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We prove some divisibility properties of the cardinality of elliptic curve groups
modulo primes. These proofs explain the good behavior of certain parameters
when using Montgomery or Edwards curves in the setting of the elliptic curve
method (ECM) for integer factorization. The ideas behind the proofs help us to
find new infinite families of elliptic curves with good division properties increas-
ing the success probability of ECM.

1. Introduction

The elliptic curve method (ECM) for integer factorization [22] is the asymptotically
fastest known method for finding relatively small factors p of large integers N . In
practice, ECM is used, on the one hand, to factor large integers. For instance, the
2011 ECM record is a 241-bit factor of 21181� 1 [12]. On the other hand, ECM
is used to factor many small (100- to 200-bit) integers as part of the number field
sieve [26; 21; 4], the most efficient general purpose integer factorization method.

Traditionally, the elliptic curve arithmetic used in ECM is implemented us-
ing Montgomery curves [23] (for example, in the widely used GMP-ECM soft-
ware [35]). Generalizing the work of Euler and Gauss, Edwards [15] introduced a
new normal form for elliptic curves which results in a fast realization of the elliptic
curve group operation in practice. These “Edwards curves” have been generalized
by Bernstein and Lange [9] for use in cryptography. Bernstein et al. [8] explored
the possibility of using these curves in the ECM setting. After Hisil et al. [18]
published a coordinate system which results in the fastest known realization of
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curve arithmetic, a follow-up paper by Bernstein et al. [7] discusses the use of the
so-called “aD�1” twisted Edwards curves in ECM.

It is common to construct or search for curves which have favorable properties.
The success of ECM depends on the smoothness of the cardinality of the curve
considered modulo the unknown prime divisor p of N . This usually means con-
structing curves with large torsion group over Q or finding curves such that the
order of the elliptic curve, when considered modulo a family of primes, is always
divisible by an additional factor. Examples are the Suyama construction [32], the
curves proposed by Atkin and Morain [3], a translation of these techniques to Ed-
wards curves [8; 7], and a family of curves suitable for Cunningham numbers [13].

In this paper we study and prove divisibility properties of the cardinality of
elliptic curves over prime fields. We do this by studying properties of Galois groups
of torsion points using Chebotarev’s theorem [24]. Furthermore, we investigate
some elliptic curve parameters for which ECM finds exceptionally many primes in
practice, but which do not fit in any of the known cases of good torsion properties.
We prove this behavior and provide parametrizations for infinite families of elliptic
curves with these properties.

2. Galois properties of torsion points of elliptic curves

In this section we give a systematic way to compute the probability that the order of
a given elliptic curve reduced by an arbitrary prime is divisible by a certain prime
power.

2A. Torsion properties of elliptic curves.

Definition 2.1. Let K be a finite Galois extension of Q, let p be a prime, and
let p be a prime ideal of K above p with residue field kp. The decomposition
group Dec.p/ of p is the subgroup of Gal.K=Q/ that stabilizes p. Denote by ˛.p/

the canonical morphism from Dec.p/ to Gal.kp=Fp/ and let �p be the Frobenius
automorphism on the field kp. We define

Frobenius.p/D
S
pjp

.˛.p//�1.�p/:

We say that a set S of primes admits a natural density equal to ı, and we write
P.S/D ı, if

lim
N!1

#.S \….N//
#….N/

exists and equals ı, where ….N/ is the set of primes up to N . If event.p/ is a
property which can be defined for all primes except a finite set, when we write
P.event.p// we tacitly exclude the primes where event.p/ cannot be defined.
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Theorem 2.2 (Chebotarev, [24]). Let K be a finite Galois extension of Q. Let
H � Gal.K=Q/ be a conjugacy class. Then

P.Frobenius.p/DH/D
#H

# Gal.K=Q/
:

Before applying Chebotarev’s theorem to the case of elliptic curves we introduce
some notation. For every elliptic curve E over a field F and for all integers m� 2,
we let F.EŒm�/ denote the smallest extension of F over which all of the geometric
m-torsion points of E are rational. The next result is classical, but we present its
proof for the intuition it brings.

Proposition 2.3. For every integer m � 2 and elliptic curve E over a perfect
field F , the following hold:

(1) F.EŒm�/=F is a Galois extension.

(2) There is an injective morphism �m W Gal.F.EŒm�/=F / ,! Aut.E.F /Œm�/.

Proof. Since the addition law of E can be expressed by rational functions over F ,
there exist polynomials fm; gm 2 F ŒX; Y � such that the coordinates of the points
in E.F /Œm� are the solutions of the system .fm D 0; gm D 0/. Therefore F.EŒm�/
is the splitting field of ResX .fm; gm/ and ResY .fm; gm/ and in particular is Galois.
This proves statement (1).

For each � 2 Gal.F.EŒm�/=F / we denote by �m.�/ the function that sends
.x; y/ 2 E.F /Œm� to .�.x/; �.y//. Thanks to the discussion above, �m.�/ sends
points of E.F /Œm� to E.F /Œm�. Since the addition law can be expressed by rational
functions over F , for each � we have �m.�/ 2 Aut.E.F /Œm�/. One easily checks
that �m is a group morphism and its kernel is the identity, proving statement (2). �
Notation. Let E be an elliptic curve over Q and let m � 2 be an integer. We fix
generators for E.Q/Œm�, thereby inducing an isomorphism

 m W Aut.E.Q/Œm�/! GL2.Z=mZ/:

Let �m be the injection given by Proposition 2.3, and let �m W Gal.Q.EŒm�/=Q/!

GL2.Z=mZ/ be the injective morphism  m ı �m.
Let p be a prime such that E has good reduction at p and p − m. If k is

an extension field of Fp, we write E.k/ for the group of k-rational points on the
reduction of E modulo p. Let �.p/m be the injection of Gal.Fp.EŒm�/=Fp/ into
Aut.E.Fp/Œm�/ given by Proposition 2.3. By [29, Proposition VII.3.1] there is a
canonical isomorphism r

.p/
m from Aut.E.Q/Œm�/ to Aut.E.Fp/Œm�/ for each prime

ideal p over p.

Remark 2.4. Note that # Gal.Q.EŒm�/=Q/ is bounded by # GL2.Z=mZ/. For
every prime � we have # GL2.Z=�Z/D .� � 1/2.� C 1/� , and for every integer
k � 1 we have # GL2.Z=�kC1Z/D �4# GL2.Z=�kZ/.
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Notation. For all g 2 GL2.Z=mZ/ we put Fix.g/ D fv 2 .Z=mZ/2 j g.v/ D vg.
If C is a conjugacy class of elements of GL2.Z=mZ/, we let Fix.C / denote the
isomorphism class of the group Fix.g/, for some g 2 C ; this isomorphism class
does not depend on the choice of g. We use analogous notations for the fixed
groups of elements of, and conjugacy classes in, the groups Aut.E.Q/Œm�/ and
Aut.E.Fp/Œm�/.

Theorem 2.5. Let E be an elliptic curve over Q and let m� 2 be an integer. Put
K DQ.EŒm�/. Let T be a subgroup of Z=mZ�Z=mZ. Then:

(1) P
�
E.Fp/Œm�' T

�
D

#fg 2 �m.Gal.K=Q// j Fix.g/' T g
# Gal.K=Q/

.

