (x)

+

2∑
j=1

σ j (x) : [χw(x)C1
∗
+ (1−χw(x))C(κ0, µ0)]

−1σ j (x)
〉
, (9-4)

where the minimum is over fields subject to the appropriate average values and
differential constraints. We choose constant trial strain fields

εi (x)= ε0
i + δε

0
i , i = 1, 2, 3, 4, (9-5)
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and trial stress fields

σ j (x)= σ 0
j + δσ j (x), j = 1, 2, (9-6)

where δσ j (x) has average value δσ 0
j and is concentrated in the walls. Specifically,

if {δσ 0
j }k` denote the matrix elements of δσ 0

j , and letting

δσ 1
j =

0 0 0

0 0 {δσ 0
j }23

0 {δσ 0
j }32 {δσ

0
j }33

 ,

δσ 2
j =

{δσ
0
j }11 0 {δσ 0

j }13

0 0 0

{δσ 0
j }31 0 0

 ,

δσ 3
j =

 0 {δσ 0
j }12 0

{δσ 0
j }21 {δσ

0
j }22 0

0 0 0

 ,

(9-7)

then we choose

δσ j (x)=
3∑

k=1

δσ k
j Hε′(x · nk)/ε

′, (9-8)

which has the required average value δσ 0
j and satisfies the differential constraints

appropriate to a stress field because δσ k
j nk = 0.

Hence, there exist positive constants α and β such that for sufficiently small ε′

and for sufficiently small variations δσ 0
j and δε0

i in the applied fields, we have

〈 4∑
i=1

εi (x) : [χw(x)C1
∗
+ (1−χw(x))C(κ0, µ0)]εi (x)

+

2∑
j=1

σ j (x) : [χw(x)C1
∗
+ (1−χw(x))C(κ0, µ0)]

−1σ j (x)
〉
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4)+αε
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+βK/ε′, (9-9)

where K represents the norm

K =

√√√√ 4∑
i=1

δε0
i : δε

0
i +

2∑
j=1

δσ 0
j : δσ

0
j , (9-10)
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of the field variations. Choosing ε′ =
√
βK/α to minimize the right-hand side of

(9-9), we obtain
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In obtaining the bound (9-9) we have used the fact that K 2 is less than K for
sufficiently small K , specifically K < 1. Clearly the right-hand side of (9-11)
approaches W 4
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reversed, and with
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we deduce that
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This, together with (9-11), establishes the continuity of W 4
f (σ

0
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0
4).

The continuity of the other energy functions follows by the same argument.

10. Conclusion

We have established the following two theorems.

Theorem 10.1. Consider composites in three dimensions of two materials with
positive definite elasticity tensors C1 and C2 = δC0 mixed in proportions f and
1− f . Let the seven energy functions W k

f , for k = 0, 1, . . . , 6, that characterize
the set GU f (with U = (C1, δC0)) of possible elastic tensors be defined by (3-9).
These energy functions involve a set of applied strains ε0

i and applied stresses σ 0
j

meeting the orthogonality condition (3-10). The energy function W 0
f is given by
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(as proved by Avellaneda [1987b]). Here C̃ A
f (σ
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6) is the effec-

tive elasticity tensor of a complementary Avellaneda material that is a sequentially
layered laminate with the minimum value of the sum of complementary energies
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Additionally, we now have
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for all combinations of applied stresses σ 0
j and applied strains ε0

i . When det ε0
1 = 0

but ε0
1 is not positive semidefinite or negative semidefinite, we have

lim
δ→0

W 1
f (σ

0
1,σ

0
2,σ

0
3,σ

0
4,σ

0
5,ε

0
1)=

5∑
j=1

σ 0
j : [C̃

A
f (σ

0
1,σ

0
2,σ

0
3,σ

0
4,σ

0
5,0)]

−1σ 0
j , (10-4)

while when the equation det(ε0
1 + tε0

2) has at least two distinct roots for t (the
condition for which is given by (7-5)), and additionally, the matrix pencil ε(t) =
ε0

1 + tε0
2 does not contain any positive definite or negative definite matrices as t

is varied (which requires that the quantities in (7-4) are never all positive, or all
negative), we have
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Theorem 10.2. For 2-dimensional composites, the four energy functions W k
f , for

k = 0, 1, 2, 3, are defined by (6-1), and these characterize the set GU f , with U =
(C1, δC0), of possible elastic tensors C∗ of composites of two phases with positive
definite elasticity tensors C1 and C2 = δC0. These energy functions involve a set
of applied strains ε0

i and applied stresses σ 0
j meeting the orthogonality condition

(3-10). The energy function W 0
f is given by
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(as proved by Avellaneda [1987b]), where C̃ A
f (σ
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ity tensor of a complementary Avellaneda material that is a sequentially layered
laminate with the minimum value of the sum of complementary energies
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We also have the trivial result that
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while when det ε0
1 < 0 or when f (t) = det(ε0

1 + tε0
2) is quadratic in t with two

distinct roots, or when f (t) is linear in t with a nonzero t coefficient, we have

lim
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These theorems, and the accompanying microstructures, help define what sort
of elastic behaviors are theoretically possible in 2- and 3-dimensional printed ma-
terials. They should serve as benchmarks for the construction of more realistic
microstructures that can be manufactured. We have found the minimum over all
microstructures of various sums of energies and complementary energies. More
realistic designs can be obtained by adding to this sum a term that penalizes the sur-
face area as done for a single energy minimization by Kohn and Wirth [2014; 2016].

It remains an open problem to find expressions for the energy functions in the
cases not covered by these theorems. Even for an isotropic composite with a bulk
modulus κ∗ and a shear modulus µ∗, the set of all possible pairs (κ∗, µ∗) is still not
completely characterized either in the limit δ→ 0 or in the limit δ→∞. In these
limits the bounds of Berryman and Milton [1988] and Cherkaev and Gibiansky
[1993] decouple and provide no extra information beyond that provided by the
Hashin–Shtrikman–Hill bounds [Hashin and Shtrikman 1963; Hashin 1965; Hill
1963; 1964]. While the results of this paper show that in the limit δ→ 0 one can
obtain 2- or 3-dimensional structures attaining the Hashin–Shtrikman–Hill upper
bound on κ∗, while having µ∗ = 0, it is not clear what the maximum value for µ∗
is, given that κ∗ = 0.

One important corollary of this work is that it gives a complete characterization
of the possible triplets (ε0, σ 0, f ) of average strain ε0, average stress σ 0, and volume
fraction f that can occur in 2-dimensional and 3-dimensional printed materials in
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the limit δ→ 0. This will be discussed in a separate paper [Milton and Camar-
Eddine 2016].
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