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In 1976, Onabe discovered that, in contrast to the Neukirch-Uchida results that
were proved around the same time, a number field K is not completely charac-
terized by its absolute abelian Galois group AK . The first examples of noniso-
morphic K having isomorphic AK were obtained on the basis of a classification
by Kubota of idele class character groups in terms of their infinite families of
Ulm invariants, and did not yield a description of AK . In this paper, we provide
a direct “computation” of the profinite group AK for imaginary quadratic K, and
use it to obtain many different K that all have the same minimal absolute abelian
Galois group.

1. Introduction

The absolute Galois group GK of a number field K is a large profinite group that
we cannot currently describe in very precise terms. This makes it impossible to
answer fundamental questions on GK , such as the inverse Galois problem over K.
Still, Neukirch [7] proved that normal number fields are completely characterized
by their absolute Galois groups: If GK1

and GK2
are isomorphic as topological

groups, then K1 and K2 are isomorphic number fields. The result was refined
by Ikeda, Iwasawa, and Uchida ([8], [9, Chapter XII, §2]), who disposed of the
restriction to normal number fields, and showed that every topological isomor-
phism GK1

�!� GK2
is actually induced by an inner automorphism of GQ. The

same statements hold if all absolute Galois groups are replaced by their maximal
prosolvable quotients.

It was discovered by Onabe [10] that the situation changes if one moves a further
step down from GK , to its maximal abelian quotient AK DGK=ŒGK ; GK �, which
is the Galois group AK DGal.Kab=K/ of the maximal abelian extension Kab of K.
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Even though the Hilbert problem of explicitly generating Kab for general number
fields K is still open after more than a century, the group AK can be described by
class field theory, as a quotient of the idele class group of K.

Kubota [5] studied the group XK of continuous characters on AK , and expressed
the structure of the p-primary parts of this countable abelian torsion group in terms
of an infinite number of so-called Ulm invariants. It had been shown by Kaplansky
[4, Theorem 14] that such invariants determine the isomorphism type of a count-
able reduced abelian torsion group. Onabe computed the Ulm invariants of XK
explicitly for a number of small imaginary quadratic fields K, and concluded from
this that there exist nonisomorphic imaginary quadratic fields K and K 0 for which
the absolute abelian Galois groups AK and AK0 are isomorphic as profinite groups.
This may even happen in cases where K and K 0 have different class numbers, but
the explicit example K DQ.

p
�2/, K 0 DQ.

p
�5/ of this that occurs in Onabe’s

main theorem [10, Theorem 2] is incorrect. This is because the value of the finite
Ulm invariants in [5, Theorem 4] is incorrect for the prime 2 in case the ground field
is a special number field in the sense of our Lemma 3.2. As it happens, Q.

p
�5/

and the exceptional field Q.
p
�2/ do have different Ulm invariants at 2. The nature

of Kubota’s error is similar to an error in Grunwald’s theorem that was corrected
by a theorem of Wang occurring in Kubota’s paper [5, Theorem 1]. It is related to
the noncyclic nature of the 2-power cyclotomic extension Q�Q.�21/.

In this paper, we obtain Onabe’s corrected results by a direct class field theoretic
approach that completely avoids Kubota’s dualization and the machinery of Ulm
invariants. We show that the imaginary quadratic fields K ¤Q.

p
�2/ that are said

to be of ‘type A’ in [10] share a minimal absolute abelian Galois group that can be
described completely explicitly as

AK D yZ
2
�

Y
n�1

Z=nZ:

The numerical data that we present suggest that these fields are in fact very common
among imaginary quadratic fields: More than 97% of the 2356 fields of odd prime
class number hK D p < 100 are of this nature. We believe (Conjecture 7.1) that
there are actually infinitely many K for which AK is the minimal group above.
Our belief is supported by certain reasonable assumptions on the average splitting
behavior of exact sequences of abelian groups, and these assumptions are tested
numerically in the final section of the paper.

2. Galois groups as yZ-modules

The profinite abelian Galois groups that we study in this paper naturally come with
a topology for which the identity has a basis of open neighborhoods that are open
subgroups of finite index. This implies that they are not simply Z-modules, but that
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the exponentiation in these groups with ordinary integers extends to exponentiation
with elements of the profinite completion yZ D lim

 �n
Z=nZ of Z. By the Chinese

remainder theorem, we have a decomposition of the profinite ring yZD
Q
p Zp into

a product of rings of p-adic integers, with the index p ranging over all primes.
As yZ-modules, our Galois groups decompose correspondingly as a product of pro-
p-groups.

It is instructive to look first at the yZ-module structure of the absolute abelian
Galois group AQ of Q, which we know very explicitly by the Kronecker-Weber
theorem. This theorem states that Qab is the maximal cyclotomic extension of Q,
and that an element � 2AQ acts on the roots of unity that generate Qab by exponen-
tiation. More precisely, we have �.�/D �u for all roots of unity, with u a uniquely
defined element in the unit group yZ� of the ring yZ. This yields the well-known
isomorphism AQ D Gal.Qab=Q/Š yZ� D

Q
p Z�p .