(2) Let a and n be positive integers such that a � n and gcd.a; n/D 1, and let �n
be a primitive n-th root of unity. Put

Ga D f� 2 Gal.K.�n/=Q/ j �.�n/D �
a
ng:

Then

P
�
E.Fp/Œm�' T j p � a mod n

�
D

#f� 2Ga j Fix.�m.� jK//' T g
#Ga

:

Proof. Let p −m be a prime for which E has good reduction and let p be a prime
ideal of K over p. Let H denote the set f� 2 Gal.K=Q/ j Fix.�m.�//' T g. First
note thatE.Fp/Œm�DFix.�.p/m .�p//where �p is the Frobenius in Gal.Fp.EŒm�/=Fp/.
Since the diagram

Dec.p/ � � //

˛.p/

��

Gal.Q.EŒm�/=Q/
� � �m // Aut.E.Q/Œm�/

r
.p/
m

��
Gal.kp=Fp/

� // Gal.Fp.EŒm�/=Fp/
� � �

.p/
m // Aut.E.Fp/Œm�/

is commutative and since Frobenius.p/� Gal.K=Q/ is the conjugacy class gener-
ated by .˛.p//�1.�p/ we have E.Fp/Œm�' Fix.�m.Frobenius.p///.

Decompose H into a disjoint union of conjugacy classes C1; : : : ; CN . Then
Fix.�m.Frobenius.p///' T if and only if Frobenius.p/ is one of the Ci . Thanks
to Theorem 2.2 we obtain

P
�
E.Fp/Œm�' T

�
D

NX
iD1

P
�
Frobenius.p/D Ci

�
D

NX
iD1

#Ci
# Gal.K=Q/

D
#H

# Gal.K=Q/
:

This proves statement (1).
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Using similar arguments, we see that to prove statement (2) we have to evaluate

P
�
Frobenius.p/ 2 fC1; : : : ; CN g; p � a mod n

�
P.p � a mod n/

:

Let p be a prime and p a prime ideal as in the first part of the proof, and let P be a
prime ideal of K.�n/ lying over p. Furthermore let zC1; : : : ; zC zN be the conjugacy
classes of Gal.K.�n/=Q/ that are in the preimages of C1; : : : ; CN and whose ele-
ments � satisfy �.�n/D �an . Since Gal.K.�n/=Q/ maps �n to primitive n-th roots
of unity we have for � 2 .˛.P//�1.�P/ that �.�n/D �bn for some b. Together with
�.x/ � xp mod P this gives �bn � �

p
n mod P. If we exclude the finitely many

primes dividing the norms of �cn � 1 for c D 1; : : : ; n� 1 we obtain b � p mod n.
Since Frobenius.K.�n/; p/, the Frobenius conjugacy class for K.�n/, is the preim-
age of Frobenius.p/, the argument above gives

P
�
Frobenius.p/ 2 fC1; : : : ; CN g; p � a mod n

�
D P

�
Frobenius.K.�n/; p/ 2 f zC1; : : : ; zC zN g

�
:

Considering the denominator P.p � a mod n/ similarly completes the proof. �

Remark 2.6. Put K DQ.EŒm�/. If ŒK.�n/ WQ.�n/�D ŒK WQ�, then one has

P
�
E.Fp/Œm�' T j p � a mod n

�
D P

�
E.Fp/Œm�' T

�
for a coprime to n. Indeed, according to Galois theory,

Gal.K.�n/=Q/=Gal.K.�n/=K/' Gal.K=Q/

through � 7!� jK . Since ŒK.�n/ WQ.�n/�D ŒK WQ�, we have ŒK.�n/ WK�D'.n/ and
therefore each element � of Gal.K=Q/ extends in exactly one way to an element
of Gal.K.�n/=Q/ which satisfies �.�n/D �an . Note that for n 2 f3; 4g the condition
is equivalent to �n 62K.

The families constructed by Brier and Clavier [13], which were developed to
help factor integers N such that the n-th cyclotomic polynomial has roots modulo
all prime factors ofN , modify ŒK.�n/ WQ.�n/� by imposing a large torsion subgroup
over Q.�n/.

The following corollary is an important particular case of Theorem 2.5.

Corollary 2.7. Let E be an elliptic curve over Q and let � be a prime number. Put
K DQ.EŒ��/. Then

P
�
E.Fp/Œ��' Z=�Z

�
D

#fg 2 ��.Gal.K=Q// j det.g� Id/D 0; g ¤ Idg
# Gal.K=Q/

;

P
�
E.Fp/Œ��' Z=�Z�Z=�Z

�
D

1

# Gal.K=Q/
:
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� T d1 Ptheor.E1; �; T / d2 Ptheor.E2; �; T /

Pexper.E1; �; T / Pexper.E2; �; T /

3 Z=3Z�Z=3Z 48 1
48
� 0:02083 16 1

16
D 0:06250

0:02082 0:06245

3 Z=3Z 48 20
48
� 0:4167 16 4

16
D 0:2500

0:4165 0:2501

5 Z=5Z�Z=5Z 480 1
480
� 0:002083 32 1

32
D 0:03125

0:002091 0:03123

5 Z=5Z 480 114
480
� 0:2375 32 10

32
D 0:3125

0:2373 0:3125

Table 1. Theoretical and experimental values of P.E;�;T / WDP
�
E.Fp/Œ��'T

�
for the elliptic curves E1 and E2, for several primes � and groups T . The
theoretical values were obtained from Corollary 2.7, and the experimental values
were computed using all primes less than 225. The columns labeled d1 and d2
give the degrees of the number fields Q.E1Œ��/ and Q.E2Œ��/, respectively.

Example 2.8. We compute these probabilities for the curves E1 W y2D x3C5xC7
and E2 W y2 D x3 � 11x C 14 and the primes � D 3 and � D 5. Here E1 illus-
trates the generic case, whereas E2 has special Galois groups. One checks with
Sage [30] that ŒQ.E1Œ3�/ WQ�D 48. Since # GL2.Z=3Z/D 48, Proposition 2.3 tells
us that �3.Gal.Q.E1Œ3�/=Q//D GL2.Z=3Z/. The group GL2.Z=3Z/ contains 20
nonidentity elements having 1 as an eigenvalue. From Corollary 2.7 we find

P
�
E1.Fp/Œ3�' Z=3Z

�
D

20
48
; P

�
E1.Fp/Œ3�' Z=3Z�Z=3Z

�
D

1
48
:

We used the same method for all the probabilities displayed in Table 1, where we
compare them to experimental values.

Note that the relative difference between theoretical and experimental values
never exceeds 0:4%. It is interesting to observe that reducing the Galois group
does not necessarily increase the probabilities, as it is shown for � D 3.

2B. Effective computations of Q.EŒm�/ and �m.Gal.Q.EŒm�/=Q// for prime
powers. The main tools we use to compute Q.EŒm�/ and its Galois group are the
division polynomials, as defined below.

Definition 2.9. Let E W y2 D x3C axC b be an elliptic curve over Q and m� 2
an integer. The m-division polynomial Pm is the monic polynomial whose roots
are the x-coordinates of all the affine m-torsion points of E. We also define P new

m

to be the monic polynomial whose roots are the x-coordinates of the affine points
of order exactly m.
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Proposition 2.10. For all m � 2 the polynomials Pm and P new
m lie in QŒX�. Fur-

thermore, deg.Pm/D .m2C 2� 3�/=2, where � is the remainder of m modulo 2.

