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for hyperelliptic curves

Jennifer S. Balakrishnan

The Coleman integral is a p-adic line integral. Double Coleman integrals on
elliptic curves appear in Kim’s nonabelian Chabauty method, the first numerical
examples of which were given by the author, Kedlaya, and Kim. This paper
describes the algorithms used to produce those examples, as well as techniques
to compute higher iterated integrals on hyperelliptic curves, building on previous
joint work with Bradshaw and Kedlaya.

1. Introduction

In a series of papers in the 1980s, Coleman gave a p-adic theory of integration on
the projective line [8], then on curves and abelian varieties [9; 7]. This integration
theory relies on locally defined antiderivatives that are extended analytically by the
principle of Frobenius equivariance. In joint work with Bradshaw and Kedlaya [1],
we made this construction explicit and gave algorithms to compute single Coleman
integrals for hyperelliptic curves.

Having algorithms to compute Coleman integrals allows one to compute p-adic
regulators in K-theory [8; 7], carry out the method of Chabauty-Coleman for
finding rational points on higher genus curves [15], and utilize Kim’s nonabelian
analogue of the Chabauty method [14].

Kim’s method, in the case of rank-1 elliptic curves, allows one to find integral
points via the computation of double Coleman integrals. Indeed, Coleman’s theory
of integration is not limited to single integrals; it gives rise to an entire class of
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42 JENNIFER S. BALAKRISHNAN

locally analytic functions, the Coleman functions, on which antidifferentiation is
well-defined. In other words, one can define iterated p-adic integrals [4; 8]

[Cot

which behave formally like iterated path integrals

1 pty tn—1
// Jn(tn) -+ fi(t1) dtp -+ dty.
0J0 0

Let us fix some notation. Let C be a genus-g hyperelliptic curve over an unram-
ified extension K of Q, having good reduction. Let k = [, denote its residue field,
where ¢ = p™. We will assume that C is given by a model of the form yZ = f(x),
where f is a monic separable polynomial with deg f = 2g + 1.

Our methods for computing iterated integrals are similar in spirit to those de-
tailed in [1]. We begin with algorithms for tiny iterated integrals, use Frobenius
equivariance to write down a linear system yielding the values of integrals between
points in different residue disks, and, if needed, use basic properties of integration
to correct endpoints. We begin with some basic properties of iterated path integrals.

2. Iterated path integrals

We follow the convention of Kim [14] and define our integrals as follows:

/I;Q 5152"'5:1—15;1::/})Q 51(R1)/PRl £2(R2) .../PRn_2 En—l(Rn—l)[PRn_l En,

for a collection of dummy parameters Ry,..., R,—1 and 1-forms &1, ..., &,.
We begin by recalling some key formal properties satisfied by iterated path in-
tegrals [6].

Proposition 2.1. Ler &1,...,&, be 1-forms, holomorphic at points P, Q on C.
Then:

) [p 616262 =0,
(2) Catt permutations o J& i) @o(i2) "+ D tin) = [T} JF @i
G) [ wiy - wi, = (<1 [ @i, -y,

As an easy corollary of Proposition 2.1(2), we have:

Corollary 2.2. For a 1-form w; and points P, Q as before,

Q 1 Q n
/ wia)i---a)iz—'(/ a)i) .
P n:\Jp



ITERATED COLEMAN INTEGRATION FOR HYPERELLIPTIC CURVES 43

When possible, we will use this to write an iterated integral in terms of a single
integral.

3. p-adic cohomology

We briefly recall some p-adic cohomology from [12], necessary for formulating
the integration algorithms.

Let C’ be the affine curve obtained by deleting the Weierstrass points from C,
and let A = K|[x,y,z]/(y2— f(x),yz —1) be the coordinate ring of C’. Let A"
denote the Monsky-Washnitzer weak completion of A; it is the ring consisting of
infinite sums of the form

o0
B.
> P B ekl denB; <2
i=—00

further subject to the condition that v, (B;(x)) grows faster than a linear function
of i as i — +o00. We make a ring out of these using the relation yZ = f(x).

