
THE OPEN BOOK SERIES 1

ANTS X
Proceedings of the Tenth
Algorithmic Number Theory Symposium

msp

Two grumpy giants and a baby
Daniel J. Bernstein and Tanja Lange



THE OPEN BOOK SERIES 1 (2013)

Tenth Algorithmic Number Theory Symposium
dx.doi.org/10.2140/obs.2013.1.87

msp

Two grumpy giants and a baby

Daniel J. Bernstein and Tanja Lange

Pollard’s rho algorithm, along with parallelized, vectorized, and negating vari-
ants, is the standard method to compute discrete logarithms in generic prime-
order groups. This paper presents two reasons that Pollard’s rho algorithm
is farther from optimality than generally believed. First, “higher-degree local
anticollisions” make the rho walk less random than the predictions made by
the conventional Brent-Pollard heuristic. Second, even a truly random walk
is suboptimal, because it suffers from “global anticollisions” that can at least
partially be avoided. For example, after .1:5C o.1//

p
` additions in a group of

order ` (without fast negation), the baby-step-giant-step method has probability
0:5625C o.1/ of finding a uniform random discrete logarithm; a truly random
walk would have probability 0:6753 : : :Co.1/; and this paper’s new two-grumpy-
giants-and-a-baby method has probability 0:71875C o.1/.

1. Introduction

Fix a prime `. The discrete-logarithm problem for a group G of order ` is the
problem of finding logg h, given a generator g of G and an element h of G. The
notation logg h means the unique s 2 Z=` such that h D gs , where G is written
multiplicatively.

The difficulty of finding discrete logarithms depends on G. For example, if G is
the additive group Z=` (encoded as bit strings representing f0; 1; : : : ; `� 1g in the
usual way), then logg h is simply h=g, which can be computed in polynomial time
using the extended Euclidean algorithm. As a more difficult example, consider the
case that p D 2`C 1 is prime and G is the order-` subgroup of the multiplicative
group F�p (again encoded in the usual way); index-calculus attacks then run in time
subexponential in p and thus in `. However, if G is the order-` subgroup of F�p
where p � 1 is a much larger multiple of `, then index-calculus attacks become

MSC2010: 11Y16.
Keywords: Pollard rho, baby-step giant-step, discrete logarithms, complexity.

87

http://msp.org/obs
http://dx.doi.org/10.2140/obs.2013.1-1
http://msp.org


88 DANIEL J. BERNSTEIN AND TANJA LANGE

much slower in terms of `; the standard algorithms are then the baby-step-giant-
step method, using at most .2C o.1//

p
` multiplications in G, and the rho method,

which if tweaked carefully uses on average .
p
�=2Co.1//

p
` multiplications in G.

This paper focuses on generic discrete-logarithm algorithms such as the baby-
step-giant-step method and the rho method. “Generic” means that these algorithms
work for any order-` group G, using oracles to compute 1 2 G and to compute
a; b 7! ab for any a; b 2G. See Section 2 for a precise definition.

If G is an elliptic-curve group chosen according to standard criteria then the
best discrete-logarithm algorithms available are variants of the baby-step-giant-step
method and the rho method, taking advantage of the negligible cost of computing
inverses in G. There is a standard “inverting” (or “negating”) variant of the concept
of a generic algorithm, also discussed in Section 2. This paper emphasizes the
noninverting case, but all of the ideas can be adapted to the inverting case.

Measuring algorithm cost. The most fundamental metric for generic discrete-log-
arithm algorithms, and the metric used throughout this paper, is the probability
of discovering a uniform random discrete logarithm within m multiplications. By
appropriate integration over m one obtains the average number of multiplications
to find a discrete logarithm, the variance, and so on. We caution the reader that
comparing probabilities of two algorithms for one m can produce different results
from comparing averages, maxima, and so forth; for example, the rho method is
faster than baby-step-giant-step on average but much slower in the worst case.

One can interpret a uniform random discrete logarithm as logg h for a uniform
random pair .g; h/, or as logg h for a fixed g and a uniform random h. The follow-
ing trivial “worst-case-to-average-case reduction” shows that a worst-case discrete
logarithm is at most negligibly harder than a uniform random discrete logarithm:
One computes logg h as logg h0� r where h0D hgr for a uniform random r 2 Z=`.

There are many reasons that simply counting multiplications, the number m

above, does not adequately capture the cost of these algorithms:
� A multiplication count ignores overhead; that is, the costs of computations

other than multiplications. For example, the ongoing ECC2K-130 computa-
tion uses a very restricted set of Frobenius powers, sacrificing approximately
2% in the number of multiplications, because this reduces the overhead enough
to speed up the entire computation.

� A multiplication count ignores issues of memory usage. For some algorithms,
such as the baby-step-giant-step method, memory usage grows with

p
`, while

for others, such as the rho method, memory usage is constant (or near-constant).