Proof. For a proof we refer to [29, Exercise III.3.7, pp. 105–106]. �

Note that one obtains different division polynomials for other shapes of elliptic
curves (Weierstrass, Montgomery, Edwards, and so on). Nevertheless, the Galois
group Gal.Q.EŒm�/=Q/ is independent of the model of E, and can be computed
with the division polynomials of Definition 2.9 because, in characteristic different
from 2 and 3, every curve can be written in short Weierstrass form.

One can compute Q.EŒ��/ for any prime � � 3 using the following method.

1. Make a first extension of Q through an irreducible factor of P� to obtain a
number field F1 where P� has a root ˛1.

2. Let f2.y/D y2� .˛31 C a˛1C b/ 2 F1Œy� and F2 be the splitting field of f2.
There is a �-torsion point M1 of E defined over F2. In F2, P� has .� �1/=2
trivial roots representing the x coordinates of the multiples of M1.

3. Let F3 be the extension of F2 defined by an irreducible factor of P� 2 F2Œx�
other than those corresponding to the trivial roots.

4. Let ˛2 be a new root of P� in F3. Let f4.y/D y2� .˛32Ca˛2C b/ 2 F3Œy�
and let F4 be the splitting field of f4. Then F4 contains all the �-torsion of E.

The case of prime powers �k with k � 2 is handled recursively. Having com-
puted Q.EŒ�k�1�/, we obtain Q.EŒ�k�/ by repeating the four steps above with
P new
�k instead of P� and by defining trivial roots to be the x-coordinates of the

points fP CM1 j P 2EŒ�
k�1�g.

In practice, we observe that in general P� ; f2; P
.F2/
� and f4 are irreducible,

where P .F2/
� is P� divided by the factors corresponding to the trivial roots. If this

is the case, then using the formula deg.P�/D .�2� 1/=2 from Proposition 2.10,
we find that the absolute degree of F4 is

�2� 1

2
� 2 �

�2��

2
� 2D .� � 1/2.� C 1/�:

By Remark 2.4, # GL2.Z=�Z/ is also equal to .� � 1/2.�C 1/� , so in general we
expect ��.Gal.Q.EŒ��/=Q// D GL2.Z=�Z/. Also, we observed that in general
the degree of the extension Q.EŒ�k�/=Q.EŒ�k�1�/ is �4.

The next theorem shows that the observations above are almost always true. It
is a restatement of items .1/ and .6/ from the introduction of [27].

Theorem 2.11 (Serre). Let E be an elliptic curve without complex multiplication.

(1) For all primes � the sequence of indices

ŒGL2.Z=�kZ/ W ��k .Gal.Q.EŒ�k�/=Q//� for k � 1
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is nondecreasing and bounded by a constant depending on E and � .

(2) For all primes � outside a finite set depending on E and for all k � 1,

��k .Gal.Q.EŒ�k�/=Q/D GL2.Z=�kZ/:

Definition 2.12. Put I.E; �; k/D ŒGL2.Z=�kZ/ W ��k .Gal.Q.EŒ�k�/=Q//�. If E
does not admit complex multiplication, we define Serre’s exponent to be the integer

n.E; �/Dminfn 2 Z>0 j 8k � n W I.E; �; kC 1/D I.E; �; k/g:

In [28] Serre showed that in some cases one can prove that I.E; �; k/ D 1

for all positive integers k. Indeed, Serre proved that the surjectivity of ��k (or
the equivalent equality I.E; �; k/ D 1) follows from the surjectivity of �� (or
the equivalent equality I.E; �; 1/ D 1) for all rational elliptic curves E without
complex multiplication and for all primes � � 5. In order to have the same kind
of results for � D 2 (respectively, � D 3) one has to suppose that �2, �4 and �8
are surjective (respectively, �3 and �9 are surjective).

Serre also conjectured that only a finite number of primes, not depending on the
curve E, can occur in the second point of Theorem 2.11. The current conjecture is
that for all rational elliptic curves without complex multiplication and all primes
� � 37, �� is surjective. Zywina [36] describes an algorithm that computes, for
a given E, the primes � for which �� is not surjective; Zywina has checked the
conjecture for all elliptic curves in Magma’s database (currently this covers curves
with conductor at most 140,000). For other recent progress on this conjecture of
Serre, see [11] and [10].

Remark 2.13. One application of Serre’s results is as follows. Experiments show
that if E is an elliptic curve over Q without complex multiplication, then E.Fp/ is
close to a cyclic group for almost all primes p, regardless of the rank of E over Q.
For a given bound B , computing

P.9� > B j Z=�Z�Z=�Z�E.Fp// (1)

goes beyond the scope of this paper. However, if � is a prime such that �� is
surjective, then Corollary 2.7 shows that

P.Z=�Z�Z=�Z�E.Fp//D
1

�.� C 1/.� � 1/2
:

This suggests that the probability in expression (1) should be O.1=B3/.

The method described above allows us to compute Q.EŒm�/ as an extension
tower. Then it is easy to obtain its absolute degree and a primitive element. Identify-
ing ��.Gal.Q.EŒm�/=Q// up to conjugacy is easy when there is only one subgroup
(up to conjugacy) of GL2.Z=mZ/ with the right order. When this is not the case
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we use fixed generators for E.Q/Œm� to check for each g 2GL2.Z=mZ/ whether g
gives rise to an automorphism on Q.EŒm�/. In practice, the bottleneck of this
method is the factorization of polynomials with coefficients over number fields.

A faster probabilistic algorithm for computing Gal.Q.EŒ��/=Q/ was proposed
by Sutherland [31]. This algorithm was not known by the authors at the time of
writing and would have helped to accelerate the computation of the examples.

2C. Divisibility by a prime power. It is well-known that, for a given prime � , the
cardinality of a randomly chosen elliptic curve over Fp has a larger probability of
being divisible by � than a randomly chosen integer of size p (see [22, Proposi-
tion 1.14, p. 660]). In this subsection we shall consider the analogous problem,
where instead of fixing p and varying E, we fix an E=Q and vary p.

Notation. Let � be a prime and let i , j , and k be nonnegative integers such that
i � j . We put

p�;k.i; j /D P
�
E.Fp/Œ�

k�' Z=� iZ�Z=�jZ
�
:

Let `�m be integers. When it is defined we write

p�;k.`;m j i; j /

D P
�
E.Fp/Œ�

kC1�' Z=�`Z�Z=�mZ
ˇ̌
E.Fp/Œ�

k�' Z=� iZ�Z=�jZ
�
:

When it is clear from the context, � is omitted.

Remark 2.14. Since for every integer m> 0 and every prime p coprime to m we
have E.Fp/Œm� � Z=mZ�Z=mZ, it follows that p�;k.i; j / D 0 for j > k. In
the case j < k, if p�;k.`;m j i; j / is defined, it equals 1 if .`;m/ D .i; j / and
equals 0 if .`;m/ ¤ .i; j /. Finally, for j D k, there are only three conditional
probabilities which can be nonzero: p�;k.i; k j i; k/, p�;k.i; k C 1 j i; k/, and
p�;k.kC 1; kC 1 j k; k/.

