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The Coleman integral is a p-adic line integral. Double Coleman integrals on
elliptic curves appear in Kim’s nonabelian Chabauty method, the first numerical
examples of which were given by the author, Kedlaya, and Kim. This paper
describes the algorithms used to produce those examples, as well as techniques
to compute higher iterated integrals on hyperelliptic curves, building on previous
joint work with Bradshaw and Kedlaya.

1. Introduction

In a series of papers in the 1980s, Coleman gave a p-adic theory of integration on
the projective line [8], then on curves and abelian varieties [9; 7]. This integration
theory relies on locally defined antiderivatives that are extended analytically by the
principle of Frobenius equivariance. In joint work with Bradshaw and Kedlaya [1],
we made this construction explicit and gave algorithms to compute single Coleman
integrals for hyperelliptic curves.

Having algorithms to compute Coleman integrals allows one to compute p-adic
regulators in K-theory [8; 7], carry out the method of Chabauty-Coleman for
finding rational points on higher genus curves [15], and utilize Kim’s nonabelian
analogue of the Chabauty method [14].

Kim’s method, in the case of rank-1 elliptic curves, allows one to find integral
points via the computation of double Coleman integrals. Indeed, Coleman’s theory
of integration is not limited to single integrals; it gives rise to an entire class of
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locally analytic functions, the Coleman functions, on which antidifferentiation is
well-defined. In other words, one can define iterated p-adic integrals [4; 8]Z Q

P

�n � � � �1

which behave formally like iterated path integralsZ 1

0

Z t1

0

� � �

Z tn�1

0

fn.tn/ � � � f1.t1/ dtn � � � dt1:

Let us fix some notation. Let C be a genus-g hyperelliptic curve over an unram-
ified extension K of Qp having good reduction. Let k D Fq denote its residue field,
where q D pm. We will assume that C is given by a model of the form y2 D f .x/,
where f is a monic separable polynomial with degf D 2gC 1.

Our methods for computing iterated integrals are similar in spirit to those de-
tailed in [1]. We begin with algorithms for tiny iterated integrals, use Frobenius
equivariance to write down a linear system yielding the values of integrals between
points in different residue disks, and, if needed, use basic properties of integration
to correct endpoints. We begin with some basic properties of iterated path integrals.

2. Iterated path integrals

We follow the convention of Kim [14] and define our integrals as follows:Z Q

P

�1�2 � � ��n�1�n WD

Z Q

P

�1.R1/

Z R1

P

�2.R2/ � � �

Z Rn�2

P

�n�1.Rn�1/

Z Rn�1

P

�n;

for a collection of dummy parameters R1; : : : ; Rn�1 and 1-forms �1; : : : ; �n.
We begin by recalling some key formal properties satisfied by iterated path in-

tegrals [6].

Proposition 2.1. Let �1; : : : ; �n be 1-forms, holomorphic at points P;Q on C .
Then:

(1)
R P
P �1�2 � � � �n D 0,

(2)
P

all permutations �
RQ
P !�.i1/!�.i2/ � � �!�.in/ D

Qn
jD1

RQ
P !ij ,

(3)
RQ
P !i1 � � �!in D .�1/

n
R P
Q !in � � �!i1 .

As an easy corollary of Proposition 2.1(2), we have:

Corollary 2.2. For a 1-form !i and points P;Q as before,Z Q

P

!i !i � � �!i D
1

nŠ

�Z Q

P

!i

�n
:
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When possible, we will use this to write an iterated integral in terms of a single
integral.

3. p-adic cohomology

We briefly recall some p-adic cohomology from [12], necessary for formulating
the integration algorithms.

Let C 0 be the affine curve obtained by deleting the Weierstrass points from C ,
and let ADKŒx; y; z�=.y2� f .x/; yz � 1/ be the coordinate ring of C 0. Let A�

denote the Monsky-Washnitzer weak completion of A; it is the ring consisting of
infinite sums of the form

1X
iD�1

Bi .x/

yi
; Bi .x/ 2KŒx�; degBi � 2g;

further subject to the condition that vp.Bi .x// grows faster than a linear function
of i as i !˙1. We make a ring out of these using the relation y2 D f .x/.

These functions are holomorphic on the space over which we integrate, so we
consider odd 1-forms written as

! D g.x; y/
dx

2y
; g.x; y/ 2 A�:

Any such differential can be written as

! D dF C c0!0C � � �C c2g�1!2g�1; (1)

with F 2 A�; ci 2K, and

!i D x
i dx

2y
.i D 0; : : : ; 2g� 1/:

Namely, the set of differentials f!ig
2g�1
iD0 forms a basis of the odd part of the

de Rham cohomology of A�, which we denote as H 1
dR
.C 0/�.