These functions are holomorphic on the space over which we integrate, so we
consider odd 1-forms written as

dx
o=gxy) - gy eA
y
Any such differential can be written as

w=dF 4+ cowo+ -+ cog_102g1, (D
with F € AT, ¢; € K, and

Namely, the set of differentials {a)i}l.zi 51 forms a basis of the odd part of the
de Rham cohomology of A, which we denote as HL} R(CH™.
One computes the p-power Frobenius action ¢* on Hﬂ} r(C ")~ as follows:

* Let ¢k denote the unique automorphism lifting Frobenius from F, to K. Ex-
tend ¢k to AT by setting

¢(x) = x?,
1
_ d(f)(xP)— f(x)P\2
p(y)=y? (1 + TP )
= (5 @) — f0)P)
> (12) y2Pi '

i=0
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e Use the relations
= f(x),

dx
dxyl) = 2ix"™y T4 gl f1 0y ) -
y
to reduce large powers of x and large (in absolute value) powers of y to write
¢*(w) in the form (1).

This reduction process is known as Kedlaya’s algorithm [12], and we will repeat-
edly use this algorithm to reduce iterated integrals involving w € A¥ ‘21—; to iterated
integrals in terms of basis elements w;.

4. Integrals: lemmas

Recall that we use Kedlaya’s algorithm to compute single Coleman integrals as
follows:

Algorithm 4.1 (Coleman integration in non-Weierstrass disks [1]).

Input:  The basis differentials (w; ); 28~ Zo pomts P, Q € C(Cp) in non-Weierstrass
residue disks, and a positive integer m such that the residue fields of P, Q
are contained in Fpm.

2g—1

Output: The integrals (fP wi)icy -

1. Calculate the action of the m-th power of Frobenius on each basis element (see
Remark 4.2):

2g—1
(@™ *w; =dh; + Z Mijw;.
j=0
2. By a change of variables, we obtain
2g-1 ¢’"(P) 0
Lo~ m/ o =hiP)=h@~ [* o= [ w o
¢ (Q)

(the fundamental linear system). Since the eigenvalues of the matrix M are
algebraic integers of C-norm pm/ 2 £ 1 (see [12, §2]), the matrix M — I is
invertible, and we may solve (2) to obtain the integrals f PQ w;.

Remark 4.2. To compute the action of ¢™, first carry out Kedlaya’s algorithm to

write
2g—1

¢ wi =dg; + Z Bijw;.
j=0



ITERATED COLEMAN INTEGRATION FOR HYPERELLIPTIC CURVES 45

If we view h, g as column vectors and M, B as matrices, induction on m shows
that

h=¢"'(g)+ B¢™ () ++-+ Box(B)---p¢ *(B)g.
M = B¢k (B)---¢% ' (B).

Note, however, that when points P, Q € C(C,) are in the same residue disk, the
“tiny” Coleman integral between them can be computed using a local parametriza-
tion, just as in the case of a real-valued line integral. This is also true when the
integrals are iterated (see Section 5).

However, to compute general iterated integrals, we will need to employ the
analogue of “additivity in endpoints” to link integrals between different residue
disks. First, let us consider the case where we are breaking up the path by one
point.

Lemma 4.3. Let P, P’, Q be points on C such that a path is to be taken from P
to Q via P'. Let &1, ...,&, be a collection of 1-forms holomorphic at the points
P, P’,Q. Then

0 n Qo P’
/Psl---én=§)/pslmsi [ bt

Proof. We proceed by induction. The case n = 1 is clear. Let us suppose the
statement holds for n = k. Then

/PQ 1 b = (LQSI---sk)<R)LRsk+1
k

0 P’ R
=(Z LRS- s,-+1~~-sk)(R)/P 1.

i=0

Observe that the summand with i = k can be rewritten as

0 R 0 P’ R
([ aa)w [Can=([ as)@ ([ st [ )

and that further, the terms with i < k give us

k—1 0 P’
Dol EE | Gt
P P

i=0
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Thus we have

/PQsl...ng :2/551...&/}) by

0 P’ o
+( . &---&)(/P Ek+1)+/P/ §1°+Ek+1
Q 7
:igo/P’ Slwéi/P iv1 k1,

as desired. O
Applying Lemma 4.3 twice, we obtain a link between different residue disks:

Lemma 4.4 (Link lemma). Let points P, P', Q’, Q be on C such that a path is
to be taken from P to P' to Q' to Q. Let &1, ...,&, be a collection of 1-forms
holomorphic at the points P, P’, Q, Q'. Then

/PQ&---sn=§/jsl---si(é/P/Q’s,-H---sj [Cena)

Below we record a specific case of the link lemma, which we shall use through-
out this paper.