For odd p, the group Z�p consists of a finite torsion subgroup Tp of .p� 1/-st
roots of unity, and we have an isomorphism

Z�p D Tp � .1CpZp/Š Tp �Zp

because 1C pZp is a free Zp-module generated by 1C p. For p D 2 the same
is true with T2 D f˙1g and 1C 4Z2 the free Z2-module generated by 1C 4D 5.
Taking the product over all p, we obtain

AQ Š TQ � yZ; (1)

with TQ D
Q
p Tp the product of the torsion subgroups Tp �Q�p of the multiplica-

tive groups of the completions Qp of Q. More canonically, TQ is the closure of the
torsion subgroup of AQ D Gal.Qab=Q/, and AQ=TQ is a free yZ-module of rank 1.
The invariant field of TQ inside Qab is the unique yZ-extension of Q.

Even though it looks at first sight as if the isomorphism type of TQ depends on
the properties of prime numbers, one should realize that in an infinite product of
finite cyclic groups, the Chinese remainder theorem allows us to rearrange factors
in many different ways. One has for instance a noncanonical isomorphism

TQ D

Y
p

Tp Š
Y
n�1

Z=nZ; (2)

as both of these products, when written as a countable product of cyclic groups
of prime power order, have an infinite number of factors Z=`kZ for each prime
power `k . Note that, for the product

Q
p Tp of cyclic groups of order p � 1 (for

p¤ 2), this statement is not completely trivial: It follows from the existence, by the
well-known theorem of Dirichlet, of infinitely many primes p that are congruent
to 1 mod `k , but not to 1 mod `kC1.
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Now suppose that K is an arbitrary number field, with ring of integers O. By
class field theory,AK is the quotient of the idele class groupCKD

�Q0
p�1K

�
p

�
=K�

ofK by the connected component of the identity. In the case of imaginary quadratic
fields K, this connected component is the subgroup K�1 D C� � CK coming from
the unique infinite prime of K, and in this case the Artin isomorphism for the
absolute abelian Galois group AK of K reads

AK D yK
�=K� D

�Y
p

0

K�p

�
=K�: (3)

Here yK� D
Q0

pK
�
p is the group of finite ideles of K, that is, the restricted direct

product of the groups K�p at the finite primes p of K, taken with respect to the unit
groups O�p of the local rings of integers. For the purposes of this paper, which tries
to describe AK as a profinite abelian group, it is convenient to treat the isomorphism
for AK in (3) as an identity — as we have written it down.

The expression (3) is somewhat more involved than the corresponding identity
AQ D yZ

� for the rational number field, but we will show in Lemma 3.2 that the
inertial part of AK , that is, the subgroup UK � AK generated by all inertia groups
O�p � CK , admits a description very similar to (1).

Denote by yOD
Q

p Op the profinite completion of the ring of integers O of K. In
the case that K is imaginary quadratic, the inertial part of AK takes the form

UK D
�Y

p

O�p

�
=O� D yO�=�K ; (4)

since the unit group O� of O is then equal to the group �K of roots of unity in K.
Apart from the quadratic fields of discriminant �3 and �4, which have 6 and 4
roots of unity, respectively, we always have �K D f˙1g, and (4) can be viewed as
the analogue for K of the group yZ� D AQ.

In the next section, we determine the structure of the group yO�=�K . As the
approach works for any number field, we will not assume that K is imaginary
quadratic until the very end of that section.

3. Structure of the inertial part

Let K be any number field, and yOD
Q

p Op the profinite completion of its ring of
integers. Denote by Tp � O�p the subgroup of local roots of unity in K�p , and put

TK D
Y
p

Tp �

Y
p

O�p D yO
�: (5)

The analogue of (1) for K is the following.
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Lemma 3.1. The closure of the torsion subgroup of yO� is equal to TK , and yO�=TK
is a free yZ-module of rank ŒK WQ�. Less canonically, we have an isomorphism

yO� Š TK � yZ
ŒKWQ�:

Proof. As the finite torsion subgroup Tp � O�p is closed in O�p , the first statement
follows from the definition of the product topology on yO� D

Q
p O�p .

Reduction modulo p in the local unit group O�p gives rise to an exact sequence

1 �! 1C p �! O�p �! k�p �! 1

that can be split by mapping the elements of the unit group k�p of the residue class
field to their Teichmüller representatives in O�p . These form the cyclic group of
order #k�p D Np� 1 in Tp consisting of the elements of order coprime to p D
char.kp/. The kernel of reduction 1C p is by [3, one-unit theorem, p. 231] a
finitely generated Zp-module of free rank ŒKp WQp� having a finite torsion group
consisting of roots of unity in Tp of p-power order. Combining these facts, we find
that O�p=Tp is free over Zp of rank ŒKp W Qp� or, less canonically, that we have a
local isomorphism

O�p Š Tp �Z
ŒKpWQp�
p

for each prime p. Taking the product over all p, and using the fact that the sum
of the local degrees at p equals the global degree ŒK W Q�, we obtain the desired
global conclusion. �

In order to derive a characterization of TK D
Q

p Tp for arbitrary number fieldsK
similar to (2), we observe that we have an exact divisibility `k k #Tp of the order
of Tp by a prime power `k if and only if the local field Kp at p contains a primitive
`k-th root of unity, but not a primitive `kC1-th root of unity. We may reword this
as: The prime p splits completely in the cyclotomic extension K �K.�`k /, but not
in the cyclotomic extension K �K.�`kC1/. If such p exist at all for `k , then there
are infinitely many of them, by the Chebotarev density theorem.