One computes the p-power Frobenius action �� on H 1
dR
.C 0/� as follows:

� Let �K denote the unique automorphism lifting Frobenius from Fq to K. Ex-
tend �K to A� by setting

�.x/D xp;

�.y/D yp
�
1C

�.f /.xp/�f .x/p

f .x/p

�1
2

D yp
1X
iD0

�
1
2

i

�
.�.f /.xp/�f .x/p/i

y2pi
:
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� Use the relations

y2 D f .x/;

d.xiyj /D
�
2ixi�1yjC1C jxif 0.x/yj�1

� dx
2y

to reduce large powers of x and large (in absolute value) powers of y to write
��.!/ in the form (1).

This reduction process is known as Kedlaya’s algorithm [12], and we will repeat-
edly use this algorithm to reduce iterated integrals involving ! 2 A� dx

2y
to iterated

integrals in terms of basis elements !i .

4. Integrals: lemmas

Recall that we use Kedlaya’s algorithm to compute single Coleman integrals as
follows:

Algorithm 4.1 (Coleman integration in non-Weierstrass disks [1]).

Input: The basis differentials .!i /
2g�1
iD0 , points P;Q 2C.Cp/ in non-Weierstrass

residue disks, and a positive integer m such that the residue fields of P;Q
are contained in Fpm .

Output: The integrals
�RQ
P !i

�2g�1
iD0

.

1. Calculate the action of the m-th power of Frobenius on each basis element (see
Remark 4.2):

.�m/�!i D dhi C

2g�1X
jD0

Mij!j :

2. By a change of variables, we obtain

2g�1X
jD0

.M � I /ij

Z Q

P

!j D hi .P /� hi .Q/�

Z �m.P /

P

!i �

Z Q

�m.Q/

!i (2)

(the fundamental linear system). Since the eigenvalues of the matrix M are
algebraic integers of C-norm pm=2 ¤ 1 (see [12, §2]), the matrix M � I is
invertible, and we may solve (2) to obtain the integrals

RQ
P !i .

Remark 4.2. To compute the action of �m, first carry out Kedlaya’s algorithm to
write

��!i D dgi C

2g�1X
jD0

Bij!j :
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If we view h; g as column vectors and M;B as matrices, induction on m shows
that

hD �m�1.g/CB�m�2.g/C � � �CB�K.B/ � � ��
m�2
K .B/g;

M D B�K.B/ � � ��
m�1
K .B/:

Note, however, that when points P;Q 2 C.Cp/ are in the same residue disk, the
“tiny” Coleman integral between them can be computed using a local parametriza-
tion, just as in the case of a real-valued line integral. This is also true when the
integrals are iterated (see Section 5).

However, to compute general iterated integrals, we will need to employ the
analogue of “additivity in endpoints” to link integrals between different residue
disks. First, let us consider the case where we are breaking up the path by one
point.

Lemma 4.3. Let P;P 0;Q be points on C such that a path is to be taken from P

to Q via P 0. Let �1; : : : ; �n be a collection of 1-forms holomorphic at the points
P;P 0;Q. Then

Z Q

P

�1 � � � �n D

nX
iD0

Z Q

P 0
�1 � � � �i

Z P 0

P

�iC1 � � � �n:

Proof. We proceed by induction. The case n D 1 is clear. Let us suppose the
statement holds for nD k. ThenZ Q

P

�1 � � � �kC1 D

�Z Q

P

�1 � � � �k

�
.R/

Z R

P

�kC1

D

� kX
iD0

Z Q

P 0
�1 � � � �i

Z P 0

P

�iC1 � � � �k

�
.R/

Z R

P

�kC1:

Observe that the summand with i D k can be rewritten as�Z Q

P 0
�1 � � � �k

�
.R/

Z R

P

�kC1 D

�Z Q

P 0
�1 � � � �k

�
.R/

�Z P 0

P

�kC1C

Z R

P 0
�kC1

�
;

and that further, the terms with i < k give us

k�1X
iD0

Z Q

P 0
�1 � � � �i

Z P 0

P

�iC1 � � � �kC1:
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Thus we haveZ Q

P

�1 � � � �kC1 D

k�1X
iD0

Z Q

P 0
�1 � � � �i

Z P 0

P

�iC1 � � � �kC1

C

�Z Q

P 0
�1 � � � �k

��Z P 0

P

�kC1

�
C

Z Q

P 0
�1 � � � �kC1

D

kC1X
iD0

Z Q

P 0
�1 � � � �i

Z P 0

P

�iC1 � � � �kC1;

as desired. �

Applying Lemma 4.3 twice, we obtain a link between different residue disks:

Lemma 4.4 (Link lemma). Let points P;P 0;Q0;Q be on C such that a path is
to be taken from P to P 0 to Q0 to Q. Let �1; : : : ; �n be a collection of 1-forms
holomorphic at the points P;P 0;Q;Q0. ThenZ Q

P

�1 � � � �n D

nX
iD0

Z Q

Q0
�1 � � � �i

� nX
jDi

Z Q0

P 0
�iC1 � � � �j

Z P 0

P

�jC1 � � � �n

�
:

Below we record a specific case of the link lemma, which we shall use through-
out this paper.