Example 4.5 (Link lemma for double integrals). Suppose we have two differentials
£0.&1. Then

/PQ Eo&1 = /PP/SO% +/P,Q/50§1 +/j Eok1 -I—/PP/Sl /P/Q 50+/P/Q/$1 /j £o.

5. Tiny iterated integrals
We begin with an algorithm to compute tiny iterated integrals.

Algorithm 5.1 (Tiny iterated integrals).

Input:  Points P, Q € C(Cp) in the same residue disk (neither equal to the point
at infinity) and differentials &1, ..., &, without poles in the disk of P.

Output: The integral fPQ E165 - &y.

1. Compute a parametrization (x (1), y(t)) at P in terms of a local coordinate ¢.
2. For each k, write & (x, y) in terms of ¢: &, (¢) := & (x(t), y(z)).

3. Let I,,+1(¢) := 1.
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4. Compute, for k =n,...,2, in descending order,

Ri_1 t(Ri—1)
Ie(t) = /P Eelis = /0 £0(0) [g 1 ().

with Rj_q in the disk of P.

5. Upon computing I, (t), we arrive at the desired integral:

0 1(Q)
/ E1Es by = 11(1) = / £1G0) Lo (u).
P 0

We show how we carry out Algorithm 5.1 for double integrals on an elliptic curve.

Example 5.2 (A tiny double integral). Let C be the elliptic curve
2=x(x=D(x+9),

let p =7, and consider the points P = (9,36), Q = ¢(P), and

= (a+x(P).V fla+x(P))),

so that R is in the same disk as P and Q. Furthermore, let wg = dx and w1 = %
We compute the double integral f p WoW1.
First compute the local coordinates at P:

x(1) =941+ 0(t*°)

21 119 65

y(0) =36+ 2+ 221 4 !

3+ 4 —
1 152 " 55296 95551488 509607936

> 4+ 0(1°).

Then setting I := [ x , and making it a definite integral, we have

R
dx
1 R:/ X =
2lp p 2y

a

dx(t)

= x (7
/0 ©250)
15 5. 91 3 1121 4 2129 s
=897 2304% T 9953289 T 191102976 T 15364714240°

360185 g 36737231 . .
7935422620672° T 7988826001637376% + 0@

from which we arrive at

x(Q)—x(P) dx(R
1=/ Ly(a) x(R(a))
0 2y(R(a))
=47 4+5. 7427 +4-742.7 + 0(7%).
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6. Iterated integrals: linear system

As in the case of computing single integrals, to compute general iterated Cole-
man integrals, we use Kedlaya’s algorithm to calculate the action of Frobenius on
de Rham cohomology. This gives us a linear system that allows us to solve for all
(2g)" n-fold iterated integrals on basis differentials.

Theorem 6.1. Let P, Q € C(Cp) be non-Weierstrass points such that the residue
fields of P, Q are contained in Fpym. Let M be the matrix of the action of the
m-th power of Frobenius on the basis differentials wy, . .., w2g—1. For constants
,,,,, in_, computable in terms of (n — 1)-fold iterated integrals and n-fold tiny iter-

ated integrals, the n-fold iterated Coleman integrals on basis differentials between
P, Q can be computed via a linear system of the form

: . :
12 wig-- iy | = (Tagyxeg —MHE") | Cigmin_,

Proof. By the link lemma (Lemma 4.4), we can reduce to the case where both P
and Q are Teichmiiller points (points fixed by some power of ¢). Then we have

o
- fP @) (@1) - @) (@3). 3)

Recall that given w, . .., w2g—1 a basis for HG}R (C")~, we have

2g—1
(o™ w;, = dfi, + Z M;,jw;.

J=0

Substituting this expression in for each factor of (3) and expanding yields the linear
system. U

To illustrate our methods, in the next section, we present a more explicit version
of this theorem, accompanied by algorithms, in the case of double integrals. We
show how these are used in Kim’s nonabelian Chabauty method in Section 8.
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7. Explicit double integrals

7A. The linear system for double integrals between Teichmiiller points. In this
subsection, we make explicit one aspect of Theorem 6.1: We give an algorithm to
compute double integrals between Teichmiiller points.