Thus, TK can be written as a product of groups .Z=`kZ/Z DMap.Z;Z=`kZ/

that are themselves countable products of cyclic groups of order `k . The prime
powers `k > 1 that occur for K are all but those for which we have an equality

K.�`k /DK.�`kC1/:

For K DQ all prime powers `k occur, but for general K, there are finitely many
prime powers that may disappear. This is due to the fact that the infinite cyclotomic
extension Q�Q.�`1/ with group Z�

`
can partially “collapse” over K.
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To describe the exceptional prime powers `k that disappear for K, we consider,
for ` an odd prime, the number

w.`/D wK.`/D #�`1 .K.�`//

of `-power roots of unity in the field K.�`/. For almost all `, this number equals `,
and we call ` exceptional for K if it is divisible by `2. Note that no odd exceptional
prime numbers exist for imaginary quadratic fields K.

For the prime `D 2, we consider instead the number

w.2/D wK.2/D #�21 .K.�4//

of 2-power roots in K.�4/ D K.i/. If K contains i D �4, or if w.2/ is divisible
by 8, we call 2 exceptional for K. Note that the only imaginary quadratic fields K
for which 2 is exceptional are Q.i/ and Q.

p
�2/.

The number w.K/ of exceptional roots of unity for K is now defined as

w.K/D
Y

` exceptional

w.`/:

Note that w.K/ refers to roots of unity that may or may not be contained in K
itself, and that every prime ` dividing w.K/ occurs with exponent at least 2. The
prime powers `k > 1 that do not occur when TK is written as a direct product of
groups .Z=`kZ/Z are the strict divisors of w.`/ at exceptional primes `, with the
exceptional prime `D 2 giving rise to a special case.

Lemma 3.2. Let K be a number field, and w D w.K/ its number of exceptional
roots of unity. Then we have a noncanonical isomorphism of profinite groups

TK D
Y
p

Tp Š

Y
n�1

Z=nwZ;

except when 2 is exceptional for K and i D �4 is not contained in K. In this special
case, we have

TK D
Y
p

Tp Š

Y
n�1

.Z=2Z�Z=nwZ/:

The group TK is isomorphic to the group TQ in (2) if and only if we have w D 1.

Proof. If ` is odd, the tower of field extensions

K.�`/�K.�`2/� � � � �K.�`k /�K.�`kC1/� � � �

is a Z`-extension, and the steps K.�`k /�K.�`kC1/ with k � 1 in this tower that
are equalities are exactly those for which `kC1 divides w.`/.

Similarly, the tower of field extensions

K.�4/�K.�8/� � � � �K.�2k /�K.�2kC1/� � � �
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is a Z2-extension in which the steps K.�2k /�K.�2kC1/ with k � 2 that are equal-
ities are exactly those for which 2kC1 divides w.2/. The extension K DK.�2/�
K.�4/ that we have in the remaining case k D 1 is an equality if and only if K
contains i D �4.

Thus, a prime power `k > 2 that does not occur when TK is written as a product
of groups .Z=`kZ/Z is the same as a strict divisor `k > 2 of w.`/ at an exceptional
prime `. The special prime power `k D 2 does not occur if and only if i D �4 is
in K. Note that in this case, 2 is by definition exceptional for K.

It is clear that replacing the group
Q
n�1 Z=nZ from (2) by

Q
n�1 Z=nwZ has

the effect of removing cyclic summands of order `k with `kC1 j w, and this shows
that the groups given in the Lemma are indeed isomorphic to TK . Only for w D 1
we obtain the group TQ in which all prime powers `k arise. �

Lemmas 3.1 and 3.2 tell us what yO� looks like as a yZ-module. In particular, it
shows that the dependence on K is limited to the degree ŒK WQ�, which is reflected
in the rank of the free yZ-part of yO�, and the nature of the exceptional roots of unity
for K. For the group yO�=�K , the same is true, but the proof requires an extra
argument, and the following lemma.

Lemma 3.3. There are infinitely many primes p of K for which we have

gcd.#�K ; #Tp=#�K/D 1:

Proof. For every prime power `k > 1 that exactly divides #�K , the extension
K D K.�`k / � K.�`kC1/ is a cyclic extension of prime degree `. For different
prime powers `k k #�K , we get different extensions, so infinitely many primes p

of K are inert in all of them. For such p, we have gcd.#�K ; #Tp=#�K/D 1. �

Lemma 3.4. We have a noncanonical isomorphism TK=�K Š TK .