� A multiplication count is blind to optimizations of the multiplication operation.
The question here is not simply how fast multiplication can be, but how mul-
tiplication algorithms interact with higher-level choices in these algorithms.



TWO GRUMPY GIANTS AND A BABY 89

For example, Cheon, Hong, and Kim in [10] showed how to look ahead one
step in the rho method for F�p and combine two multiplications into one at the
expense of very little overhead, although memory usage increases.

� A multiplication count ignores issues of parallelization. Pollard’s original rho
method is difficult to parallelize effectively, but “distinguished point” variants
of the rho method are heavily parallelizable with little overhead.

� A multiplication count ignores issues of vectorization. Modern processors
can operate on a vector of words in one clock cycle, but this requires that the
operation be the same across the entire vector. This issue was raised in a recent
discussion of whether the negation map on an elliptic curve can actually be
used to speed up the rho method, rather than merely to save multiplications;
see [6] and [3] for the two sides of the argument.

An improvement in multiplication counts does not necessarily indicate an improve-
ment in more sophisticated cost metrics. It is nevertheless reasonable to begin with
an analysis of multiplication counts, as is done in a large fraction of the literature;
followup analyses can then ask whether improved multiplication counts are still
achievable by algorithms optimized for other cost metrics.

Contents of this paper. Brent and Pollard in [7] identified a source of nonrandom-
ness in the rho method, and quantified the loss of success probability produced
by this nonrandomness, under plausible heuristic assumptions. The Brent-Pollard
nonrandomness (with various simplifications and in various special cases) has been
stated by many authors as the main deficiency in the rho method, and the rho
method has been the workhorse of large-scale discrete-logarithm computations.
There appears to be a widespread belief that, except for the Brent-Pollard non-
randomness, the rho method is the best conceivable generic discrete-logarithm
algorithm. Of course, the rho method can take more than 2

p
` multiplications

in the worst case while the baby-step-giant-step method is guaranteed to finish
within 2

p
` multiplications, but the rho method is believed to be the best way to

spend a significantly smaller number of multiplications.
This paper shows that there are actually at least two more steps separating the

rho method from optimality. First, the rho method is actually less random and
less successful than the Brent-Pollard prediction, because the rho method suffers
from a tower of what we call “local anticollisions”; Brent and Pollard account only
for “degree-1 local anticollisions”. Second, and more importantly, the rho method
would not be optimal even if it were perfectly random, because it continues to
suffer from what we call “global anticollisions”. We introduce a new “two grumpy
giants and a baby” algorithm that avoids many of these global anticollisions.

This new algorithm, like the original baby-step-giant-step algorithm, has low
overhead but high memory. We have not found a low-memory variant. This means



90 DANIEL J. BERNSTEIN AND TANJA LANGE

that, for the moment, the algorithm is useful only for discrete-logarithm problems
small enough to fit into fast memory. The algorithm nevertheless challenges the
idea that the rho method is optimal for larger problems. The same approach might
also be useful for “implicit” discrete-logarithm problems in which rho-type itera-
tion is inapplicable, such as stage 2 of the p � 1 factorization method, but those
problems involve many overheads not considered in this paper.

Section 2 describes the general concept of anticollisions. Section 3 reviews
the Brent-Pollard nonrandomness. Section 4 discusses higher-degree anticollisions
in the rho method. Section 5 reports computations of optimal discrete-logarithm
algorithms for small `. Section 6 presents our new algorithm.

2. Anticollisions

This section introduces the concept of anticollisions in generic discrete-logarithm
algorithms. This section begins by reviewing one of the standard ways to define such
algorithms; readers familiar with the definition should still skim it to see our notation.

Generic discrete-logarithm algorithms. The standard way to formalize the idea
that a generic algorithm works for any order-` group G is to give the algorithm
access to an oracle that computes 1 2G and an oracle that computes the function
a; b 7! ab from G �G to G. The elements of G are encoded as a size-` set G of
strings.

An m-multiplication generic algorithm is one that calls the a; b 7! ab oracle
m times. The algorithm obtains 1 for free, and has g and h as inputs, so overall
it sees mC 3 group elements. We write w0 D 1, w1 D g, w2 D h, and wi for
i � 3 as the .i � 2/nd output of the a; b 7! ab oracle: In other words, wi D

wjwk for some j ; k 2 f0; 1; : : : ; i � 1g computed by the algorithm as functions of
w0; w1; : : : ; wi�1. These functions can also flip coins (that is, take as an additional
input a sequence b0; b1; : : : of uniform random bits that are independent of each
other, of g, of h, and so on.), but cannot make oracle calls.