Example 4.5 (Link lemma for double integrals). Suppose we have two differentials
�0; �1. ThenZ Q

P

�0�1 D

Z P 0

P

�0�1C

Z Q0

P 0
�0�1C

Z Q

Q0
�0�1C

Z P 0

P

�1

Z Q

P 0
�0C

Z Q0

P 0
�1

Z Q

Q0
�0:

5. Tiny iterated integrals

We begin with an algorithm to compute tiny iterated integrals.

Algorithm 5.1 (Tiny iterated integrals).

Input: Points P;Q 2 C.Cp/ in the same residue disk (neither equal to the point
at infinity) and differentials �1; : : : ; �n without poles in the disk of P .

Output: The integral
RQ
P �1�2 � � � �n.

1. Compute a parametrization
�
x.t/; y.t/

�
at P in terms of a local coordinate t .

2. For each k, write �k.x; y/ in terms of t : �k.t/ WD �k
�
x.t/; y.t/

�
.

3. Let InC1.t/ WD 1.
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4. Compute, for k D n; : : : ; 2, in descending order,

Ik.t/D

Z Rk�1

P

�kIkC1 D

Z t.Rk�1/

0

�k.u/IkC1.u/;

with Rk�1 in the disk of P .

5. Upon computing I2.t/, we arrive at the desired integral:Z Q

P

�1�2 � � � �n D I1.t/D

Z t.Q/

0

�1.u/I2.u/:

We show how we carry out Algorithm 5.1 for double integrals on an elliptic curve.

Example 5.2 (A tiny double integral). Let C be the elliptic curve

y2 D x.x� 1/.xC 9/;

let p D 7, and consider the points P D .9; 36/;QD �.P /, and

RD
�
aC x.P /;

p
f .aC x.P //

�
;

so that R is in the same disk as P and Q. Furthermore, let !0D dx
2y

and !1D x dx
2y

.

We compute the double integral
RQ
P !0!1.

First compute the local coordinates at P :

x.t/D 9C t CO.t20/

y.t/D 36C
21

4
t C

119

1152
t2�

65

55296
t3C

2219

95551488
t4�

7

509607936
t5CO.t6/:

Then setting I2 WD
R
x dx
2y

, and making it a definite integral, we have

I2j
R
P D

Z R

P

x
dx

2y

D

Z a

0

x.t/
dx.t/

2y.t/

D
1

8
a�

5

2304
a2C

91

995328
a3�

1121

191102976
a4C

22129

45864714240
a5

�
360185

7925422620672
a6C

36737231

7988826001637376
a7CO.a8/;

from which we arrive at

I D

Z x.Q/�x.P /

0

I2.a/
dx.R.a//

2y.R.a//

D 4 � 72C 5 � 73C 2 � 75C 4 � 76C 2 � 77CO.78/:
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6. Iterated integrals: linear system

As in the case of computing single integrals, to compute general iterated Cole-
man integrals, we use Kedlaya’s algorithm to calculate the action of Frobenius on
de Rham cohomology. This gives us a linear system that allows us to solve for all
.2g/n n-fold iterated integrals on basis differentials.

Theorem 6.1. Let P;Q 2 C.Cp/ be non-Weierstrass points such that the residue
fields of P;Q are contained in Fpm . Let M be the matrix of the action of the
m-th power of Frobenius on the basis differentials !0; : : : ; !2g�1. For constants
ci0;:::;in�1

computable in terms of .n� 1/-fold iterated integrals and n-fold tiny iter-
ated integrals, the n-fold iterated Coleman integrals on basis differentials between
P;Q can be computed via a linear system of the form0BB@

:::RQ
P !i0 � � �!in�1

:::

1CCAD �I.2g/n�.2g/n � .M t /˝n
��1

0BB@
:::

ci0���in�1

:::

1CCA :
Proof. By the link lemma (Lemma 4.4), we can reduce to the case where both P
and Q are Teichmüller points (points fixed by some power of �). Then we haveZ Q

P

!ii � � �!in D

Z �m.Q/

�m.P /

!ii � � �!in

D

Z Q

P

.�m/�.!ii � � �!in/

D

Z Q

P

.�m/�.!ii / � � � .�
m/�.!in/: (3)

Recall that given !0; : : : ; !2g�1 a basis for H 1
dR
.C 0/�, we have

.�m/�!i` D dfi` C

2g�1X
jD0

Mi`j!j :

Substituting this expression in for each factor of (3) and expanding yields the linear
system. �

To illustrate our methods, in the next section, we present a more explicit version
of this theorem, accompanied by algorithms, in the case of double integrals. We
show how these are used in Kim’s nonabelian Chabauty method in Section 8.
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7. Explicit double integrals

7A. The linear system for double integrals between Teichmüller points. In this
subsection, we make explicit one aspect of Theorem 6.1: We give an algorithm to
compute double integrals between Teichmüller points.