Proof. Pick a prime p0 of K that satisfies the conditions of Lemma 3.3. Then �K
embeds as a direct summand in Tp0

, and we can write Tp0
Š �K � Tp0

=�K as a
product of two cyclic groups of coprime order. It follows that the natural exact
sequence

1 �!
Y

p¤p0

Tp �! TK=�K �! Tp0
=�K �! 1

can be split using the composed map Tp0
=�K!Tp0

!TK!TK=�K . This makes
TK=�K isomorphic to the product of

Q
p¤p0

Tp and a cyclic group for which the
order is a product of prime powers that already “occur” infinitely often in TK . Thus
TK=�K is isomorphic to a product of exactly the same groups .Z=`kZ/Z that occur
in TK , and therefore isomorphic to TK itself. �

For imaginary quadratic K, where yO�=�K constitutes the inertial part UK of AK
from (4), we summarize the results of this section in the following way.
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Theorem 3.5. Let K be an imaginary quadratic field. Then the subgroup TK=�K
of UK is a direct summand of UK . For K ¤Q.i/;Q.

p
�2/, we have isomorphisms

UK D yO
�=�K Š yZ

2
� .TK=�K/Š yZ

2
�

1Y
nD1

Z=nZ

of profinite groups.

For K equal to Q.i/ or Q.
p
�2/, the prime 2 is exceptional for K, and the groups

TK=�K Š TK are different as they do not have cyclic summands of order 2 and 4,
respectively.

4. Extensions of Galois groups

In the previous section, all results could easily be stated and proved for arbitrary
number fields. From now on, K will denote an imaginary quadratic field. In order
to describe the full group AK from (3), we consider the exact sequence

1 �! UK D yO
�=�K �! AK D yK

�=K�
 
�!ClK �! 1 (6)

that describes the class group ClK of K in idelic terms. Here  maps the class
of the finite idele .xp/p 2 yK

� to the class of its associated ideal
Q

p pep , with
ep D ordp xp.

The sequence (6) shows that UK is an open subgroup of AK of index equal to the
class number hK of K. In view of Theorem 3.5, this immediately yields Onabe’s
discovery that different K can have the same absolute abelian Galois group.

Theorem 4.1. An imaginary quadratic number field K ¤Q.i/;Q.
p
�2/ of class

number 1 has absolute abelian Galois group isomorphic to

G D yZ2 �
Y
n�1

Z=nZ:

In Onabe’s paper [10, §5], the group G, which is not explicitly given but charac-
terized by its infinitely many Ulm invariants, is referred to as ‘of type A’. We
will refer to G as the minimal Galois group, as every absolute abelian Galois
group of an imaginary quadratic field K ¤ Q.i/;Q.

p
�2/ contains a subgroup

isomorphic to G. We will show that there are actually many more K having this
absolute abelian Galois group than the seven fields K of class number 1 to which
the preceding theorem applies.

Now take for K any imaginary quadratic field of class number hK > 1. Then
Theorem 3.5 and the sequence (6) show that AK is an abelian group extension of
ClK by the minimal Galois group G from Theorem 4.1. If the extension (6) were
split, we would find that AK is isomorphic to G �ClK ŠG; but it turns out that
splitting at this level never occurs for nontrivial ClK , in the following strong sense.
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Theorem 4.2. For every imaginary quadratic field K of class number hK > 1, the
sequence (6) is totally nonsplit; that is, there is no nontrivial subgroup C � ClK
for which the associated subextension 1! UK !  �1ŒC �! C ! 1 is split.

Proof. Suppose there is a non-trivial subgroup C � ClK over which the exten-
sion (6) splits, and pick Œa� 2 C of prime order p. Then there exists an element�

.xp/p modK�
�
2  �1.Œa�/� AK D yK

�=K�

of order p. In other words, there exists ˛ 2K� such that we have xpp D ˛ 2K�p for
all p, and such that ˛ generates the ideal ap. But this implies by [1, Chapter IX,
Theorem 1] that ˛ is a p-th power in K�, and hence that a is a principal ideal.
Contradiction. �

At first sight, Theorem 4.2 seems to indicate that in the case hK > 1, the
group AK will not be isomorphic to the minimal Galois group G Š UK . However,
finite abelian groups requiring no more than k generators do allow extensions by
free yZ-modules of finite rank k that are again free of rank k, just like they do with
free Z-modules in the classical setting of finitely generated abelian groups. The
standard example for k D 1 is the extension

1 �! yZ
�p
�! yZ �! Z=pZ �! 1

for an integer p ¤ 0, prime or not. Applying to this the functor Hom.�;M/ for a
multiplicatively written yZ-module M , we obtain an isomorphism

M=Mp
�!� Ext.Z=pZ;M/ (7)

by the Hom-Ext-sequence from homological algebra [6]. We will use it in Section 5.

Lemma 4.3. Let B be a finite abelian group, F a free yZ-module of finite rank k,
and

1 �! F �!E �! B �! 1

an exact sequence of yZ-modules. Then E is free of rank k if and only if this se-
quence is totally nonsplit.