Theorem 2.15. Let � be a prime and E an elliptic curve over Q. If k is an in-
teger such that I.E; �; k C 1/ D I.E; �; k/ (for example, if E has no complex
multiplication and k � n.E; �/), then we have

p�;k.kC 1; kC 1 j k; k/D 1=�
4;

p�;k.k; kC 1 j k; k/D .� � 1/.� C 1/
2=�4; and

p�;k.i; kC 1 j i; k/D 1=� for 0� i < k:

Proof. Let M D .Z=�kZ/2. For all g 2 GL2.�M/, we consider the set

Lift.g/D
˚
h 2 GL2.M/

ˇ̌
hj�M D g

	
D
˚
gC�k�1

�
a
c
b
d

� ˇ̌
a; b; c; d 2 Z=�Z

	
;
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whose cardinality is �4. Since I.E; �; kC 1/D I.E; �; k/ we have

# Gal.Q.EŒ�k�/=Q/

# Gal.Q.EŒ�kC1�/=Q/
D

# GL2.Z=�kZ/

# GL2.Z=�kC1Z/
;

which equals 1=�4 by Remark 2.4. So for all g 2 ��k .Gal.Q.EŒ�k�/=Q//, we
have Lift.g/ � ��kC1.Gal.Q.EŒ�kC1�/=Q//. Thanks to Theorem 2.5, the proof
will follow if we count for each g the number of lifts with a given fixed group.

For g D Id 2 ��k .Gal.Q.EŒ�k�/=Q//, there is only one element of Lift.g/
fixing .Z=�kC1Z/2, so p�;k.kC 1; kC 1 j k; k/D 1=�4.

The element g D Id can be lifted in exactly �4� 1� # GL2.Z=�Z/ ways to an
element in GL2.Z=�kC1Z/ that fixes the �k-torsion and a point of order �kC1, but
not all the �kC1-torsion. Therefore p�;k.k; kC 1 j k; k/D .� � 1/.� C 1/2=�4.

Every element of GL2.Z=�kZ/ that fixes a line, but is not the identity, can be
lifted in exactly �3 ways to an element of GL2.Z=�kC1Z/ that fixes a line of
.Z=�kC1Z/2. This shows that p�;k.i; kC 1 j i; k/D �3=�4 D 1=� . �

The theorem below uses the information on Gal.Q.EŒ�n.E;�/�/=Q/ for a given
prime � in order to compute the probabilities of divisibility by any power of � .
It also gives a formula for the average �-adic valuation v� of #E.Fp/, which we
define as

v� D
X
k�1

k P
�
v�.#E.Fp//D k

�
;

where v� denotes �-adic valuation. We do not claim that v� is equal to

lim
x!1

1

#….x/

X
p�x

v�.#E.Fp//;

although we expect this to be true.

Notation. Let � be a prime. We set n.h/D �n
Ph
`D0 �

`pn.`; n/, and we define

ı.k/D

�
piC1.i C 1; i C 1/ if k D 2i C 1;

0 otherwise
and

Sk.h/D �
k

�
ı.k/C

bk=2cX
`Dh

pk�`.`; k� `/

�
:

Theorem 2.16. Let � be a prime, let E an elliptic curve over Q, and let n be a
positive integer such that I.E; �; k/ D I.E; �; n/ for all k � n (for example, a
curve without complex multiplication and n� n.E; �/). Then, for every k � 1,
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P
�
#E.Fp/� 0 mod �k

�
D

1

�k

8<:
Sk.0/ if 1� k � n;

n.k�n� 1/CSk.k�n/ if n < k � 2n;
n.n/Cpn.n; n/�

2n�1��4n�1�kpn.n; n/ if k > 2n:

Furthermore, v� is finite, and we have

v�D2

n�1X
`D1

p`.`;`/C
�

��1

n�1X
`D0

pn.`;n/C

n�2X
`D0

n�1X
iD`C1

pi .`;i/C
�.2�C1/

.��1/.�C1/
pn.n;n/:

Proof. Let k be a positive integer. Using Figure 1, one checks that

P
�
#E.Fp/� 0 mod �k

�
D

bk=2cX
`D0

pk�`.`; k� `/C ı.k/: (2)

Let c1 D 1=�4, c2 D .� � 1/.� C 1/2=�4, and c3 D 1=� . With these notations,
the situation can be illustrated by Figure 1. For j > n and ` < n, the probability
pj .`; j / is the product of the conditional probabilities of the unique path from
.`; j / to .`; n/ in the graph of Figure 1 times the probability pn.`; n/. For j > n
and `� n, the probability pj .`; j / is the product of the conditional probabilities
of the unique path from .`; j / to .n; n/ in the graph of Figure 1 times the proba-
bility pn.n; n/.

There are three cases that are to be treated separately: 1 � k � n, n < k � 2n
and k > 2n. For 1� k � n, the result follows from (2). Let us give the computation

c3 c3 c3

c3c3

c3

c3c3c3

c2

c2

c2

c1

c1

c1

0,0

1,1

0,1 0,2

1,2

2,2

π2i | #E(Fp)

π2i+1 | #E(Fp)

n = 2

Figure 1. The node with coordinates .i; j / represents the event
�
E.Fp/Œ�

j �'

Z=� iZ � Z=�jZ
�
. The arrows represent the conditional probabilities of

Theorem 2.15.
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in more detail for the case for k > 2n, with k D 2i :

P
�
#E.Fp/� 0 mod �2i

�
D

iX
`D0

p2i�`.`; 2i � `/C ı.2i/D

iX
`D0

p2i�`.`; 2i � `/

D

n�1X
`D0

p2i�`.`; 2i � `/C

i�1X
`Dn

p2i�`.`; 2i � `/Cpi .i; i/

D

n�1X
`D0

c2i�l�n3 pn.`; n/C

i�1X
`Dn

c2i�2l�13 c2c
l�n
1 pn.n; n/C c

i�n
1 pn.n; n/:

This leads to the desired formula. The case k > 2n odd and the case n < k � 2n
are treated similarly.

To prove the statements about v� , we note that P.#E.Fp/ � 0 mod �k/ is
O.1=�k/ as k !1. Thus, the sum defining v� is absolutely convergent, and
we are justified in rearranging terms to find

v� D
X
k�1

k P
�
v�.#E.Fp//D k

�
D

X
k�1

P
�
#E.Fp/� 0 mod �k

�
:

Substituting in our formulas for the summands in the last expression, we obtain
the formula for v� given in the theorem. �

Example 2.17. Let us compare the theoretical and experimental average valuation
of � D 2, � D 3 and � D 5 for the curves

E1 W y
2
D x3C 5xC 7 and E3 W y

2
D x3� 10875xC 526250;

which do not admit complex multiplication. (We exclude E2 in this example be-
cause it does have complex multiplication.) For E1, we apply Theorem 2.16 with
n D 1 and compute the necessary probabilities with Corollary 2.7 knowing that
the Galois groups are isomorphic to GL2.Z=�Z/. For E3, we apply Theorem 2.16
with nD 3 for � D 2 and nD 1 for � D 3 and � D 5, and compute the necessary
probabilities with Theorem 2.5 (when nD 3) and Corollary 2.7 (when nD 1). The
results are shown in Table 2.