Algorithm 7.1 (Double Coleman integration between Teichmüller points).

Input: The basis differentials .!i /
2g�1
iD0 , Teichmüller points P;Q 2 C.Cp/ in

non-Weierstrass residue disks, and a positive integer m such that the
residue fields of P;Q are contained in Fpm .

Output: The double integrals
�RQ
P !i !j

�2g�1
i;jD0

.

1. Calculate the action of the m-th power of Frobenius on each basis element:

.�m/�!i D dfi C

2g�1X
jD0

Mij!j :

2. Use Algorithm 4.1 to compute the single Coleman integrals
RQ
P !j on all basis

differentials.

3. Use Step 2 and linearity to recover the other single Coleman integrals:Z Q

P

dfifk;

Z Q

P

2g�1X
jD0

Mij!jfk

for each i; k.

4. Use the results of the above two steps to write down, for each i; k, the constant

cik D

Z Q

P

dfi .R/.fk.R//�fk.P /
�
fi .Q/�fi .P /

�
C

Z Q

P

2g�1X
jD0

Mij!j .R/
�
fk.R/�fk.P /

�

Cfi .Q/

Z Q

P

2g�1X
jD0

Mkj!j �

Z Q

P

fi .R/

�2g�1X
jD0

Mkj!j .R/

�
:

5. Recover the double integrals (see Remark 7.2 below) via the linear system0BBBB@
RQ
P !0!0RQ
P !0!1
:::RQ

P !2g�1!2g�1

1CCCCAD .I4g2�4g2 � .M t /˝2/�1

0BBB@
c00
c01
:::

c2g�1;2g�1

1CCCA :
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Remark 7.2. We obtain the linear system in the following manner. Since P;Q
are Teichmüller, we haveZ Q

P

!i !k D

Z �m.Q/

�m.P /

!i !k D

Z Q

P

.�m/�.!i !k/: (4)

We begin by expanding the right side of (4).
Recall that given !0; : : : ; !2g�1 a basis for H 1

dR
.C 0/�, we have

.�m/�!i D dfi C

2g�1X
jD0

Mij!j :

Thus we haveZ Q

P

.�m/�.!i !k/

D

Z Q

P

.�m/�.!i /.�
m/�.!k/

D

Z Q

P

�
dfi C

2g�1X
jD0

Mij!j

��
dfkC

2g�1X
jD0

Mkj!j

�

D

Z Q

P

dfidfkC

�2g�1X
jD0

Mij!j

�
dfkC dfi

2g�1X
jD0

Mkj!j C

2g�1X
jD0

Mij!j

2g�1X
jD0

Mkj!j :

We expand the first three quantities separately. First, we haveZ Q

P

dfidfk D

Z Q

P

dfi .R/

Z R

P

dfk

D

Z Q

P

dfi .R/
�
fk.R/�fk.P /

�
D

Z Q

P

dfi .R/.fk.R//�fk.P /

Z Q

P

dfi .R/

D

Z Q

P

dfi .R/.fk.R//�fk.P /
�
fi .Q/�fi .P /

�
:

Next, we haveZ Q

P

�2g�1X
jD0

Mij!j

�
dfk D

Z Q

P

2g�1X
jD0

Mij!j .R/

Z R

P

dfk

D

Z Q

P

2g�1X
jD0

Mij!j .R/
�
fk.R/�fk.P /

�
:
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The third term (via integration by parts) is

Z Q

P

dfi

�2g�1X
jD0

Mkj!j

�

D

Z Q

P

dfi .R/

Z R

P

�2g�1X
jD0

Mkj!j

�

D fi .R/

Z R

P

�2g�1X
jD0

Mkj!j

�ˇ̌̌̌
ˇ
RDQ

RDP

�

Z Q

P

fi .R/

�2g�1X
jD0

Mkj!j .R/

�

D fi .Q/

Z Q

P

2g�1X
jD0

Mkj!j �

Z Q

P

fi .R/

�2g�1X
jD0

Mkj!j .R/

�
:

Denote the sum of these terms by cik; in other words,

cik D

Z Q

P

dfi .R/.fk.R//�fk.P /
�
fi .Q/�fi .P /

�
C

Z Q

P

2g�1X
jD0

Mij!j .R/
�
fk.R/�fk.P /

�

Cfi .Q/

Z Q

P

2g�1X
jD0

Mkj!j �

Z Q

P

fi .R/

�2g�1X
jD0

Mkj!j .R/

�
:

Then rearranging terms, our linear system reads0BBBB@
RQ
P !0!0RQ
P !0!1
:::RQ

P !2g�1!2g�1

1CCCCAD �I4g2�4g2 � .M t /˝2
��1

0BBB@
c00
c01
:::

c2g�1;2g�1

1CCCA :

7B. Linking double integrals. Let P 0 and Q0 be in the disks of P and Q, re-
spectively. Using the link lemma for double integrals (Example 4.5), we may link
double integrals between different residue disks:Z Q

P

!i !k

D

Z P 0

P

!i !kC

Z Q0

P 0
!i !kC

Z Q

Q0
!i !kC

Z P 0

P

!k

Z Q

P 0
!i C

Z Q0

P 0
!k

Z Q

Q0
!i :
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Algorithm 7.3 (Double Coleman integration using intermediary Teichmüller points).