Proof. One may reduce the statement to the familiar case of modules over principal
ideal domains by writing yZD

Q
p Zp, and consider the individual p-parts of the

sequence. As a matter of convention, note that in the degenerate case where B is
the trivial group, there are no nontrivial subgroups C �B over which the sequence
splits, making the sequence by definition totally nonsplit. �

In order to apply the preceding lemma, we replace the extension (6) by the
pushout under the quotient map UK D yO�=�K ! UK=TK D yO

�=TK from UK to
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its maximal yZ-free quotient. This yields the exact sequence of yZ-modules

1 �! yO�=TK �! yK�=.K� �TK/ �! ClK �! 1 (8)

in which ClK is finite and yO�=TK is free of rank 2 over yZ by Lemma 3.1.

Theorem 4.4. Let K be an imaginary quadratic field of class number hK > 1,
and suppose the sequence (8) is totally nonsplit. Then the absolute abelian Galois
group of K is the minimal group G occurring in Theorem 4.1.

Proof. If the extension (8) is totally nonsplit, then yK�=.K� �TK/ is free of rank 2
over yZ by Lemma 4.3. In this case the exact sequence of yZ-modules

1 �! TK=�K �! AK D yK
�=K� �! yK�=.K� �TK/ �! 1

is split, and AK is isomorphic to UK DG D yZ2 � .TK=�K/. �

Remark. We will use Theorem 4.4 in this paper to find many imaginary quadratic
fields K having the same minimal absolute abelian Galois group G. It is how-
ever interesting to note that this is the only way in which this can be done, as
Theorem 4.4 actually admits a converse: If the absolute abelian Galois group of
an imaginary quadratic field K of class number hK > 1 is the minimal group G,
then the sequence (8) is totally nonsplit. The proof, which we do not include in
this paper, will be given in the forthcoming doctoral thesis of the first author.

It is instructive to see what all the preceding extensions of Galois groups amount
to in terms of field extensions. The diagram of fields in Figure 1 lists all subfields
of the extension K �Kab corresponding to the various subgroups we considered
in analyzing the structure of AK D Gal.Kab=K/.

We denote by H the Hilbert class field of K. This is the maximal totally unram-
ified abelian extension of K, and it is finite over K with group ClK . The inertial
part of AK is the Galois group UK D Gal.Kab=H/, which is isomorphic to G for
all imaginary quadratic fields K ¤Q.i/;Q.

p
�2/. The fundamental sequence (6)

corresponds to the tower of fields

K �H �Kab:

By Theorem 3.5, the invariant field L of the closure TK=�K of the torsion subgroup
of UK is an extension of H with group yZ2. The tower of field extensions

K �H � L

corresponds to the exact sequence of Galois groups (8).
We define L0 as the “maximal yZ-extension” of K, that is, as the compositum of

the Zp-extensions of K for all primes p. As is well-known, an imaginary quadratic
field admits two independent Zp-extensions for each prime p, so F D Gal.L0=K/
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Kab

UKDG

AK

TK=�K
T0

L

yZ2

L0
yZ2

F

H

ClKL0\H

K

Figure 1. The structure of AKDGal.Kab=K/.

is a free yZ-module of rank 2, and L0 is the invariant field under the closure T0
of the torsion subgroup of AK . The image of the restriction map T0 ! ClK is
the maximal subgroup of ClK over which (8) splits. The invariant subfield of H
corresponding to it is the intersection L0 \H . The totally nonsplit case occurs
when H is contained in L0, leading to L0 \H D H and L0 D L. In this case
Gal.L=K/DGal.L0=K/ is itself a free yZ-module of rank 2, andAK is an extension
of yZ2 by TK=�K that is isomorphic to G.

5. Finding minimal Galois groups

In order to use Theorem 4.4 and find imaginary quadratic K for which the absolute
abelian Galois group AK is the minimal group G from Theorem 4.1, we need an
algorithm that can effectively determine, on input K, whether the sequence of yZ-
modules

(8) 1 �! yO�=TK �! yK�=.K� �TK/ �! ClK �! 1

from Section 4 is totally nonsplit. This means that for every ideal class Œa� 2 ClK
of prime order, the subextension EŒa� of (8) lying over the subgroup hŒa�i � ClK
is nonsplit.
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Any profinite abelian group M is a module over yZD
Q
p Zp , and can be written

accordingly as a productM D
Q
pMp of p-primary parts, whereMpDM˝yZ Zp is

a pro-p-group and Zp-module. In the same way, an exact sequence of yZ-modules
is a “product” of exact sequences for their p-primary parts, and splitting over a
group of prime order p only involves p-primary parts for that p.

For the free yZ-module M D yO�=TK in (8), we write Tp for the torsion subgroup
of O�p D .O˝Z Zp/

� D
Q

pjp O�p . Then the p-primary part of M is the pro-p-group

Mp D O�p=Tp D
Y
pjp

.O�p=Tp/Š Z2p: (9)

In order to verify the hypothesis of Theorem 4.4, we need to check that the exten-
sion EŒa� has nontrivial class in Ext.hŒa�i;M/ for all Œa� 2 ClK of prime order p.
We can do this by verifying in each case that the element ofM=MpDMp=M

p
p cor-

responding to it under the isomorphism (7) is nontrivial. This yields the following
theorem.

Theorem 5.1. Let K be an imaginary quadratic field, and define for each prime
number p dividing hK the homomorphism

�p W ClK Œp� �! O�p=Tp.O
�
p/
p

that sends the class of a p-torsion ideal a coprime to p to the class of a generator
of the ideal ap. Then (8) is totally nonsplit if and only if all maps �p are injective.