The standard way to formalize the idea that a generic algorithm does not take
advantage of the structure of G is to hide this structure by randomizing it. For
example, one can take G as the additive group Z=`, and take G as the usual binary
representation of f0; 1; : : : ; `� 1g, but choose a uniform random injection from G

to G rather than the usual encoding. One defines the generic success probability
of a generic algorithm by averaging not only over logg h but also over the choices
of this injection.

To allow inverting algorithms one also allows free access to an oracle that com-
putes a 7! 1=a. Equivalently, one allows the algorithm to compute wi as either
wjwk or wj=wk , and one also provides 1=wi . Of course, one can simulate this
inversion oracle using approximately log2 ` calls to the multiplication oracle, since



TWO GRUMPY GIANTS AND A BABY 91

1=aD a`�1; an algorithm that uses only a small number of inversions can thus be
simulated at negligible cost without inversions.

Slopes. Each wi can be written as hxi gyi for a pair .xi ;yi/ 2 .Z=`/
2 trivially

computable by the algorithm. Specifically, w0 D 1 D hx0gy0 where .x0;y0/ D

.0; 0/; w1 D g D hx1gy1 where .x1;y1/ D .0; 1/; w2 D h D hx2gy2 where

.x2;y2/D .1; 0/; if wi is computed as wjwk then wi D hxi gyi where .xi ;yi/D

.xj ;yj /C .xk ;yk/; and if an inverting algorithm computes wi as wj=wk then
wi D hxi gyi where .xi ;yi/D .xj ;yj /� .xk ;yk/.

Normally these algorithms find logg h by finding collisions in the map

.x;y/ 7! hxgy

from .Z=`/2 to G. A collision hxi gyi D hxj gyj with .xi ;yi/¤ .xj ;yj / must have
xi ¤ xj (otherwise gyi D gyj so yi D yj since g generates G), so the negative
of the slope .yj �yi/=.xj �xi/ is exactly logg h. The discrete logarithms found
by w0; w1; : : : ; wmC2 are thus exactly the negatives of the .mC3/.mC2/=2 slopes
(excluding any infinite slopes) between the mC3 points .x0;y0/; : : : ; .xmC2;ymC2/

in .Z=`/2. The number of discrete logarithms found in this way is the number d

of distinct non-infinite slopes. The generic chance of encountering such a collision
is exactly d=`.

In the remaining cases, occurring with probability 1� d=`, these algorithms
simply guess logg h. The success chance of this guess is 0 if the guess matches one
of the negated slopes discussed above; otherwise the conditional success chance
of this guess is 1=.`� d/, so the success chance of this guess is 1=`. The overall
generic success chance of the algorithm is thus between d=` and .d C 1/=`, de-
pending on the strategy for this final guess. In the extreme case d D ` this guess
does not exist and the generic success chance is 1.

(Similar comments apply to inverting algorithms, but the bound on d is doubled,
because there are twice as many opportunities to find � logg h. Specifically, com-
paring wj to wi finds the slope .yj �yi/=.xj �xi/, while comparing wj to 1=wi

finds .yj Cyi/=.xj Cxi/.)
A similar model for generic discrete-logarithm algorithms was introduced by

Shoup in [23], along with the bound O.m2=`/ on the generic success probability
of m-multiplication algorithms. Nechaev in [15] three years earlier had proven
the collision-probability bound O.m2=`/ in a weaker model, where algorithms are
permitted only to remotely manipulate group elements without inspecting strings
representing the group elements. Nechaev’s model is equivalent to Shoup’s model
when one measures algorithm cost as the number of multiplications, but is more
restrictive than Shoup’s model in more sophisticated cost metrics; for example,
Nechaev’s model is unable to express the rho algorithm.



92 DANIEL J. BERNSTEIN AND TANJA LANGE

Chateauneuf, Ling, and Stinson in [9] introduced the idea of counting distinct
slopes. They pointed out that the success probability of the baby-step-giant-step
method is a factor 2C o.1/ away from the obvious quantification of the Nechaev-
Shoup bound: m multiplications allow only m=2 baby steps and m=2 giant steps (if
m is even), producing .m=2C2/.m=2C1/�m2=4 slopes, while one can imagine
mC 3 points in .Z=`/2 potentially having as many as .mC 3/.mC 2/=2�m2=2

distinct slopes.
Computer searches reported in [9, Section 3] found for each ` < 100 a set of

only marginally more than
p

2` points with slopes covering Z=`. However, these
sets of points do not form addition chains, and as far as we can tell the shortest
addition chains for all of the constructions in [9] are worse than the baby-step-
giant-step method in the number of multiplications used. The cost model used in
[9] allows a; b 7! asbt as a single oracle call for any .s; t/; we view that cost model
as excessively simplified, and are skeptical that algorithms optimized for that cost
model will be of any use in practice.