In order to apply Theorem 2.16, one has to show that I.E; �; k/D I.E; �; n/
for all k � n (or n� n.E; �/ since E1 and E3 do not have complex multiplication).
For E1, we were able to prove that n.E; �/D 1 for � D 2, � D 3, and � D 5 by
using the remarks at the end of Section 2B. For E3, Andrew Sutherland computed
for us the Galois groups up to the 25-, 33-, and 52-torsion. These computations
lead us to believe that n.E3; 2/D 3, n.E3; 3/D 1, and n.E3; 5/D 1, but we have
been unable to prove that these values are correct; in particular, this means that the
theoretical probabilities for E3 given in Table 2 are conjectural.
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� n.E1; �/ v�;theor n.E3; �/ v�;theor

v�;exper v�;exper

2 1 14
9
� 1:556 3 895

576
� 1:554

1:555 1:554

3 1 87
128
� 0:680 1 39

32
� 1:219

0:679 1:218

5 1 695
2304
� 0:302 1 155

192
� 0:807

0:301 0:807

Table 2. Theoretical and experimental values of the average �-adic valuation
of #E1.Fp/ and #E3.Fp/, for � D 2; 3; 5. The theoretical values come from
Theorem 2.16, and the experimental values were computed using all primes less
than 225. The values of n.E3; �/ and those of v�;theor for E3 are conjectural.

3. Applications to some families of elliptic curves

As shown in the preceding section, changing the torsion properties is equivalent
to modifying the Galois group. One can view the imposition of rational torsion
points as a way of modifying the Galois group. In this section we change the Galois
group either by splitting the division polynomials or by imposing some equations
that directly modify the Galois group. With these ideas, we find new infinite ECM-
friendly families and we explain the properties of some known curves.

3A. Preliminaries on Montgomery and twisted Edwards curves. LetK be a field
whose characteristic is neither 2 nor 3.

Edwards curves. For a; d 2 K, with ad.a� d/ ¤ 0, the twisted Edwards curve
ax2Cy2D 1Cdx2y2 is denoted by Ea;d . The “aD�1” twisted Edwards curves
are denoted by Ed . In [8] completed twisted Edwards curves are defined by

Ea;d D
˚�
.X WZ/; .Y W T /

�
2 P1 �P1 j aX2T 2CY 2Z2 DZ2T 2C dX2Y 2

	
:

The completed points are the affine .x; y/ embedded into P1 � P1 by the map
.x; y/ 7! ..x W 1/; .y W 1//; see [8] for more information. We denote .1 W 0/ by1.

Figure 2 gives an overview of all the 2- and 4-torsion, as well as some of the
8-torsion points, on Ea;d , as specified in [8].

Montgomery curves and the Suyama family. Take A;B 2K with B.A2� 4/¤ 0.
The Montgomery curve By2 D x3CAx2C x associated to .A;B/ is denoted by
MA;B (see [23]) and its completion in P2 by MA;B .

Remark 3.1. If a; d; A;B 2K are such that d D .A� 2/=B and aD .AC 2/=B ,
then there is a birational map between Ea;d and MA;B given by�

.x W z/; .y W t /
�
7!
�
.t Cy/x W .t Cy/z W .t �y/x

�
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.0; 1/

.0;�1/

.˙
p
a�1; 0/

.x8;˙
p
ax8/

.˙
p
d�1;1/

.yx8;˙
p
d�1yx�18 /

.1;
q
a
d
/

.˙
p
�a�1 4

q
a
d
;˙ 4

q
a
d
/

.1;�
q
a
d
/

.˙
p
a�1 4

q
a
d
;˙i 4

q
a
d
/

1-torsion

2-torsion

4-torsion

8-torsion

Figure 2. An overview of all 1-, 2-, and 4-torsion and some 8-torsion points
on twisted Edwards curves. The x8 and yx8 in the 8-torsion points are such that
adx48 � 2ax

2
8 C 1D 0 and ad yx48 � 2d yx

2
8 C 1D 0.

(see [6]). Therefore MA;B and Ea;d have the same group structure over any field
where they are both defined, and in particular they have the same torsion prop-
erties. Any statement in twisted Edwards language can be easily translated into
Montgomery coordinates and vice versa.

A Montgomery curve for which there exist x3; y3; k; x1; y1 2Q such that8̂̂̂̂
<̂
ˆ̂̂:
P3.x3/D 0; By23 D x

3
3 CAx

2
3 C x3 (3-torsion point);

k D
y3

y1
; k2 D

x33 CAx
2
3 C x3

x31CAx
2
1C x1

(nontorsion point);

x1 D x
3
3 (Suyama equation)

(3)

is called a Suyama curve. As described in [32; 34], the solutions of (3) can be
parametrized by a rational value denoted � . For all � 2Qn

˚
0;˙1;˙3;˙5;˙5

3

	
,

the associated Suyama curve has positive rank and a rational point of order 3.

Remark 3.2. In the following, when we say that a twisted Edwards curve Ea;d
(or a Montgomery curve MA;B ) has good reduction modulo a prime p, we also
suppose that we have vp.a/D vp.d/D vp.a� d/D 0 (respectively, vp.A� 2/D
vp.AC 2/D vp.B/D 0 for a Montgomery curve). In this case the reduction map
is simply given by reducing the coefficients modulo p. The results below are also
true for primes of good reduction which do not satisfy these conditions, by slightly
modifying the statements and the proofs. Moreover, in ECM, if the conditions are
not satisfied, we immediately find the factor p.

3B. The generic Galois group of a family of curves. In the following, when we
talk about the Galois group of the m-torsion of a family of curves, we mean a group
isomorphic to the Galois group of the m-torsion for all curves of the family except
for a sparse set of curves (which can have a smaller Galois group).
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For example, let us consider the Galois group of the 2-torsion for the family
fEr W y

2 D x3C rx2Cx j r 2Q n f˙2gg. The Galois group of the 2-torsion of the
curve E W y2 D x3CAx2Cx over Q.A/ is Z=2Z. Hence, for most values of r the
Galois group is Z=2Z and for a sparse set of values the Galois group is the trivial
group. So, we say that the Galois group of the 2-torsion of this family is Z=2Z.

To our best knowledge, there is no implementation of an algorithm computing
Galois groups of polynomials with coefficients in a function field. Instead we can
compute the Galois group for every curve of the family, so we can guess the Galois
group of the family from a finite number of instantiations. In practice, we took a
dozen random curves in the family; if the Galois groups of the m-torsion for these
curves were all the same, we guessed that it was the Galois group of the m-torsion
of the family of curves.

3C. Study of the 2k-torsion of Montgomery and twisted Edwards curves. The
rational torsion of a Montgomery/twisted Edwards curve is Z=2Z but it is known
that 4 divides the order of the curve when reduced modulo any prime p [32]. The
following theorem gives more detail on the 2k-torsion.

Theorem 3.3. Let E D Ea;d be a twisted Edwards curve (respectively, a Mont-
gomery curve MA;B ) over Q. Let p be a prime such that E has good reduction
at p.

(1) Suppose p � 3 .mod 4/. If a=d (respectively, A2� 4) is a quadratic residue
modulo p, then E.Fp/Œ4�' Z=2Z�Z=4Z.

(2) Suppose p � 1 .mod 4/. If a (respectively, .AC 2/=B) is a quadratic residue
modulo p (in particular, if a D ˙1) and a=d (respectively, A2 � 4) is a
quadratic residue modulo p, then Z=2Z�Z=4Z�E.Fp/Œ4�.

(3) Suppose p � 1 .mod 4/. If a=d (respectively, A2 � 4) is a quadratic non-
residue modulo p and a�d (respectively, B) is a quadratic residue modulo p,
then E.Fp/Œ8�' Z=8Z.