Proof. Under the isomorphism (7), the class of the extension

1 �!M �!E
f
�!Z=pZ �! 1

in Ext.Z=pZ;M/ corresponds by [6, Chapter III, Proposition 1.1] to the residue
class of the element

.f �1.1 mod pZ//p 2M=Mp:

In the case of EŒa�, we apply this to M D yO�=TK , and choose the identification
Z=pZD hŒa�i under which 1 mod pZ is the inverse of Œa�. Then f �1.1 mod pZ/

is the residue class in yK�=.K� �TK/ of any finite idele x 2 yK� that is mapped to
ideal class of a�1 under the map  from (6).

We pick a in its ideal class coprime to p, and take for x D .xp/p an idele that
locally generates a�1 at all p. If ˛ 2K� generates ap , then xp˛ is an idele in yO�

that lies in the same class modulo K� as xp, and its image

.f �1.1 mod pZ//p D xp D xp˛ 2M=Mp
DMp=M

p
p D O�p=Tp.O

�
p/
p

corresponds to the class of EŒa� in Ext.hŒa�i;O�=TK/. As the idele x D .xp/p
has components xp 2 O�p at p j p by the choice of a, we see that this image in
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Mp=M
p
p D O�p=Tp.O

�
p/
p is the element �p.Œa�/ we defined. The map �p is clearly

a homomorphism, and we want it to assume nontrivial values on the elements of
order p in ClK Œp�, for each prime p dividing hK . The result follows. �

Remark. In Theorem 5.1, it is not really necessary to restrict to representing ideals
a that are coprime to p. One may take K�p=Tp.K

�
p /
p as the target space of �p to

accommodate all a, with Kp DK˝Z Zp , and observe that the image of �p is in the
subgroup O�p=Tp.O

�
p/
p, as the valuations of ap at the primes over p are divisible

by p.

Remark. It is possible to prove Theorem 5.1 without explicit reference to homo-
logical algebra. What the proof shows is that, in order to lift an ideal class of
arbitrary order n under (8), it is necessary and sufficient that its n-th power is
generated by an element ˛ that is locally everywhere a n-th power up to multipli-
cation by local roots of unity. This extra leeway in comparison with the situation in
Theorem 4.2 makes it into an interesting splitting problem for the group extensions
involved, as this condition on ˛ may or may not be satisfied. Note that at primes
outside n, the divisibility of the valuation of ˛ by n automatically implies the local
condition.

In Onabe’s paper, which assumes throughout that ClK itself is a cyclic group of
prime order, the same criterion is obtained from an analysis of the Ulm invariants
occurring in Kubota’s setup [5].

Our Theorem 5.1 itself does not assume any restriction on ClK , but its use in
finding K with minimal absolute Galois group G does imply certain restrictions on
the structure of ClK . The most obvious implication of the injectivity of the map �p
in the theorem is a bound on the p-rank of ClK , which is defined as the dimension
of the group ClK =ClpK as an Fp-vector space.

Corollary 5.2. If ClK has p-rank at least 3 for some p, then the sequence (8)
splits over a subgroup of ClK of order p.

Proof. It follows from the isomorphism in (9) that the image of �p lies in a group
that is isomorphic to .Z=pZ/2. If ClK has p-rank at least 3, then �p will not be
injective. Now apply Theorem 5.1. �

As numerical computations in uncountable yZ-modules such as yK�=.K� � TK/
can only be performed with finite precision, it is not immediately obvious that the
splitting type of an idelic extension as (8) can be found by a finite computation.
The maps �p in Theorem 5.1 however are linear maps between finite-dimensional
Fp-vector spaces that lend themselves very well to explicit computations. One just
needs some standard algebraic number theory to compute these spaces explicitly.
A high-level description of an algorithm that determines whether the extension (8)
is totally nonsplit is then easily written down.



34 ATHANASIOS ANGELAKIS AND PETER STEVENHAGEN

Algorithm 5.3.
Input: An imaginary quadratic number field K.

Output: No if the extension (8) for K is not totally nonsplit, yes otherwise.

1. Compute the class group ClK of K. If ClK has p-rank at least 3 for some p,
output no and stop.

2. For each prime p dividing hK , compute n 2 f1; 2g O-ideals coprime to p such
that their classes in ClK generate ClK Œp�, and generators x1 up to xn for their
p-th powers. Check whether x1 is trivial in O�p=Tp.O

�
p/
p . If it is, output no and

stop. If nD 2, check whether x2 is trivial in O�p=Tp � hx1i � .O
�
p/
p . If it is, output

no and stop.

3. If all primes p j hK are dealt with without stopping, output yes and stop.

Step 1 is a standard task in computational algebraic number theory. For imag-
inary quadratic fields, it is often implemented in terms of binary quadratic forms,
and particularly easy. From an explicit presentation of the group, it is also standard
to find the global elements x1 and, if needed, x2. The rest of Step 2 takes place
in a finite group, and this means that we only compute in the rings Op up to small
precision. For instance, computations in Z�p=Tp.Z

�
p/
p amount to computations

modulo p2 for odd p, and modulo p3 for p D 2.