Input: The basis differentials .!i /
2g�1
iD0 , points P;Q 2C.Cp/ in non-Weierstrass

residue disks.

Output: The double integrals �Z Q

P

!i !j

�2g�1
i;jD0

:

1. Compute Teichmüller points P 0;Q0 in the disks of P;Q, respectively.

2. Use Algorithm 4.1 to compute the single integrals
RQ
P !i ;

R P
P 0 !i ;

RQ0
Q !i for

all i .

3. Use Algorithm 5.1 to compute the tiny double integrals
R P
P 0 !i !k;

RQ
Q0 !i !k .

4. Use Algorithm 7.1 to compute the double integrals
˚RQ0
P 0 !i !j

	2g�1
i;jD0

.

5. Correct endpoints usingZ Q

P

!i !k

D

Z P 0

P

!i !kC

Z Q0

P 0
!i !kC

Z Q

Q0
!i !kC

Z P 0

P

!k

Z Q

P 0
!i C

Z Q0

P 0
!k

Z Q

Q0
!i :

7C.Without Teichmüller points.Alternatively, instead of finding Teichmüller points
and correcting endpoints, we can directly compute double integrals using a slightly
different linear system. Indeed, using the link lemma for double integrals, we take
�.P / and �.Q/ to be the points in the disks of P and Q, respectively, which givesZ Q

P

!i !k D

Z �.P /

P

!i !kC

Z �.Q/

�.P /

!i !kC

Z Q

�.Q/

!i !k

C

Z �.P /

P

!k

Z Q

�.P/

!i C

Z �.Q/

�.P /

!k

Z Q

�.Q/

!i : (5)

To write down a linear system without Teichmüller points, we begin as before,
withZ �.Q/

�.P /

!i !k D

Z Q

P

��.!i !k/D cikC

Z Q

P

�2g�1X
jD0

Aij!j

��2g�1X
jD0

Akj!j

�
: (6)

Putting together (5) and (6), we get
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:::RQ

P !i !k
:::

1CCAD �I4g2�4g2 � .M t /˝2
��1

�

0BBBBB@
:::

cik �
R P
�.P/ !i !k �

�RQ
P !i

��R P
�.P/ !k

�
�
�R �.Q/
Q !i

��R �.Q/
�.P /

!k
�
C
RQ
�.Q/

!i !k
:::

1CCCCCA : (7)

This gives us the following alternative to Algorithm 7.1.

Algorithm 7.4 (Double Coleman integration).

Input: The basis differentials .!i /
2g�1
iD0 , points P;Q2C.Qp/ in non-Weierstrass

residue disks or in Weierstrass disks in the region of convergence.

Output: The double integrals
�RQ
P !i !j

�2g�1
i;jD0

.

1. Use Algorithm 4.1 to compute the single integrals
RQ
P !i ;

R �.Q/
�.P /

!i for all i .

2. Use Algorithm 5.1 to compute
R P
�.P/ !i !k;

RQ
�.Q/

!i !k for all i; k

3. As in Step 4 of Algorithm 7.1, compute the constants cik for all i; k.

4. Recover the double integrals using the linear system (7).

Example 7.5. Let C be the genus-2 curve y2 D x5� x4C x3C x2� 2xC 1 and
let P D .1;�1/;QD .�1;�1/ and p D 7. We compute double integrals on basis
differentials: RQ

P !0!0 D 2 � 7
2C 73C 4 � 74CO.75/;RQ

P !0!1 D 7
2C 5 � 73C 3 � 74CO.75/;RQ

P !0!2 D 4 � 7C 5 � 7
2C 73CO.74/;RQ

P !0!3 D 7C 5 � 7
2C 3 � 74CO.75/;RQ

P !1!0 D 7
2C 6 � 73C 5 � 74CO.75/;RQ

P !1!1 D 4 � 7
2C 3 � 73CO.75/;RQ

P !1!2 D 5 � 7C 6 � 7
2C 2 � 73C 4 � 74CO.75/;RQ

P !1!3 D 2C 3 � 7C 7
2C 4 � 73CO.74/;RQ

P !2!0 D 7
2C 4 � 73CO.74/;RQ

P !2!1 D 4 � 7C 6 � 7
2C 4 � 73C 5 � 74CO.75/;RQ

P !2!2 D 2C 5 � 7C 3 � 7
2CO.73/;
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P !2!3 D 5C 2 � 7C 3 � 7