Proof. Using Remark 3.1, it is enough to prove the results in the Edwards language,
which follow by some calculations using Figure 2. �

Theorem 3.3 suggests that by imposing equations on the parameters a and d
we can improve the torsion properties. The case where a=d is a square has been
studied in [8] for the family of Edwards curves with a D 1 and rational torsion
group Z=2Z� Z=8Z, and in [7] for the family with a D �1 and rational torsion
group Z=2Z�Z=4Z. Here we focus on two other equations:

9c 2Q; aD�c2 (AC 2D�Bc2 for Montgomery curves), (4)

9c 2Q; a� d D c2 (B D c2 for Montgomery curves). (5)
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The cardinality of the Galois group of the 4-torsion for generic Montgomery
curves is 16; this is reduced to 8 for the family of curves satisfying (4). Using
Theorem 2.5, we can compute the changes of probabilities due to this new Galois
group. For all curves satisfying (4) and all primes p � 1 .mod 4/, the probability
of having Z=2Z�Z=2Z as the 4-torsion group becomes 0 instead of 1

4
; the proba-

bilities of having Z=2Z�Z=4Z and Z=4Z�Z=4Z as the 4-torsion group become 1
4

instead of 1
8

.
The Galois group of the 8-torsion of the family of curves satisfying (5) has car-

dinality 128, instead of 256 for generic Montgomery curves. Using Theorem 2.5,
one can see that the probabilities of having an 8-torsion point are improved.

Using Theorem 2.16, one can show that for both families of curves — the family
satisfying (4) and the one satisfying (5) — the probability that the cardinality is
divisible by 8 increases from 5

8
to 3
4

, and the average valuation of 2 increase from
10
3

to 11
3

.

3D. Better twisted Edwards curves with torsion Z=2Z�Z=4Z using division poly-
nomials. In this section we search for curves such that some of the factors of the
division polynomials split; by doing so, we hope to change the Galois groups. As
an example we consider the family of a D �1 twisted Edwards curves Ed with
Z=2Z�Z=4Z-torsion; these curves are exactly the ones with d D �e4 (see [7]).
The technique might be used in any context.

Looking for subfamilies. For a generic d , the polynomial P new
8 splits into three

irreducible factors: two of degree 4 and one of degree 16. If one takes d D�e4,
the polynomial of degree 16 splits into three factors: two of degree 4, called P8;0
and P8;1, and one of degree 8, called P8;2. By trying to force one of these three
polynomials to split, we found four families, as shown in Table 3.

In all these families the generic average valuation of 2 is increased by 1
6

— rising
from 14

3
up to 29

6
— except for the family eD .g�g�1/=2, for which it is increased

by 2
3

, bringing it to the same valuation as for the family of twisted Edwards curves
with aD 1 and torsion isomorphic to Z=2Z�Z=8Z. Note that these four families
cover all the curves presented in the first three columns of [7, Table 3.1], except
the two curves with e D 26

7
and e D 19

8
, which have a generic Galois group for the

8-torsion.

The family e D .g � g�1/=2. In this section, we study in more detail the family
e D .g�g�1/=2. Using Theorem 2.5 one can prove that the group order modulo
all primes is divisible by 16. However, we give an alternative proof which is also of
independent interest. We need the following theorem which computes the 8-torsion
points that double to the 4-torsion points .˙ 4

p
�d�1;˙

4
p
�d�1/.
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Degrees of factors of Avg. 2-adic val. over p that are

Special form of e P8;0 P8;1 P8;2 1 mod 4 3 mod 4 all p

none 4 4 8 16=3 4 14=3

g2 4 4 4; 4 17=3 4 29=6

.2g2C 2gC 1/=.2gC 1/ 4 4 4; 4 17=3 4 29=6

g2=2 2; 2 4 8 17=3 4 29=6

.g�g�1/=2 2; 2 2; 2 8 17=3 5 16=3

Table 3. Averages, over different subsets of primes, of the 2-adic valuation of
#E.Fp/, for E in one of several subfamilies of twisted Edwards curves Ed with
torsion group isomorphic to Z=2Z�Z=4Z. The subfamilies all have d D �e4,
where e is further specialized according to the entries in the first column. The
second through fourth columns give the degrees of the factors of the polynomi-
als P8;i defined in the article. The fifth through seventh columns give the average
2-adic valuation of #E.Fp/ as p ranges through primes that are 1 modulo 4,
primes that are 3 modulo 4, and all primes, respectively.

Theorem 3.4. Let Ed be a twisted Edwards curve over Q with d D �e4, where
eD .g�g�1/=2 for some g2Qnf�1; 0; 1g. Let p>3 be a prime of good reduction.
If t 2 f1;�1g is such that tg.g� 1/.gC 1/ is a quadratic residue modulo p, then
the points .x; y/ 2Ed .Fp/ for which there is a w 2 f1;�1g such that

y D˙

s
4tg2�w

.g� tw/3.gC tw/
and x D˙gwy (6)

have order 8, and double to .˙e�1; te�1/.

Proof. For all points .x; y/ of order 8, neither x nor y is equal to 0 or1. Following
Theorem 2.10 of [8] we find that a point .x; y/ doubles to�
.2xy W 1C dx2y2/; .x2Cy2 W 1� dx2y2/

�
D
�
.2xy W �x2Cy2/; .x2Cy2 W 2� .�x2Cy2//

�
:

Let s; t 2 f1;�1g be such that .x; y/ doubles to .se�1; te�1/. Then

2xy

�x2Cy2
D
s

e
and

x2Cy2

2� .�x2Cy2/
D
t

e
:

From the first equality we obtain .x=y/2 C 2esx=y C e2 D 1C e2. Write e D
.g � g�1/=2, so that we obtain .x=y C se/2 D ..gC g�1/=2/2. It follows that
x=y 2 f˙g;˙1=gg, depending on the sign s and the sign after taking the square
root. This gives x2 DG2y2 with G2 2 fg2; g�2g.

From the second equality we obtain .e� t /x2C .eC t /y2D 2t , and substituting
x2 D G2y2 results in ..e � t /G2 C .e C t //y2 D 2t . This can be solved for y
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when 2t..e� t /G2C .eC t // is a quadratic residue modulo p. This is equivalent
to checking if either of

2t
�
.e� 1/g2C .eC 1/

�
D
t .g� 1/3.gC 1/

g
; (7)

2t
�
.e� 1/C .eC 1/g2

�
D
t .g� 1/.gC 1/3

g
(8)

is a quadratic residue modulo p. By assumption, tg.g� 1/.gC 1/ is a quadratic
residue modulo p. Hence, expressions (7) and (8) are both quadratic residues
modulo p. Solving for y and keeping track of all the signs results in the formulas
in (6). �

Corollary 3.5. Let E D Ed be a twisted Edwards curve over Q such that d D
�..g � g�1/=2/4 for some g 2 Q n f�1; 0; 1g, and let p > 3 be a prime of good
reduction. Then E.Q/ has torsion group isomorphic to Z=2Z � Z=4Z, and the
group order of E.Fp/ is divisible by 16.