6. Splitting behavior at 2

The splitting behavior of the sequence (8) depends strongly on the structure of
the p-primary parts of ClK at the primes p j hK . In view of Theorem 5.1 and
Corollary 5.2, fields with cyclic class groups and few small primes dividing hK
appear to be more likely to have minimal Galois group G. In Section 7, we will
provide numerical data to examine the average splitting behavior.

For odd primes p, class groups of p-rank at least 3 arising in Corollary 5.2 are
very rare, at least numerically and according to the Cohen-Lenstra heuristics. At
the prime 2, the situation is a bit different, as the 2-torsion subgroup of ClK admits
a classical explicit description going back to Gauss. Roughly speaking, his theorem
on ambiguous ideal classes states that ClK Œ2� is an F2-vector space generated by
the classes of the primes p of K lying over the rational primes that ramify in
Q�K, subject to a single relation coming from the principal ideal .

p
DK/. Thus,

the 2-rank of ClK for a discriminant with t distinct prime divisors equals t � 1.
In view of Corollary 5.2, our method to construct K with absolute abelian Galois
group G does not apply if the discriminant DK of K has more than 3 distinct prime
divisors.

If �DK is a prime number, then hK is odd, and there is nothing to check at the
prime 2.
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For DK with two distinct prime divisors, the 2-rank of ClK equals 1, and we
can replace the computation at p D 2 in Algorithm 5.3 by something that is much
simpler.

Theorem 6.1. Let K be an imaginary quadratic field with even class number, and
suppose that its 2-class group is cyclic. Then the sequence (8) is nonsplit over
ClK Œ2� if and only if the discriminant DK of K is of one of the following types:

(1) DK D�pq for primes p ��q � 5 mod 8;

(2) DK D�4p for a prime p � 5 mod 8;

(3) DK D�8p for a prime p �˙3 mod 8.

Proof. If K has a nontrivial cyclic 2-class group, then DK � 0; 1 mod 4 is divisible
by exactly two different primes.

If DK is odd, we have DK D�pq for primes p � 1 mod 4 and q � 3 mod 4,
and the ramified primes p and q of K are in the unique ideal class of order 2 in ClK .
Their squares are ideals generated by the integers p and �q that become squares
in the genus field F D Q.

p
p;
p
�q/ of K, which is a quadratic extension of K

with group C2 �C2 over Q that is locally unramified at 2.
If we have DK � 5 mod 8, then 2 is inert in Q�K, and 2 splits in K �F . This

means that K and F have isomorphic completions at their primes over 2, and that
p and �q are local squares at 2. In this case �2 is the trivial map in Theorem 5.1,
and is not injective.

If we have D� 1 mod 8 then 2 splits in Q�K. In the case p��q� 1 mod 8
the integers p and �q are squares in Z�2 , and �2 is again the trivial map. In the
other case p��q � 5 mod 8, the generators p and �q are nonsquares in Z�2 , also
up to multiplication by elements in T2 D f˙1g. In this case �2 is injective.

IfDK is even, we either haveDKD�4p for a prime p�1 mod 4 orDKD�8p
for an odd prime p. In the case DK D�4p the ramified prime over 2 is in the ideal
class of order 2. For p � 1 mod 8, the local field Q2.

p
�p/ D Q2.i/ contains

a square root of 2i , and �2 is not injective. For p � 5 mod 8, the local field
Q2.
p
�p/ D Q2.

p
3/ does not contain a square root of ˙2, and �2 is injective.

In the case DK D �8p the ramified primes over both 2 and p are in the ideal
class of order 2. For p �˙1 mod 8 the generator ˙p is a local square at 2. For
p �˙3 mod 8 it is not. �

In the case where the 2-rank of ClK exceeds 1, the situation is even simpler.

Theorem 6.2. Let K be an imaginary quadratic field for which the 2-class group
is noncyclic. Then the map �2 in Theorem 5.1 is not injective.

Proof. As every 2-torsion element in ClK is the class of a ramified prime p, its
square can be generated by a rational prime number. This implies that the image
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of �2 is contained in the cyclic subgroup

Z�2=f˙1g.Z
�
2/
2
� yO�=T2.yO

�/2

of order 2. Thus �2 is not injective if ClK has noncyclic 2-part. �

In view of Theorem 4.4 and the remark following it, imaginary quadratic fields
K for which AK is the minimal Galois group from Theorem 4.1 can only be
found among those K for which �DK is prime, or in the infinite families from
Theorem 6.1. In the next section, we will find many of such K.

7. Computational results

In Onabe’s paper [10], only cyclic class groups ClK of prime order p � 7 are con-
sidered. In this case there are just 2 types of splitting behavior for the extension (8),
and Onabe provides a list of the first fewK with hK Dp� 7, together with the type
of splitting they represent. For hK D 2 the list is in accordance with Theorem 6.1.
In the cases hk D 3 and hK D 5 there are only 2 split examples against 10 and 7
nonsplit examples, and for hK D 7 no nonsplit examples are found. This suggests
that �p is rather likely to be injective for increasing values of hK D p.