2CO.73/;RQ
P !3!0 D 3 � 7C 2 � 7

2C 5 � 73C 5 � 74CO.75/;RQ
P !3!1 D 5C 5 � 7C 7

2C 6 � 73CO.74/;RQ
P !3!2 D 6C 7C 5 � 7

2CO.73/;RQ
P !3!3 D 2C 6 � 7C 5 � 7

2CO.73/:

Example 7.6. Using the previous example, we verify the Fubini identityZ Q

P

!j !i C

Z Q

P

!i !j D

�Z Q

P

!i

��Z Q

P

!j

�
:

We have Z Q

P

!0 D 5 � 7C 2 � 7
2
C 5 � 73C 74C 4 � 75CO.76/;Z Q

P

!1 D 6 � 7C 6 � 7
2
C 2 � 73C 4 � 74C 3 � 75CO.76/;Z Q

P

!2 D 5C 5 � 7
3
C 6 � 74C 2 � 75CO.76/;Z Q

P

!3 D 5C 3 � 7C 4 � 7
2
C 3 � 73C 6 � 74C 2 � 75CO.76/:

We see, for example, thatZ Q

P

!0!1C

Z Q

P

!1!0 D 2 � 7
2
C 4 � 73C 2 � 74CO.75/D

�Z Q

P

!0

��Z Q

P

!1

�
Z Q

P

!2!3C

Z Q

P

!3!2 D 4C 4 � 7C 72CO.73/D

�Z Q

P

!2

��Z Q

P

!3

�
:

7D. Weierstrass points. Suppose one of P or Q is a finite Weierstrass point. Then
directly using the linear system as above fails, since the fi have essential singular-
ities at finite Weierstrass points. We remedy this as follows:

Proposition 7.7. Let Q be a non-Weierstrass point, P a finite Weierstrass point,
and S be a point in the residue disk of P , near the boundary. Then the integral
from P to Q can be computed as a sum of integrals:Z Q

P

!i !k D

Z S

P

!i !kC

Z Q

S

!i !kC

Z S

P

!k

Z Q

S

!i :

Proof. This follows from Lemma 4.3 in the case of nD 2, where P 0 D S . �
To compute tiny iterated integrals in a Weierstrass disk, we modify Algorithm 5.1

slightly:
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Algorithm 7.8 (Tiny iterated integral in a Weierstrass disk).

Input: A Weierstrass point P , the degree d of a totally ramified extension, and
basis differentials !i ; !j .

Output: The integralZ S

P

!i !j D

Z S

P

!i .R/

Z R

P

!j D

Z tD1

tD0

!i .R/

Z uDt

uD0

!j :

1. Compute local coordinates .x.u/; u/ at P .

2. Let aD p1=d . Rescale coordinates so that y WD au; x WD x.au/.

3. Compute I2.u/D
R
xj dx

2y
as a power series in u.

4. Compute the appropriate definite integral using the step above:Z S

R

xj
dx

2y
D

Z t

0

x.au/
a du

u
D I2.t/

(where RD .x.t/; t/). Call this definite integral (now a power series in t ) I2.

5. Now since RD .x.t/; t/, we have
R S
P !i !j D

R 1
0 x.t/

iI2
dx.t/
2t

.

Suppose P is a finite Weierstrass point. While one could compute the integralRQ
P !i !j directly using Algorithm 7.4 for all of the tiny double integrals (and

Algorithm 7.8 for the other double integrals), in practice, that approach is expen-
sive, as it requires the computation of several intermediate integrals with Frobenius
of points that are defined over ramified extensions. This, in turn, makes the requi-
site degree d extension for convergence quite large.

Instead, the key idea is to compute a local parametrization at the finite Weier-
strass point P and to use this to compute the indefinite integral

R �
P !i . Then to com-

pute integrals involving “boundary points,” one can simply evaluate this indefinite
integral at the appropriate points, instead of directly computing parametrizations,
and thus integrals, over a totally ramified extension of Qp. This idea is also used
to evaluate double integrals involving boundary points.

Algorithm 7.9 (Intermediary integrals for double integrals with a Weierstrass end-
point).

Input: A finite Weierstrass point P , a non-Weierstrass point Q, the degree d
of a totally ramified extension, the desired precision n of Qp, and basis
differentials !i ; !j .

Output: Necessary things for the eventual computation of
RQ
P !i !j .

1. Compute .x.t/; t/ local coordinates at P to precision nd .

2. Let S D .x.a/; a/, where aD p1=d .

3. Compute as a power series in t , I2.t/D
R
x.t/i dx.t/

y.t/
.



56 JENNIFER S. BALAKRISHNAN

4. Compute the definite integral
R S
P !i D I2.a/.

5. For all i < j , compute the definite integral
R S
P !i !j via Algorithm 5.1. Keep

the intermediary indefinite integral.

6. For all i D j , use the fact that
R S
P !i !j D

1
2

�R S
P !i

�2 to compute the double
integral in terms of the single integral.

7. For all i >j , use the fact that
R S
P !i !j D�

R S
P !j !iC

R S
P !i

R S
P !j to computeR S

P !i !j (instead of directly computing it as a double integral).