Anticollisions. We use the word “anticollision” to refer to an appearance of a use-
less slope — a slope that cannot create a new collision because the same slope has
appeared before. Formally, an anticollision is a pair .i; j / with i > j such that
either

� xi D xj or

� .yj � yi/=.xj � xi/ equals .yj 0 � yi0/=.xj 0 � xi0/ for some pair .i 0; j 0/ lexi-
cographically smaller than .i; j / with i 0 > j 0.

The number of anticollisions is exactly the gap .mC 3/.mC 2/=2� d , where as
above d is the number of distinct non-infinite slopes. Our objective in this paper is
to understand why anticollisions occur in addition chains in .Z=`/2, and how these
anticollisions can be avoided.

In Section 3 we review a standard heuristic by Brent and Pollard that can be
viewed as identifying some anticollisions in the rho method, making the rho method
somewhat less effective than a truly random walk would be. In Section 4 we iden-
tify a larger set of anticollisions in the rho method, making the rho method even less
effective than predicted by Brent and Pollard. This difference is most noticeable
for rho walks that use a very small number of steps, such as hardware-optimized
walks or typical walks on equivalence classes modulo Frobenius on Koblitz curves.

It should be obvious that even a truly random walk produces a large number
of anticollisions when m grows to the scale of

p
`. In Section 6 we show that at

least a constant fraction of these anticollisions can be eliminated: We construct
an explicit and efficient addition chain with significantly fewer anticollisions, and
thus significantly higher success probability, than a truly random walk.



TWO GRUMPY GIANTS AND A BABY 93

3. Review of the Brent-Pollard nonrandomness

This section reviews the nonrandomness that Brent and Pollard pointed out in the
rho method. The literature contains three formulas for this nonrandomness, in
three different levels of generality, backed by two different heuristic arguments. As
discussed in Section 4, these heuristics account for “degree-1 local anticollisions”
but do not account for “higher-degree local anticollisions”.

The rho method. The rho method precomputes r distinct “steps”

s1; s2; : : : ; sr 2G �f1g

(as some initial w’s), and then moves from wi to wiC1 D wisj , where j is a
function of wi . Write pj for the probability that step sj is used.

We suppress standard details of efficient parallelization and collision detection
here, since our emphasis is on the success probability achieved after m multipli-
cations. Inserting each new group element into an appropriate data structure will
immediately recognize the first collision without consuming any multiplications.

The
p

V formula. Brent and Pollard in [7, Section 2] introduced the following
heuristic argument, concluding that if the values w0; : : : ; wm are distinct then
wmC1 collides with one of those values with probability approximately mV =`,
where V is defined below. This implies that the total chance of a collision within m

multiplications (that is, within w0; : : : ; wmC2) is approximately 1� .1�V =`/m
2=2,

which in turn implies that the average number of multiplications for a collision is
approximately

p
�=2
p
`=
p

V . For comparison, a truly random walk would have
V D 1.

This argument applies to a more general form of the rho method, in which some
function F is applied to wi to produce wiC1. The first collision might be unlucky
enough to involve w0, but otherwise it has the form wiC1 D wjC1 with wi ¤ wj ,
revealing a collision F.wi/D F.wj / in the function F . Applications vary in how
they construct F and in the use that they make of a collision.

Assume, heuristically, that the probability of wi matching any particular value
y is proportional to the number of preimages of y; in other words, assume that
PrŒwi D y�D #F�1.y/=`, where F�1.y/ means fx W F.x/D yg. This heuristic is
obviously wrong for w0, but this is a minor error in context; the heuristic seems
plausible for w1; : : : ; wm, which are each generated as outputs of F .

Assume that w0; : : : ; wm are distinct. Define X as the set of preimages of
w1; : : : ; wm, so that X is the disjoint union of F�1.w1/; : : : ;F

�1.wm/. Then
the expected size of X isX

x

PrŒx 2X �D
X

x

X
i

PrŒF.x/D wi �D
X

x

X
i

X
y

PrŒF.x/D y and wi D y�:



94 DANIEL J. BERNSTEIN AND TANJA LANGE

Assume, heuristically, that F.x/D y and wi D y are independent events. ThenX
x

PrŒx 2X �D
X

i

X
y

X
x

PrŒF.x/D y�PrŒwi D y�

D

X
i

X
y

#F�1.y/2=`

Dm
X

y

#F�1.y/2=`:

Define V as the variance over y of #F�1.y/. The average over y of #F�1.y/

is 1, so V D
�P

y #F�1.y/2=`
�
� 1, so the expected size of X is mV Cm. There

are m known elements w0; : : : ; wm�1 of X ; the expected number of elements of
X other than w0; : : : ; wm�1 is mV . By hypothesis wm is none of w0; : : : ; wm�1;
if wm were uniformly distributed subject to this constraint then it would have prob-
ability mV =.`�m/�mV =` of being in X and thus leading to a collision in the
next step.