Algorithm 7.1 (Double Coleman integration between Teichmiiller points).

Input:  The basis differentials (w; _0 , Teichmiiller points P, Q € C(Cp) in
non-Weierstrass residue disks, and a positive integer m such that the
residue fields of P, Q are contained in [Fpm.

Output: The double integrals ( PQ w; a)])lzé’;;lo

1. Calculate the action of the m-th power of Frobenius on each basis element:
2g—1
@™o =dfi+ > Mijo;.

Jj=0

2. Use Algorithm 4.1 to compute the single Coleman integrals | PQ w; on all basis
differentials.

3. Use Step 2 and linearity to recover the other single Coleman integrals:

2g1

/dfsz»[ ZMuwjfk

foreach i, k.

4. Use the results of the above two steps to write down, for each i, k, the constant
0
Cik = /P dfi (R)(fi(R) — fi(P)(fi(Q) — fi(P))

Q2g—1
j=0

2g—1

2g 1
+ﬁ(Q)/ X Migo; - [ ﬁ(R)(ZMk,w,(R))

5. Recover the double integrals (see Remark 7.2 below) via the linear system

o
Jp wowo €00

o
wow co1
fP . o = (I4g2x4g2 - (Mt)®2)_1 .

o
fP Wrg—1W2g—1 C2g—1,2g—1
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Remark 7.2. We obtain the linear system in the following manner. Since P, O
are Teichmiiller, we have

0 ¢ (Q) 0 .
/ w; W = / w; W = / (¢™)* (v o). 4
P ¢™M(P) P
We begin by expanding the right side of (4).
Recall that given wy, . .., wzg—1 a basis for H;R (C")~, we have
2g—1

(¢m)*a), =df; + Z Mijw;.
j=0
Thus we have

0
/ &™) (@i wp)
P

)
= [ @ @emr @
%) 2g—1 2g—1
:[ (dfi+ ZMijwj)(dfk+ ZMkjwj)
s j=0 j=0
0 2g—1 2g—1 2g—1 2g—1
:/;) dfidfk+(ZMijwj)dfk+dfi ZMkjwj+ ZM,-jwj ZMkja)j.
j=0 Jj=0 Jj=0 Jj=0

We expand the first three quantities separately. First, we have
0 o R
LMMzLM@%J&

(9

= [ anm (R~ £e(P)
0 o

— | an Gy £ [ anir)

P P

o
- [P 4 RV fi(R) — fi(P)(f:(Q) — fi(P)).

Next, we have

2g—1

0 Q281 R
[P (;) Mijwj)dfk:/P j;o Mijwj(R)/P dfx

Q2g—1
:/P Z Mija)j(R)(fk(R)—fk(P))~

Jj=0
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The third term (via integration by parts) is

2g—1

Jy (35 )
- ° ah®) [ R(zg My )

R 28—1 R=0 0
— H(®) /P (;0 Mk,-wj) - /P fi(R)(;) Mk,-wj(R))
2g—1 2g—1

0 0
=ﬁ(Q)/P ;)Mk,-wj—/P fz-(R)(ng Mkjwj(R))-

Denote the sum of these terms by c¢;; in other words,

2g—1

o
cfk=fP dfi (R)(fi(R)) — fi(P)(fi(Q) — fi(P))
2g—1

o
+/ Z M,-ja)j(R)(fk(R)_fk(P))
P =

2g—1 2g—1

0 0
+ﬁ<Q)/P ;)Mk,-wj—/P fi(R)(;) Mk,-w,-(R)).

Then rearranging terms, our linear system reads

fPQ wo Wo €00
0
f wo W1 n—1 o1
i . = (I4g2><4g2 —(M"® )
Lo ' Crg—1,2g—
p W2g—1W2g—1 2g—1,2g—1

7B. Linking double integrals. Let P’ and Q' be in the disks of P and Q, re-
spectively. Using the link lemma for double integrals (Example 4.5), we may link
double integrals between different residue disks:

o
/ wj Wi
P
P/ Q/ Q P/ Q 7 Q
=/ a)ia)k—i—/ a)ia)k—i—/ wiwk+/ a)k/ a)i+/ a)k/ w;.
P P/ Q/ P 4 4 /7
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Algorithm 7.3 (Double Coleman integration using intermediary Teichmiiller points).