8. Compute
R �.S/
S !i D

R �.S/
P !i �

R S
P !i by the indefinite integral in Step 3. Use

this to deduce
R �.S/
S !i !j for i D j .

9. Use the indefinite integral in Step 5 to get
R �.S/
S !i !j for i < j .

10. Repeat the trick in Step 7 to get
R �.S/
S !i !j for i > j .

11. Compute
R �.Q/
Q !i and use it to deduce

R �.Q/
Q !i !j for i D j .

12. Compute
R �.Q/
Q !i !j for i < j .

13. Repeat the trick in Step 7 to get
R �.Q/
Q !i !j for i < j .

14. Use
RQ
S !i D

RQ
P !i �

R S
P !i to get

RQ
S !i .

Algorithm 7.10 (Double integrals from a Weierstrass endpoint).

Input: A finite Weierstrass point P , a non-Weierstrass point Q, and basis differ-
entials !i ; !j .

Output: The double integrals
RQ
P !i !j .

1. Compute all of the integrals as in Algorithm 7.9.

2. Compute double integrals
RQ
S !i !j using the terms in Step 1 as appropriate in

Algorithm 7.4. (See Remark 7.11 for an additional improvement to this step.)

3. Recover the double integrals
RQ
P !i !j D

R S
P !i !j C

RQ
S !i !j C

R S
P !j

RQ
S !i

by using additivity.

Remark 7.11. In the case of g D 1, the linear system only yields one double
integral not obtainable through single integrals. Indeed, for 0� i; j � 1, we haveZ Q

S

!i !i D
1

2

�Z Q

S

!i

�2
and

Z Q

S

!i !j D�

Z Q

S

!j !i C

Z Q

S

!i

Z Q

S

!j :

So it suffices to compute
RQ
S !0!1. Thus, rather than computing all of the con-

stants c00; c01; c10; c11 and their correction factors (see (7)), if we precompute the
two double integrals that are expressible in terms of single integrals, as well as the
product of single integrals that relates

RQ
S !1!0 to

RQ
S !0!1, it suffices to compute

c01 (and its correction factor) to solve for the other three constants and
RQ
S !0!1.
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In other words, the linear system in Algorithm 7.4 tells us that

�
I4�4� .M

t /˝2
�0BB@

:::RQ
P !i !k
:::

1CCAD
0BBBBB@

:::

cik �
R P
�.P/ !i !k �

�RQ
P !i

��R P
�.P/ !k

�
�
�R �.Q/
Q !i

��R �.Q/
�.P /

!k
�
C
RQ
�.Q/

!i !k
:::

1CCCCCA ;
which we write as

A

0BB@
i00
v01

s01� v01
i11

1CCAD
0BB@
x00
`01
x10
x11

1CCA ;
where the vector on the left consists of integrals (with i00D

RQ
S !0!0, i11D

RQ
S !1!1,

s01D
RQ
S !0

RQ
S !1 all computed), and the vector on the right consists of constants

(with `01 computed). So we solve for v01 WD
RQ
S !0!1; x00; x10; x11, since know-

ing v01 gives us the complete set of double integrals on basis differentials. While
this only gives a constant speedup in terms of complexity, in practice, this helps
when S is defined over a highly ramified extension of Qp.

As numerical checks, one may use the following corollaries of Proposition 7.7.

Corollary 7.12. For P;Q Weierstrass points and S a third point, we have additiv-
ity in endpoints:

RQ
P !i !j C

R S
Q !i !j D

R S
P !i !j .

Corollary 7.13. For P;Q Weierstrass points, we haveZ Q

P

!i !j C

Z Q

P

!j !i D 0:

It is worth noting that in general, unlike in the case of a single Coleman integral,
for P and Q both Weierstrass points, unless i D k, the double Coleman integralRQ
P !i !k is not necessarily 0. However, in the case of i D k, the integral can be

computed as
RQ
P !i !i D

1
2

�RQ
P !i

�2
D 0.

Example 7.14. Consider the curve y2 D x.x� 1/.xC 9/, over Q7, and the points
P1 D .1; 0/, P2 D .0; 0/, and QD .�1; 4/. We have0BBBBB@

RQ
P1
!0!0RQ

P1
!0!1RQ

P1
!1!0RQ

P1
!1!1

1CCCCCAD
0BB@
2 � 72C 5 � 73C 4 � 74C 3 � 75CO.76/

6 � 7C 5 � 72C 4 � 73C 6 � 74CO.76/

2 � 72C 3 � 73C 3 � 74C 75CO.76/

1C 5 � 7C 5 � 73C 4 � 74C 4 � 75CO.76/

1CCA
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and 0BBBBB@

RQ
P2
!0!0RQ

P2
!0!1RQ

P2
!1!0RQ

P2
!1!1

1CCCCCAD
0BB@

2 � 72C 5 � 73C 4 � 74C 3 � 75CO.76/

2 � 72C 73C 6 � 74C 5 � 75CO.76/

6 � 7C 5 � 72C 6 � 73C 3 � 74C 3 � 75CO.76/

1C 5 � 7C 5 � 73C 4 � 74C 4 � 75CO.76/

1CCA ;

from which we see that
R P2

P1
!0!1 ¤ 0 and likewise

R P2

P1
!1!0 ¤ 0.