The
q

1�
P

i p2
i

formula. As part of [1] we introduced the following streamlined
heuristic argument, concluding that the collision probability for wmC1 is approxi-
mately m.1�

P
i p2

i /=`. This implies that the average number of multiplications

for a collision is approximately
p
�=2
p
`=

q
1�

P
i p2

i .
Fix a group element v, and let w and w0 be two independent uniform random

elements. Consider the event that w and w0 both map to v but w ¤ w0. This
event occurs if there are distinct i; j such that the following three conditions hold
simultaneously:

� v D siw D sjw
0;

� si is chosen for w;

� sj is chosen for w0.

These conditions have probability 1=`2, pi , and pj respectively. Summing over
all .i; j / gives the overall probability�X

i¤j

pipj

�ı
`2
D

�X
i;j

pipj �

X
i

p2
i

�ı
`2
D

�
1�

X
i

p2
i

�ı
`2:

Hence the probability of an immediate collision from w and w0 is
�
1�

P
i p2

i

�
=`;

where we added over the ` choices of v.
After mC 3 group elements one has approximately m2=2 potentially colliding

pairs. If the inputs to the iteration function were independent uniformly distributed

random points then the probability of success would be 1�
�
1�
�
1�
P

i p2
i

�
=`
�m2=2

and the average number of iterations before a collision would be approximately



TWO GRUMPY GIANTS AND A BABY 95p
�=2
p
`=
p

1�
P

i p2
i . The inputs to the iteration function in Pollard’s rho method

are not actually independent, but this has no obvious effect on the average number
of iterations.

Relating the two formulas. We originally obtained the formula
p

1�
P

i p2
i by

specializing and simplifying the Brent-Pollard
p

V formula as follows.
The potential preimages of y are y=s1;y=s2; : : : ;y=sr , which are actual preim-

ages with probabilities p1;p2; : : : ;pr respectively. A subset I of f1; 2; : : : ; rg
matches the set of indices of preimages with probability

�Q
i2I pi

��Q
i 62I .1�pi/

�
,

so the average of #F�1.y/2 isX
I

#I2
�Y

i2I

pi

��Y
i 62I

.1�pi/
�
:

It is easy to see that most monomials (for example, p1p2p3) have coefficient 0

in this sum; the only exceptions are linear monomials pi , which have coefficient
1, and quadratic monomials pipj with i < j , which have coefficient 2. The sum
therefore equalsX

i

pi C 2
X

i;j Wi<j

pipj D

X
i

pi C

�X
i

pi

�2
�

X
i

p2
i D 2�

X
i

p2
i :

Hence V D 1�
P

i p2
i .

The
p

1� 1=r formula. In traditional “adding walks” (credited to Lenstra in [20,
p. 66]; see also [21, p. 295] and [25]), each pi is 1=r , and

p
1�

P
i p2

i is
p

1� 1=r .
This

p
1� 1=r formula first appeared in [25], with credit to the subsequent paper

[4] by Blackburn and Murphy. The heuristic argument in [4] is the same as the
Brent-Pollard argument.

Case study: Koblitz curves. The
p

1�
P

i p2
i formula was first used to optimize

walks on Koblitz curves. These walks map a curve point W to W C'i.W /, where
' is the Frobenius map and i is chosen as a function of the Hamming weight of
the normal-basis representation of the x-coordinate of W . The Hamming weight
is not uniformly distributed, and any reasonable function of the Hamming weight
is also not uniformly distributed, so the

p
1� 1=r formula does not apply. Note

that these are “multiplying walks” rather than “adding walks” (if W D xiH CyiG

then W C 'i.W / D sixiH C siyiG for certain constants si 2 .Z=`/
�), but the

heuristics in this section are trivially adapted to this setting.
As a concrete example we repeat from [1] the analysis of our ongoing attack

on ECC2K-130. All Hamming weights of x-coordinates of group elements are
even, and experiments show that the distribution of even-weighted words of length
131 is close to the distribution of x-coordinates of group elements. Any iteration



96 DANIEL J. BERNSTEIN AND TANJA LANGE

function defined in this way therefore inevitably introduces an extra factor to the
running time of

1=

q
1�

P
i

�
131
2i

�2
=2260 � 1:053211;

even if all 66 weights use different scalars si . We extract just 3 bits of weight
information, using only 8 different values for the scalars, to reduce the time per
iteration. The values are determined by HW.xPi

/=2 mod 8; the distribution ofP
i

�
131

16iC2j

�
for 0� j � 7 gives probabilities

0:1414; 0:1443; 0:1359; 0:1212; 0:1086; 0:1057; 0:1141; 0:1288;

giving a total increase of the number of iterations by a factor of 1:069993.