Proof. The proof depends on the congruence class of p modulo 4.
If p � 1 .mod 4/ then �1 is a quadratic residue modulo p. Hence, the 4-torsion

points .˙i; 0/ exist (see Figure 2) and 16 j #E.Fp/.
If p � 3 .mod 4/ then �1 is a quadratic nonresidue modulo p. Then exactly

one of fg.g�1/.gC1/;�g.g�1/.gC1/g is a quadratic residue modulo p. Using
Theorem 3.4 it follows that the curve E.Fp/ has rational points of order 8, and
hence 16 j #E.Fp/. �

Corollary 3.5 explains the good behavior of the curve with d D �
�
77
36

�4 and
torsion group isomorphic to Z=2Z � Z=4Z found in [7]. This parameter can be
expressed as d D�

�
77
36

�4
D�..g�g�1/=2/4 for g D 9

2
and, therefore, the group

order is divisible by an additional factor of 2.

Corollary 3.6. Let g 2 Q n f�1; 0; 1g, let d D �..g � g�1/=2/4, and let p � 1
.mod 4/ be a prime of good reduction for the curve Ed . If g.g � 1/.gC 1/ is a
quadratic residue modulo p, then the group order of Ed .Fp/ is divisible by 32.

Proof. All 16 of the 4-torsion points are in Ed .Fp/ (see Figure 2). By Theorem 3.4
we have at least one 8-torsion point. Hence, 32 j #Ed .Fp/. �

We generated different values g 2Q by setting gD i
j

with 1� i < j � 200 such
that gcd.i; j / D 1. This resulted in 12,231 possible values for g, and Sage [30]
found 614 nontorsion points. As expected, we observed that they behave similarly
to the good curve found in [7].
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Parametrization. In [7] a “generating curve” is specified which parametrizes d and
the coordinates of the nontorsion points. Arithmetic on this generating curve can
be used to generate an infinite family of twisted Edwards curves with torsion group
isomorphic to Z=2Z�Z=4Z and with a nontorsion point. Using ideas from [13]
we found a parametrization that does not involve a generating curve, and hence
requires no curve arithmetic.

Theorem 3.7. Let t 2Q n f0;˙1;˙3;˙1=3g and set

e D
3.t2� 1/

8t
; d D�e4; x1 D

1

4e3C 3e
; y1 D

9t4� 2t2C 9

9t4� 9
:

Then the twisted Edwards curve �x2 C y2 D 1C dx2y2 has torsion subgroup
isomorphic to Z=2Z�Z=4Z, and .x1; y1/ is a nontorsion point.

Proof. Since t ¤ 0 and t ¤˙1, we see that e; d; x1 and y1 are nonzero rationals;
further, e ¤ ˙1 because t ¤ ˙3 and t ¤ ˙1=3, so d ¤ �1. Thus, the twisted
Edwards curves Ed is nonsingular, and its torsion subgroup is Z=2Z�Z=4Z be-
cause d D�e4. A calculation shows that the point .x1; y1/ is on the curve; it is
a nontorsion point because x1 … f0;1; e�1;�e�1g. �

This rational parametrization allowed us to impose additional conditions on the
parameter e. For the four families, except e D g2 which is treated below, the
parameter e is given by an elliptic curve of rank 0 over Q.

Corollary 3.8. Let P D .x; y/ be a nontorsion point on the rank-1 elliptic curve
y2 D x3 � 36x over Q. Let t D .xC 6/=.x � 6/ and let e be as in Theorem 3.7.
Then the curve E�e4 belongs to the family e D g2 and has positive rank over Q.

3E. Better Suyama curves by a direct change of the Galois group. In this sec-
tion we will present two families that change the Galois group of the 4- and 8-
torsion without modifying the factorization pattern of the 4- and 8-division poly-
nomial.

Suyama-11. Kruppa observed in [19] that among the Suyama curves, the one cor-
responding to � D 11 finds exceptionally many primes. Barbulescu [5] extended
this single example to an infinite family which we present in detail here.

Experiments show that the � D 11 curve differs from other Suyama curves only
by its probabilities to have a given 2k-torsion group when reduced modulo primes
p � 1 .mod 4/. The reason is that the � D 11 curve satisfies (4). Section 3C
illustrates the changes in probabilities of the � D 11 curve when compared to
curves which do not satisfy (4) and shows that (4) improves the average valuation
of 2 from 10

3
to 11

3
.

We will refer to the set of Suyama curves that satisfy (4) as Suyama-11. When
solving the system formed by Suyama’s system plus (4), we obtain an elliptic
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parametrization for � . Given a point .u; v/ on the curve

E�11
W v2 D u3�u2� 120uC 432;

the associated � is obtained as � D 5C 120=.u� 24/. The group E�11
.Q/ is

generated by the points P1 D .�6; 30/, P2 D .�12; 0/, and Q2 D .4; 0/ of orders
1, 2, and 2, respectively. We exclude 0, ˙P1, P2, Q2, P2CQ2, and Q2˙P1,
which are the points producing invalid values of � . The points ˙R, Q2 ˙ R
lead to isomorphic curves. Note that the � D 11 curve corresponds to the point
.44; 280/D P1CP2.

Edwards Z=6Z: Suyama-11 in disguise. In [7, §5] it is shown that the a D �1
twisted Edwards curves with Z=6Z-torsion over Q are precisely the curves Ed
with

d D �
16u3.u2�uC 1/

.u� 1/6.uC 1/2
(9)

where u is a rational parameter.1 In particular, according to [7, §5:3] one can
translate any Suyama curve into Edwards language and then impose the condition
that �a is a square to obtain curves of the a D�1 type. Finally, [7, §5:5] points
out that this family has exceptional torsion properties.

In order to understand the properties of this family, we translate it back into
Montgomery language using Remark 3.1. Thus, we are interested in Suyama
curves that satisfy the equation AC2D�Bc2 (the Montgomery equivalent for �a
being a square). This is the Suyama-11 family, so its torsion properties were ex-
plained on page 81. These two families have been discovered independently in [5]
and [7].

Suyama-9
4

. In experiments by Zimmermann, new Suyama curves with exceptional
torsion properties were discovered, such as � D 9

4
. Further experiments show that

their special properties are related to the 2k-torsion and exclusively concern primes
p � 1 .mod 4/. Indeed, the � D 9

4
curve with satisfies (5). Section 3C illustrates

the changes in probabilities of that curve when compared to curves which do not
satisfy (5), and shows that (5) improves the average valuation of 2 from 10

3
to 11

3
.

We refer to the set of Suyama curves satisfying (5) as Suyama-9
4

. When solving
the system formed by Suyama’s system together with (5), we obtain an elliptic
parametrization for � . Given a point .u; v/ on the curve

E�9=4
W v2 D u3� 5u;

the associated � is obtained as � D u. The group E�9=4
.Q/ is generated by the

points P1 D .�1; 2/ and P2 D .0; 0/ of orders1 and 2, respectively. We exclude

1In the proof of [7, Theorem 5.1], the fraction corresponding to (9) is missing a minus sign.
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the points 0, ˙P1, P2, and P2˙P1, which produce invalid values of � . If two
points in E�9=4

.Q/ differ by P2 they correspond to isomorphic curves. The curve
associated to � D 9

4
is obtained from the point

�
9
4
;�3

8

�
D Œ2�P1.

3F. Comparison. Table 4 gives a summary of all the families discussed in this
article. The theoretical average valuations were computed with Theorem 2.16,
Theorem 2.5, and Corollary 2.7, under some assumptions on Serre’s exponent (see
Example 2.17 for more information).