This belief is confirmed if we extend Onabe’s list by including all imaginary
quadraticK of odd prime class number hKDp<100. By the work of Watkins [11],
we now know, much more precisely than Onabe did, what the exact list of fields
with given small class number looks like. The extended list, with the 65 out of 2356
cases in which the extension (8) splits mentioned explicitly, is given in Table 1.

As the nonsplit types give rise to fields K having the minimal group G as its
absolute Galois group, one is inevitably led to the following conjecture.

Conjecture 7.1. There are infinitely many imaginary quadratic fields K for which
the absolute abelian Galois group is isomorphic to

G D yZ2 �
Y
n�1

Z=nZ:

The numerical evidence may be strong, but we do not even have a theorem
that there are infinitely many prime numbers that occur as the class number of an
imaginary quadratic field. And even if we had, we have no theorem telling us what
the distribution between split and nonsplit will be.

From Table 1, one easily gets the impression that among all K with hK D p,
the fraction for which the sequence (8) splits is about 1=p. In particular, assuming
infinitely many imaginary quadratic fields to have prime class number, we would
expect 100% of these fields to have the minimal absolute abelian Galois group G.

If we fix the class number hK D p, the list of K will be finite, making it impos-
sible to study the average distribution of the splitting behavior over ClK Œp�. For



IMAGINARY QUADRATIC FIELDS WITH ISOMORPHIC ABELIAN GALOIS GROUPS 37

p #fK W hK D pg #Nonsplit �DK for split K

2 18 8 35; 51; 91; 115; 123; 187; 235; 267; 403; 427

3 16 13 107; 331; 643

5 25 19 347; 443; 739; 1051; 1123; 1723

7 31 27 859; 1163; 2707; 5107

11 41 36 9403; 5179; 2027; 10987; 13267

13 37 34 1667; 2963; 11923

17 45 41 383; 8539; 16699; 25243

19 47 43 4327; 17299; 17539; 17683

23 68 65 2411; 9587; 21163

29 83 80 47563; 74827; 110947

31 73 70 9203; 12923; 46867

37 85 83 20011; 28283

41 109 106 14887; 21487; 96763

43 106 105 42683

47 107 107 —
53 114 114 —
59 128 126 125731; 166363

61 132 131 101483

67 120 119 652723

71 150 150 —
73 119 117 358747; 597403

79 175 174 64303

83 150 150 —
89 192 189 48779; 165587; 348883

97 185 184 130051

Table 1. Splitting types for fields K with hK D p < 100. The second column
gives the number of imaginary quadratic fields with class number p; the third
column gives the number of such fields for which the sequence (8) does not split;
and the fourth column gives �DK for the fields K for which (8) splits.

this reason, we computed the average splitting behavior over ClK Œp� for the set Sp
of imaginary quadratic fields K for which the class number has a single factor p.

More precisely, Table 2 lists, for the first Np imaginary quadratic fields K 2 Sp
of absolute discriminant jDK j> Bp, the fraction fp of K for which the sequence
(8) is split over ClK Œp�. We started counting for absolute discriminants exceeding
Bp to avoid the influence that using many very small discriminants may have on
observing the asymptotic behavior. Numerically, the values for p � fp � 1 in the
table show that the fraction fp is indeed close to 1=p.

For the first three odd primes, we also looked at the distribution of the splitting
over the three kinds of local behavior in K of the prime p (split, inert or ramified)
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p Np Bp p �fp

3 300 107 0.960
5 500 107 0.930
7 700 107 0.960

11 1100 107 0.990
13 1300 107 1.070
17 1700 107 0.920
19 1900 107 1.000
23 2300 107 1.030
29 2900 106 1.000
31 3100 106 0.970
37 3700 106 0.930
41 4100 106 1.060

p Np Bp p �fp

43 2150 106 1.080
47 470 107 0.900
53 530 105 1.000
59 590 106 0.900
61 1830 105 0.933
67 670 106 0.900
71 1000 105 1.136
73 3650 105 0.900
79 1399 107 1.130
83 1660 106 1.000
89 890 105 1.100
97 970 108 1.100

Table 2. Splitting fractions at p for hK divisible by p < 100. For the given
values of p, Np , and Bp , we consider the first Np imaginary quadratic fields K
with jDK j > Bp and whose class numbers are divisible by a single factor of p.
The fourth column gives the value of p � fp , where fp is the fraction of these
fields for which the sequence (8) is split over ClK Œp�.

and concluded that, at least numerically, there is no clearly visible influence; see
Table 3.

p Np Bp p �fp Split Inert Ramified

3 300 107 0.960 0.925 0.947 1.025
5 500 107 0.930 0.833 0.990 1.022
7 700 107 0.960 0.972 0.963 0.897

Table 3. Splitting fractions at p according to local behavior at p. The first four
columns are as in Table 2. The remaining columns give the values of p times the
quantity analogous to fp , where we further limit our attention to fields in which
p has the prescribed splitting behavior.

We further did a few computations that confirmed the natural hypothesis that the
splitting behaviors at different primes p and q that both divide the class number
once are independent of each other.
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