Input:  The basis differentials (w,-)izi 31, points P, Q € C(C,) in non-Weierstrass
residue disks.

Output: The double integrals

(0] 2g—1
([ o)
P i,j=0

1. Compute Teichmiiller points P/, Q' in the disks of P, Q, respectively.

2. Use Algorithm 4.1 to compute the single integrals | PQ wi. [ If, wi. |, QQ/a),- for
all 7.

3. Use Algorithm 5.1 to compute the tiny double integrals || ; w; Wk, |, QQ, Wi W .

2g—1

4. Use Algorithm 7.1 to compute the double integrals {flga)i w;}; im0

5. Correct endpoints using

o
[ w; W,
P
P’ o’ o P’ o o’ o
=/ a)ia)k-i-/ wia)k-i-/ a)ia)k—i-/ a)k/ a)i—i—/ a)k/ w;.
P P/ Q/ P ’ /7 /7

7C.Without Teichmiiller points. Alternatively, instead of finding Teichmiiller points
and correcting endpoints, we can directly compute double integrals using a slightly
different linear system. Indeed, using the link lemma for double integrals, we take
¢(P) and ¢ (Q) to be the points in the disks of P and Q, respectively, which gives

o o(P) $(Q) o
/ wia)k=/ a),-a)k—i-/ a)ia)k—l—/ wj W
P P o(P) $(Q)

o(P) o 9(9Q) o
+/ a)k/ a),'—i-/ a)k/ wi. (5)
P o(P) o(P) 9(Q)

To write down a linear system without Teichmiiller points, we begin as before,
with

2g—1 2g—1

¢(Q) o 0
/ Wi Wk :/ 9™ (wi o) = cik +/ (Z Aijwj)( > Akjwj)- (6)
¢ P P \ico j=0

(P)

Putting together (5) and (6), we get
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: ~1
fPQ o o | = (Iag2xag2 —(M")®?)

P P
cik = [50py @i ok — (/& 1) ([40p) k)
U2 o) B8] o0) + [y

(N

This gives us the following alternative to Algorithm 7.1.
Algorithm 7.4 (Double Coleman integration).

Input:  The basis differentials (w; lzi al, points P, Q € C(Qp) in non-Weierstrass

residue disks or in Weierstrass disks in the region of convergence.
2g—1

Output: The double integrals ( /, PQ w; a)j)l. =0

1. Use Algorithm 4.1 to compute the single integrals | PQ w;, f((PQ)) w; foralli.

2. Use Algorithm 5.1 to compute f¢P(P) Wi Wk » fﬁQ) w; wy, for all i, k
3. Asin Step 4 of Algorithm 7.1, compute the constants c; for all 7, k.
4. Recover the double integrals using the linear system (7).

Example 7.5. Let C be the genus-2 curve y? = x> —x* 4+ x3 4+ x2 —2x + 1 and
let P=(1,—-1),Q = (—1,—1) and p = 7. We compute double integrals on basis
differentials:

JE wowo =2-T2+ T3 +4-7* + 0(7%),

JE wow1 = T2 +5-T3 4374+ 0(7%),

[ wowr =4-T+5- T2+ 73+ 0(7%),

[ wows =T+5-72+3-7*+ 0(7%),

[ w100 =T>+6-T3+5-7*+ 0(7%),
pra)la)l =4.-724+3-7>+ 0(7°),

[ w10, =5-T+6-T24+2-T3+4.7*+ 0(7%),
[ w03 =243-T+72+4-72+ 0(7%),

J2 wrwp = T2+ 4T3+ 0(74),

[ w21 =4-T+6-T>+4-T3+5.7*+ 0(7%),
[ wpan =2+5-7+3-72+ 0(73),



54 JENNIFER S. BALAKRISHNAN

J2 wrw3 =54+2-7+3-72+ 0(7%),

[ w30 =3-T+2-T2+5-72+5-7* + 0(7%),
[ w301 =5+5-T+72+6-T3+ 0(7%),

[ 0300 =6+T7+5-7+ 0(73),

[ 0303 =2+6-7T+5-7>+ 0(73).