4. Higher-degree local anticollisions

Consider the rho method using r “steps” s1; s2; : : : ; sr 2 G, as in the previous
section. The method multiplies wi by one of these steps to obtain wiC1, multiplies
wiC1 by one of these steps to obtain wiC2, and so on.

Assume that the step wiC1=wi is different from the step wiC2=wiC1, but that
wiC1=wi is the same as an earlier step wjC2=wjC1, and that wiC2=wiC1 is the
same as the step wjC1=wj . There are anticollisions .iC1; jC2/ and .iC2; jC1/,
exactly the phenomenon discussed in the previous section: For example, wiC1 can-
not equal wjC2 unless wi equals wjC1. There is, however, also a local anticollision
.iC2; jC2/ not discussed in the previous section: wiC2 cannot equal wjC2 unless
wi equals wj . The point is that the ratio wiC2=wi is a product of two steps, and
the ratio wjC2=wj is a product of the same two steps in the opposite order.

We compute the heuristic impact of these “degree-2 local anticollisions”, to-
gether with the degree-1 local anticollisions of Section 3, as follows. Assume
for simplicity that 1, s1, s2, : : :, sr , s2

1
, s1s2, : : :, s1sr , s2

2
, : : :, s2sr , : : :, s2

r�1
,

sr�1sr , s2
r are distinct. Write F.w/ for the group element that w maps to. Fix

a group element v, and consider the event that two independent uniform random
group elements w;w0 have F.F.w//D v D F.F.w0// with no collisions among
w;w0;F.w/;F.w0/. This event occurs if there are i; i 0; j ; j 0 with sj ¤ sj 0 and
sj si ¤ sj 0si0 such that the following conditions hold simultaneously:

� v D sj siw D sj 0si0w
0;

� F.w/D siw;

� F.siw/D sj siw;

� F.w0/D si0w
0;

� F.si0w
0/D sj 0si0w

0.



TWO GRUMPY GIANTS AND A BABY 97

These conditions have probability 1=`2, pi , pj , pi0 , and pj 0 respectively. Given
the first condition, the remaining conditions are independent of each other, since
w D v=.sj si/, siw D v=sj , w0 D v=.sj 0si0/, and si0w

0 D v=sj 0 are distinct. This
event thus has probability

P
pipj pi0pj 0=`

2 where the sum is over all i; j ; i 0; j 0

with sj ¤ sj 0 and sj si ¤ sj 0si0 . The complement of the sum is over all i; j ; i 0; j 0

with sj D sj 0 or sj si D sj 0si0 — that is, with j D j 0 or with i 0 D j ¤ j 0 D i . The
complement is thusX

j

p2
j C

X
i;j Wi¤j

p2
i p2

j D

X
j

p2
j C

�X
j

p2
j

�2
�

X
j

p4
j ;

and the original sum is 1�
P

j p2
j �

�P
j p2

j

�2
C
P

j p4
j . Adding over all v gives

probability
�
1�

P
j p2

j �
�P

j p2
j

�2
C
P

j p4
j

�
=` of this type of two-step collision

between w and w0.
For example, if pi D 1=r for all i , then the degree-1-and-2 nonrandomness

factor is 1=
p

1� 1=r � 1=r2C 1=r3, whereas the Brent-Pollard (degree-1) non-
randomness factor is 1=

p
1� 1=r . These factors are noticeably different if r is

small.

Beyond degree 2. More generally, a “degree-k local anticollision” .i C k; j C k/

occurs when the product of k successive steps wiC1=wi , wiC2=wiC1, : : : matches
the product of k successive steps wjC1=wj , wjC2=wjC1, . . . , without a lower-
degree local anticollision occurring. We define a “degree-.k; k 0/ local anticollision”
.i C k; j C k 0/ similarly.

Given the vector .s1; s2; : : : ; sr /, one can straightforwardly compute the overall
heuristic effect of local anticollisions of degree at most k, by summing the products
pi1
� � �pik

pi0
1
� � �pi0

k
for which 1, si1

, si0
1
, si1

si2
, si0

1
si0

2
, : : : are distinct. Experiments

indicate that the largest contribution is usually from the smallest degrees.
We emphasize that the results depend on the vector .s1; s2; : : : ; sr /, because

generic commutative-group equations such as s1s2 D s2s1 are not the only mul-
tiplicative dependencies among s1; s2; : : : ; sr . One can check that s1; s2; : : : ; sr

have no nongeneric multiplicative dependencies of small degree (and modify them
to avoid such dependencies), but they always have medium-degree nongeneric mul-
tiplicative dependencies, including mixed-degree nongeneric multiplicative depen-
dencies.

If s1; s2; : : : ; sr have only generic dependencies of degree at most k then the sum
described above is expressible as a polynomial in the easily computed quantities
I2 D

P
j p2

j , I4 D
P

j p4
j , and so forth, by a simple inclusion-exclusion argument.