Note that, when we impose torsion points over Q, the average valuation does
not simply increase by 1, as can be seen in Table 4 for the average valuation of 3.

Family Curve n2 v2;theor n3 v3;theor
v2;exper v3;exper

Suyama � D 12 2 10
3
� 3:333 1 27

16
� 1:688

3:331 1:689

Suyama-11 � D 11 2 11
3
� 3:667 1 27

16
� 1:688

3:369 1:687

Suyama-9
4

� D 9
4

3 11
3
� 3:667 1 27

16
� 1:688

3:364 1:687

Z=2�Z=4Z eD 11 3 14
3
� 4:667 1� 87

128
� 0:680

(Twisted Edwards E�e4 ) 4:666 0:679

e D .g�g�1/=2 gD 9
2

3 16
3
� 5:333 1� 87

128
� 0:680

5:332 0:679

e D g2 gD 3 3 29
6
� 4:833 1� 87

128
� 0:680

4:833 0:680

e D g2=2 gD 9
2

3 29
6
� 4:833 1� 87

128
� 0:680

4:831 0:679

e D
2g2C2gC1

2gC1
gD 1 3 29

6
� 4:833 1� 87

128
� 0:680

4:833 0:679

Table 4. Theoretical and experimental values of v2 and v3 for sample curves
from the families discussed in this paper. The theoretical values come from
Theorem 2.16, and the experimental values were computed using all primes less
than 225. The columns labeled n2 and n3 give the values of n.E; 2/ and n.E; 3/.
The notation nD 1� means that the Galois group is isomorphic to GL2.Z=�Z/.
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4. Conclusion and further work

We have used Galois theory in order to analyze the torsion properties of ellip-
tic curves. We have determined the behavior of generic elliptic curves and ex-
plained the exceptional properties of some known curves (Edwards curves of tor-
sion Z=2Z�Z=4Z and Z=6Z). The new techniques suggested by the theoretical
study have helped us to find infinite families of curves having exceptional torsion
properties. We list some questions which were not addressed in this work:

� How does Serre’s work relate to the independence of the m- and m0-torsion
probabilities for coprime integers m and m0?

� Is there a model predicting the success probability of ECM from the probabil-
ities given in Theorem 2.16?

� Is it possible to effectively use the resolvent method [14] in order to compute
equations which improve the torsion properties?
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Bouvier, Thorsten Kleinjung, and Peter L. Montgomery

87Two grumpy giants and a baby — Daniel J. Bernstein and Tanja Lange

113Improved techniques for computing the ideal class group and a system of fundamental units in number fields —
Jean-François Biasse and Claus Fieker

135Conditionally bounding analytic ranks of elliptic curves — Jonathan W. Bober

145A database of elliptic curves over Q(
√

5): a first report — Jonathan Bober, Alyson Deines, Ariah Klages-Mundt,
Benjamin LeVeque, R. Andrew Ohana, Ashwath Rabindranath, Paul Sharaba, and William Stein

167Finding simultaneous Diophantine approximations with prescribed quality — Wieb Bosma and Ionica Smeets

187Success and challenges in determining the rational points on curves — Nils Bruin

213Solving quadratic equations in dimension 5 or more without factoring — Pierre Castel

235Counting value sets: algorithm and complexity — Qi Cheng, Joshua E. Hill, and Daqing Wan

249Haberland’s formula and numerical computation of Petersson scalar products — Henri Cohen

271Approximate common divisors via lattices — Henry Cohn and Nadia Heninger

295Explicit descent in the Picard group of a cyclic cover of the projective line — Brendan Creutz

317Computing equations of curves with many points — Virgile Ducet and Claus Fieker

335Computing the unit group, class group, and compact representations in algebraic function fields — Kirsten
Eisenträger and Sean Hallgren

359The complex polynomials P(x) with Gal(P(x)− t)∼= M23 — Noam D. Elkies

369Experiments with the transcendental Brauer-Manin obstruction — Andreas-Stephan Elsenhans and Jörg Jahnel

395Explicit 5-descent on elliptic curves — Tom Fisher

413On the density of abelian surfaces with Tate-Shafarevich group of order five times a square — Stefan Keil and
Remke Kloosterman

437Improved CRT algorithm for class polynomials in genus 2 — Kristin E. Lauter and Damien Robert

463Fast computation of isomorphisms of hyperelliptic curves and explicit Galois descent — Reynald Lercier,
Christophe Ritzenthaler, and Jeroen Sijsling

487Elliptic factors in Jacobians of hyperelliptic curves with certain automorphism groups — Jennifer Paulhus

507Isogeny volcanoes — Andrew V. Sutherland

531On the evaluation of modular polynomials — Andrew V. Sutherland

557Constructing and tabulating dihedral function fields — Colin Weir, Renate Scheidler, and Everett W. Howe

A
N

T
S

X
:

Tenth
A

lgorithm
ic

N
um

ber
Theory

Sym
posium

H
ow

e,Kedlaya
O

B
S

1

http://dx.doi.org/10.2140/obs.2013.1.1
http://dx.doi.org/10.2140/obs.2013.1.21
http://dx.doi.org/10.2140/obs.2013.1.41
http://dx.doi.org/10.2140/obs.2013.1.87
http://dx.doi.org/10.2140/obs.2013.1.113
http://dx.doi.org/10.2140/obs.2013.1.135
http://dx.doi.org/10.2140/obs.2013.1.145
http://dx.doi.org/10.2140/obs.2013.1.167
http://dx.doi.org/10.2140/obs.2013.1.187
http://dx.doi.org/10.2140/obs.2013.1.213
http://dx.doi.org/10.2140/obs.2013.1.235
http://dx.doi.org/10.2140/obs.2013.1.249
http://dx.doi.org/10.2140/obs.2013.1.271
http://dx.doi.org/10.2140/obs.2013.1.295
http://dx.doi.org/10.2140/obs.2013.1.317
http://dx.doi.org/10.2140/obs.2013.1.335
http://dx.doi.org/10.2140/obs.2013.1.359
http://dx.doi.org/10.2140/obs.2013.1.369
http://dx.doi.org/10.2140/obs.2013.1.395
http://dx.doi.org/10.2140/obs.2013.1.413
http://dx.doi.org/10.2140/obs.2013.1.437
http://dx.doi.org/10.2140/obs.2013.1.463
http://dx.doi.org/10.2140/obs.2013.1.487
http://dx.doi.org/10.2140/obs.2013.1.507
http://dx.doi.org/10.2140/obs.2013.1.531
http://dx.doi.org/10.2140/obs.2013.1.557

	1. Introduction
	2. Galois properties of torsion points of elliptic curves
	2A. Torsion properties of elliptic curves
	2B. Effective computations of Q(E[m]) and rho m(Gal(Q(E[m]))) for prime powers
	2C. Divisibility by a prime power

	3. Applications to some families of elliptic curves
	3A. Preliminaries on Montgomery and twisted Edwards curves
	3B. The generic Galois group of a family of curves
	3C. Study of the 2 k-torsion of Montgomery and twisted Edwards curves
	3D. Better twisted Edwards curves with torsion Z/2Z x Z/4Z using division polynomials
	3E. Better Suyama curves by a direct change of the Galois group
	3F. Comparison

	4. Conclusion and further work
	Acknowledgments
	References
	
	