Example 7.6. Using the previous example, we verify the Fubini identity
0 0 0 0
/ a)ja),-+/ a),-a)jz(/ w,)(/ a)j).
P P P P

wo=5T+2-T+5 T +7*+4.7° + 0(7%),

We have
o

01 =6-T4+6-7+2-7>+4.-7*+3.7° + 0(79),
o

T— T S

Wy =5+5T4+6-7*+2-7° + 0(7°),

0
/ 03 =5+3-T+4-T>+3-724+6-7*+2-7° + 0(7°).
P

We see, for example, that

0 0 0 0
/a)ow1+/ a)lwo=2~72+4~73+2-74+O(75)=(/ a)o)(/ a)l)
P P P P

0 0 0 0
/0)261)3+/ w3wy = 4+4-7+72+0(73):(/ 0)2)(/ 0)3).
P P P P

7D. Weierstrass points. Suppose one of P or Q is a finite Weierstrass point. Then
directly using the linear system as above fails, since the f; have essential singular-
ities at finite Weierstrass points. We remedy this as follows:

Proposition 7.7. Let Q be a non-Weierstrass point, P a finite Weierstrass point,
and S be a point in the residue disk of P, near the boundary. Then the integral
from P to Q can be computed as a sum of integrals:

) S 0 S 10)
/ a)ia)k:/ a)iwk—i-/ a)ia)k+/ a)k/ w;.
P P S P S

Proof. This follows from Lemma 4.3 in the case of n =2, where P/ = S. O

To compute tiny iterated integrals in a Weierstrass disk, we modify Algorithm 5.1
slightly:
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Algorithm 7.8 (Tiny iterated integral in a Weierstrass disk).

Input: A Weierstrass point P, the degree d of a totally ramified extension, and
basis differentials w;, w;.

Output: The integral

S S R t=1 u=t
/ w; ®j =/ a)i(R)/ wj =/ a)l-(R)/ w; .
P P P t=0 u=0

Compute local coordinates (x(u),u) at P.
Leta = pl/d. Rescale coordinates so that y := au, x := x(au).

_ i dx . .
Compute I>(u) = [ x/ 5y as a power series in u.

bl e

Compute the appropriate definite integral using the step above:

S d ! d
/ xJ —x=/ @™ — L)
R 2y 0 u

(where R = (x(t),t)). Call this definite integral (now a power series in ¢) 5.

5. Now since R = (x(t), 1), we have fl‘f wjwj = fol x(t)' 1, dé—y).
Suppose P is a finite Weierstrass point. While one could compute the integral
/, PQ w; wj directly using Algorithm 7.4 for all of the tiny double integrals (and
Algorithm 7.8 for the other double integrals), in practice, that approach is expen-
sive, as it requires the computation of several intermediate integrals with Frobenius
of points that are defined over ramified extensions. This, in turn, makes the requi-
site degree d extension for convergence quite large.

Instead, the key idea is to compute a local parametrization at the finite Weier-
strass point P and to use this to compute the indefinite integral | ; ;. Then to com-
pute integrals involving “boundary points,” one can simply evaluate this indefinite
integral at the appropriate points, instead of directly computing parametrizations,
and thus integrals, over a totally ramified extension of Q. This idea is also used
to evaluate double integrals involving boundary points.

Algorithm 7.9 (Intermediary integrals for double integrals with a Weierstrass end-
point).

Input: A finite Weierstrass point P, a non-Weierstrass point Q, the degree d
of a totally ramified extension, the desired precision n of Q,, and basis
differentials w;, ;.

Output: Necessary things for the eventual computation of || PQ w; ;.
1. Compute (x(2),?) local coordinates at P to precision nd.
2. Let S = (x(a),a), where a = p'/4.

3. Compute as a power series in ¢, I2(¢) = fx(;)i dx@®)

y@) -
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4. Compute the definite integral || [‘,g w; = Ix(a).

5. Forall i < j, compute the definite integral || I§ w; wj via Algorithm 5.1. Keep
the intermediary indefinite integral.

6. Foralli = j, use the fact that /| 1‘5 wiwj =%(/ 15 a)l-)2 to compute the double
integral in terms of the single integral.