For example, the degree-1 nonrandomness factor is 1=
p

1� I2, as in Section 3; the
degree-�2 nonrandomness factor is 1=

p
1� I2� I2

2 C I4, as explained above; the



98 DANIEL J. BERNSTEIN AND TANJA LANGE

degree-�3 nonrandomness factor is 1=
p

1� I2 � I2
2 C I4 � 3I3

2 C 7I2I4 � 4I6;
the degree-�4 nonrandomness factor is

1=
p

1�I2�I2
2CI4�3I3

2C7I2I4�4I6�13I4
2C53I2

2 I4�56I2I6�17I2
4C33I8I

and so on. In the uniform case these factors are

1=
p

1� 1=r ;

1=
p

1� 1=r � 1=r2
C 1=r3;

1=
p

1� 1=r � 1=r2
� 2=r3

C 7=r4
� 4=r5;

and so on.

Case study: r D 6. Hildebrand showed in [13] that almost every r -adding walk
(with pj D 1=r ) reaches a nearly uniform distribution in Z=` within O.`2=.r�1//

steps; in particular, within o.
p
`/ steps for r � 6. Implementors optimizing Pol-

lard’s rho method for hardware often want r to be as small as possible to minimize
overhead (the storage required for precomputed steps and the cost of accessing
that storage), and in light of Hildebrand’s result can reasonably choose r D 6. This
raises the question of how random a 6-adding walk is; perhaps it is better to take a
larger value of r , increasing overhead but reducing nonrandomness.

For r D 6, with p1 D p2 D p3 D p4 D p5 D p6 D 1=6 and generic s1; : : : ; s6,
the heuristic nonrandomness factors are given (to 6 decimal places) in Table 1.
These factors converge to approximately 1:129162 as the degree increases; see
Appendix A. Evidently the Brent-Pollard heuristic captures most of the impact of
local anticollisions for r D 6, but not all of the impact.

We tried 232 experiments for `D 1009. Each experiment generated 6 uniform
random steps s1; s2; : : : ; s6 (without enforcing distinctness, and without any con-
straints on higher-degree multiplicative dependencies), carried out a random walk
using s1; s2; : : : ; s6 with equal probability, and stopped at the first collision. The
average walk length was approximately 1:150076 times

p
�=2
p
`; note that this

Degree Factor Degree Factor Degree Factor

1 1:095445 � 6 1:123767 � 11 1:126654

� 2 1:110984 � 7 1:124696 � 12 1:126926

� 3 1:117208 � 8 1:125383 � 13 1:127151

� 4 1:120473 � 9 1:125909 � 14 1:127341

� 5 1:122452 � 10 1:126322 � 15 1:127503

Table 1. Approximate values of heuristic nonrandomness factors for the case
r D 6, with p1 D p2 D p3 D p4 D p5 D p6 D 1=6 and generic s1; : : : ; s6.



TWO GRUMPY GIANTS AND A BABY 99

` Factor Experiments

1009 1.150076 232

10007 1.147874 232

100003 1.141283 232

1000003 1.136122 232

10000019 1.132946 232

` Factor Experiments

100000007 1.131149 232

1000000007 1.130194 232

10000000019 1.129680 232

100000000003 1.129395 228

1000000000039 1.129326 226

Table 2. Observed average walk length until a collision, for a uniform random
walk in Z=` using 6 uniform random adding steps. “Factor” is the observed
average walk length divided by

p
�=2
p
`, rounded to 6 digits after the decimal

point. “Experiments” is the number of experiments carried out for `.

does not count the multiplications used to generate s1; s2; : : : ; s6. We then tried
several larger values of `; the resulting nonrandomness factors are shown in Table 2.
Our heuristics predict that these numbers will converge to approximately 1:129162

as `!1, rather than 1:095445.
Note that for small ` there is a larger chance of low-degree dependencies among

the steps si , so it is not a surprise that smaller values of ` have larger nonrandom-
ness factors. We do not know whether a quantitative analysis of this phenomenon
would predict the numbers shown in Table 2 for small `, or whether other phenom-
ena also play a role.

Case study: Koblitz curves, revisited. Consider again the ECC2K-130 walk intro-
duced in [1]. Here `D 680564733841876926932320129493409985129.

For 0� j �7 define ' as the Frobenius map on the ECC2K-130 curve, and define
sj 2 Z=` as 1C 196511074115861092422032515080945363956jC3. This walk
moves from P to P C'jC3.P /D sj P if the Hamming weight of the x-coordinate
of P is congruent to 2j modulo 16; this occurs with probability (almost exactly)
pj D

P
i

�
131

16iC2j

�
=2130.