8. Kim’s nonabelian Chabauty method

We now present the motivation for all of the algorithms thus far. Let C=Z be the
minimal regular model of an elliptic curve C=Q of analytic rank 1 with Tamagawa
numbers all 1. Let X D C� f1g and !0 D dx

2y
; !1 D

x dx
2y

. Taking a tangential
basepoint b at1 (or letting b be an integral 2-torsion point), we have the analytic
functions

log!0
.z/D

Z z

b

!0; D2.z/D

Z z

b

!0!1:

With this setup, we have:

Theorem 8.1 [2; 14]. Suppose P is a point of infinite order in C.Z/. Then
X.Z/� C.Zp/ is in the zero set of

f .z/ WD
�
log!0

.P /
�2
D2.z/�

�
log!0

.z/
�2
D2.P /:

Corollary 8.2 [2; 14]. The expression

D2.P /�
log!0

.P /
�2 (8)

is independent of the point P of infinite order in C.Z/.

Example 8.3. We revisit Example 1 in [2]. Let E be the rank-1 elliptic curve
y2D x3�1323xC3942, with minimal model E having Cremona label 65a1. Con-
sider the following points on E which are integral on E: b D .3; 0/, P D .39; 108/,
QD .�33;�108/, RD .147; 1728/. Using Algorithm 7.10, we compute the inte-
gralsZ P

b

!0!1 D 4 � 11C 4 � 11
2
C 7 � 113C 9 � 114C 5 � 116CO.117/;Z P

b

!0 D 4 � 11C 7 � 11
2
C 9 � 113C 3 � 114C 5 � 115C 7 � 116CO.117/;
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b

!0!1 D 4 � 11C 4 � 11
2
C 7 � 113C 9 � 114C 5 � 116CO.117/;Z Q

b

!0 D 7 � 11C 3 � 11
2
C 113C 7 � 114C 5 � 115C 3 � 116CO.117/;Z R

b

!0!1 D 5 � 11C 6 � 11
2
C 7 � 113C 5 � 114C 3 � 115C 9 � 116CO.117/;Z R

b

!0 D 3 � 11C 7 � 11
2
C 2 � 113C 3 � 114C 7 � 116CO.117/;

and we see that the ratio in Corollary 8.2 is constant on integral points:

D2.P /�
log!0

.P /
�2 D D2.Q/�

log!0
.Q/

�2 D D2.R/�
log!0

.R/
�2 ;

D 3 � 11�1C 6C 2 � 11C 10 � 112C 3 � 113C 5 � 114CO.115/:

However, for S D .103; 980/, which is not integral on E, we see thatZ S

b

!0!1 D 3 � 11C 10 � 11
2
C 4 � 113C 10 � 114C 7 � 115C 10 � 116CO.117/Z S

b

!0 D 11C 7 � 11
3
C 5 � 115CO.117/

D2.S/�
log!0

.S/
�2 D 3 � 11�1C 10C 6 � 11C 9 � 112C 8 � 113C 6 � 114CO.115/:

Example 8.4. We give a variation on Example 4 in [2]. Let E be the rank-1
elliptic curve y2 D x3� 16xC 16, with minimal model E having Cremona label
37a1. Letting P;Q be two fixed integral points on E, we can use the link lemma
to rewrite Theorem 8.1 so that the relevant double integral is no longer from a
tangential basepoint. Indeed, integral points z occur in the zero set of �Z z

b

!0

�2
�

�Z P

b

!0

�2!RQ
P !0!1C

RQ
P !0

R P
b !1�RQ

b
!0
�2
�
�R P
b !0

�2
�

�Z z

P

!0!1C

Z z

P

!0

Z P

b

!1

�
:

Slightly modifying Algorithm 7.4 to take as endpoint a parameter z (see [3, �7:2:2]
for more details), we can recover the integral points˚

.0;˙4/; .4;˙4/; .�4;˙4/; .8;˙20/; .24;˙116/
	
:

Remark 8.5. Note that in the classical Chabauty method, one can use the Jacobian
of the curve J to find the global constant of integration (see [5; 10]). In particular,
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the points on J form a Z-module and we have multiplication-by-n morphisms
Œn�WJ.Qp/! J.Qp/, which gives n

RQ
P ! D

R Œn�.Q/
Œn�.P /

!. By choosing n carefully,
we can ensure that Œn�P and Œn�Q both lie in the residue disk of the identity, and
pulling back to the curve, all integrals can be computed by tiny integrals. For
iterated integrals, we do not have appropriate endomorphisms available.
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