7. For all i > j, use the fact that fP W wj = fP w;j w; +fP ; fP w; to compute
f p wj w;j (instead of directly computing it as a double integral).

8. Compute ép(S) w; = ¢(S)

— f p w; by the indefinite integral in Step 3. Use
this to deduce f¢( )a), wj forz =j.

9. Use the indefinite integral in Step 5 to get f o(S )a)i wj fori < j.

10. Repeat the trick in Step 7 to get f¢(S) w;wj fori > j.

11. Compute f¢(Q) w; and use it to deduce f¢(Q) w;i w; fori = j.

f¢(Q)

12. Compute wjwj fori < j.

13. Repeat the trick in Step 7 to get f $(0)

14. Use fS w; =fP w; —fP w; to get fSQ w;.
Algorithm 7.10 (Double integrals from a Weierstrass endpoint).

w; wj fori < j.

Input: A finite Weierstrass point P, a non-Weierstrass point (0, and basis differ-
entials w;, w;.

Output: The double integrals || PQ w; ;.
1. Compute all of the integrals as in Algorithm 7.9.

2. Compute double integrals |, SQ w; wj using the terms in Step 1 as appropriate in
Algorithm 7.4. (See Remark 7.11 for an additional improvement to this step.)

3. Recover the double integrals fPQ Wi wj = f}‘f w; W) +fSQ w; O; —{—f};g wj fSQ w;
by using additivity.

Remark 7.11. In the case of g = 1, the linear system only yields one double
integral not obtainable through single integrals. Indeed, for 0 < i, j <1, we have

o 1 0 2 Qo o o o
/ w; W; =—(/ a)i) and / w; w;j =—/ a)ja),'—i-/ a)i/ wj.
s 2\Js s s s s

So it suffices to compute | SQ wo 1. Thus, rather than computing all of the con-
stants cgo, €01, €10, €11 and their correction factors (see (7)), if we precompute the
two double integrals that are express1ble in terms of s1ngle integrals, as well as the
product of single integrals that relates f 5§ w1 to f § wowi, it suffices to compute
co1 (and its correction factor) to solve for the other three constants and f 5§ Wowi.
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In other words, the linear system in Algorithm 7.4 tells us that

P : P
k= Jyopy @i ok — ([ i) ([ py k)
(/5 @) ¢((pQ)) k) + [0y @i Ok

’

(Isxa— (M) | [ wion | =

which we write as

i00 X00
Vo1 V4 1

4 0 _ | bor |
501 — Vo1 X10

i11 X11

where the vector on the left consists of integrals (with igo = f 5§ Wowo,111= f § W01,
S01 = f 5§ @o f s i all computed), and the Vector on the right consists of constants
(with £9; computed). So we solve for vy := fS wo W1, X00, X10, X11, since know-
ing vg1 gives us the complete set of double integrals on basis differentials. While
this only gives a constant speedup in terms of complexity, in practice, this helps
when § is defined over a highly ramified extension of Q.

As numerical checks, one may use the following corollaries of Proposition 7.7.

Corollary 7.12. For P, Q Weierstrass points and S a third point, we have additiv-
ity in endpoints: fPQ w; Wj +f5 w; wj = f}f w; ;.

Corollary 7.13. For P, Q Weierstrass points, we have

(@) (¢
/ a),-a)j—i—/ a)ja),-=0.
P P

It is worth noting that in general, unlike in the case of a single Coleman integral,
for P and Q both Weierstrass points, unless i = k, the double Coleman integral
f p Wi Wk 1s not necessarlly 0. However in the case of i = k, the integral can be
computed as fP wi w; = (fP ,) =0.

Example 7.14. Consider the curve y? = x(x — 1)(x + 9), over Q7, and the points
P1=(1,0), P, =(0,0),and Q = (—1,4). We have

0
wo W
Jp, @00 2724573 4+4.74 +3.75 + 0(79)

[Ewor| | 6745724473 16-7% + 0(79)
12 w1 w0 T 2743437+ TP+ 0(79)
le 14574577 +4-7*4+4-75+ 0(7%)
lelwl
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and

0

wo W
fPQz 0 WO 2_72+5,73_|_4.74_|_3.75_|_0(76)
[& oo | 272473 46-744+5-7° + 0(7°)
fPQza)la)o 6-7+5-724+6-7>+3-7*+3-77+0(7% |’
/2 145745 +4.74 +4.75 + 0(7%)
P2w1w1

from which we see that | If: > wowi # 0 and likewise || Ifl > wiwy # 0.

8. Kim’s nonabelian Chabauty method

We now present the motivation for all of the algorithms thus far. Let €/Z be the

minimal regular model of an elliptic curve C/Q of analytic rank 1 with Tamagawa

numbers all 1. Let ¥ = € — {oo} and wy = %, w1 = % Taking a tangential

basepoint b at co (or letting b be an integral 2-torsion point), we have the analytic
functions

z z
10gw0(2)=/b wo, D2(2)=/b wow1.

With this setup, we have:
Theorem 8.1 [2; 14]. Suppose P is a point of infinite order in €(Z). Then
*(Z) C €(Zp) is in the zero set of
£(2) 1= (1024, (P))* D2(2) = (logy (2))* Da(P).
Corollary 8.2 [2; 14]. The expression
D> (P)
(logwo(P))2

is independent of the point P of infinite order in €(Z).

®)

Example 8.3. We revisit Example 1 in [2]. Let E be the rank-1 elliptic curve
y2 = x3 —1323x + 3942, with minimal model ¢ having Cremona label 65al. Con-
sider the following points on E which are integral on €: b = (3,0), P = (39, 108),
0 = (-33,-108), R = (147,1728). Using Algorithm 7.10, we compute the inte-
grals

P
f wow; =4-114+4-1124+7-113+9-11* +5-11°+ 0(117),
b

P
/ wo=4-114+7-1124+9. 113 43 11* +5.11°+7- 115+ 0(117),
b
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0
/ wowy =4-114+4-112+7-113+9-11* +5- 115+ 0(117),
b

Q

/ wo=T-114+3-112+113 +7-11* +5-11°+3- 115+ 0(117),
b

R
/ wow; =5-114+6-1124+7-113 + 5. 11* +3-11° +9-11°+ 0(117),

S

R
/ wo=3-114+7-1124+2-113+3.11* +7- 115+ 0(117),
b

and we see that the ratio in Corollary 8.2 is constant on integral points:
Dy(P)  D2(Q)  DaR)

2 2 2’
(logyy (P))”  (logy,(Q))"  (logy,(R))
=3 117 +642-11+10-112+3-113 +5-11* + 0(11°).

However, for § = (103, 980), which is not integral on €, we see that

S
/ wowy =3-114+10-112+4-1124+10-11*+7-11° +10-11° + 0(117)
b

S
/ wo=114+7-1124+5-11°+ 0(117)
b
D>(S)
2
(log,,, (5))

Example 8.4. We give a variation on Example 4 in [2]. Let E be the rank-1
elliptic curve y2 = x3 — 16x + 16, with minimal model ¢ having Cremona label
37al. Letting P, Q be two fixed integral points on E, we can use the link lemma
to rewrite Theorem 8.1 so that the relevant double integral is no longer from a
tangential basepoint. Indeed, integral points z occur in the zero set of

z 2 P 2\ @ oW1 P’Q @0 P o1
() =) g 75 ,,
([ o)

Slightly modifying Algorithm 7.4 to take as endpoint a parameter z (see [3, §7.2.2]
for more details), we can recover the integral points

=3-11"'+10+6-11+9-112+8-113 + 6- 11* + 0(11°).

{(0, £4), (4, £4), (—4, £4), (8, £20), (24, £116)}.

Remark 8.5. Note that in the classical Chabauty method, one can use the Jacobian
of the curve J to find the global constant of integration (see [5; 10]). In particular,
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the points on J form a Z-module and we have multiplication-by-n morphisms
[n]: J(Qp) — J(Qp), which gives n |, PQ w = f[%]((g))w. By choosing n carefully,
we can ensure that [r] P and [#]Q both lie in the residue disk of the identity, and
pulling back to the curve, all integrals can be computed by tiny integrals. For

iterated integrals, we do not have appropriate endomorphisms available.
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