The only small-degree multiplicative dependencies among s0; : : : ; s7 are generic
commutative-group equations such as s1s2 D s2s1. We already reported this in
[1, Section 2] to explain why the walk is highly unlikely to enter a short cycle.
We point out here that this has a larger effect, namely minimizing small-degree
anticollisions. We now analyze the impact of the small-degree anticollisions that
remain, those that arise from the generic commutative-group equations.

For degree 1 the nonrandomness factor is 1=
p

1� I2 � 1:069993. For degree
� 2 the nonrandomness factor is 1=

p
1� I2� I2

2 C I4 � 1:078620. For degree
� 3 it is 1=

p
1� I2� I2

2 � 3I3
2 C I4C 7I2I4� 4I6 � 1:081370. For degree � 4

it is � 1:082550.

Case study: Mixed walks. The same type of analysis also applies to “mixed walks”
combining noncommuting steps such as w 7! ws1, w 7! ws2, and w 7! w2.



100 DANIEL J. BERNSTEIN AND TANJA LANGE

Degree Factor Degree Factor Degree Factor

1 1:224745 � 5 1:285444 � 8 1:293067

� 2 1:248075 � 6 1:288605 � 9 1:294325

� 3 1:269973 � 7 1:291514 � 10 1:295107

� 4 1:277533

Table 3. Approximate values of heuristic nonrandomness factors for the mixed walk
w 7! ws1, w 7! ws2, and w 7! w2, with generic s1 and s2 and equiprobable steps.

` Factor Experiments

1009 1.292381 241

10007 1.298240 241

100003 1.297896 240

1000003 1.297360 237

` Factor Experiments

10000019 1.297130 236

100000007 1.297071 232

1000000007 1.297020 232

10000000019 1.297018 232

Table 4. Observed average walk length until a collision, for a uniform random walk
in Z=` using 2 uniform random adding steps and 1 doubling step. Columns have
the same meaning as in Table 2.

A sequence of such steps maps w to a monomial such as w4s1s3
2

; we sum the
products pi1

� � �pik
pi0

1
� � �pi0

k
for which the monomials corresponding to . /, .i1/,

.i 0
1
/, .i1; i2/, .i 01; i

0
2
/, and so on, are distinct. The heuristic nonrandomness factor

for degree �k is the reciprocal of the square root of this sum.
For three equiprobable stepsw 7!ws1,w 7!ws2, andw 7!w2, with generic s1 and

s2, the heuristic nonrandomness factors are given (to 6 decimal places) in Table 3.
We tried experiments analogous to the 6-adding experiments described above.

Each experiment generated 2 uniform random group elements s1; s2, carried out
a random walk using w 7! ws1, w 7! ws2, and w 7! w2 starting from a uniform
random group element, and stopped at the first collision. Table 4 shows the result-
ing average walk lengths for various values of `. The dependence on ` is much
smaller here than it was in Table 2. The numerical data seems consistent with
the idea that the limit of the actual nonrandomness factors as `!1 matches the
limit of the degree-�k heuristic nonrandomness factors as k !1: somewhere
between 1:295 and 1:298, very far from the traditional degree-1 nonrandomness
factor

p
3=2� 1:224745.

For comparison, Teske in [25, Table 5] reported using 1:776
p
` multiplications

on average for 2000 experiments with the same type of walk. Teske’s cycle-
detection method cost a factor of approximately 1:13 in the number of multipli-
cations, according to [25, Section 2.2], so 1:776

p
` corresponds to an observed

nonrandomness factor of 1:776=.1:13
p
�=2/ � 1:254. This might seem notice-

ably different not just from 1:224745 but also from our 1:297. However, since the



TWO GRUMPY GIANTS AND A BABY 101

standard deviation of random-walk lengths is on the same scale as the average, it
is statistically unremarkable to see differences of a few percent after only 2000

experiments.

Optimizing asymptotics. It is frequently stated that the rho method, like a truly
random walk, finishes in .

p
�=2C o.1//

p
` multiplications on average.

However, the experimental results by Sattler and Schnorr [20, p. 76] and by
Teske [25] showed clearly that

p
�=2C o.1/ is not achieved by small values of r ,

and in particular by Pollard’s original rho method. The Brent-Pollard nonrandom-
ness, and in particular the

p
1� 1=r formula, indicates that

p
�=2C o.1/ is not

achieved by any bounded r ; one must have 1=r 2 o.1/, that is, r !1 as `!1.
On the other hand, if r grows too quickly then the cost of setting up r steps is
nonnegligible.

This analysis does not contradict
p
�=2C o.1/. However, it does indicate that

some care is required in the algorithm details, and that
p
�=2Co.1/ can be replaced

by
p
�=2CO.`�1=4/ but not by

p
�=2C o.`�1=4/.

To optimize the o.1/ one might try choosing steps that are particularly easy to
compute. For example, one might take s3 D s1s2, s4 D s2s3, and so on, where
s1; s2 are random. We point out, however, that such choices are particularly prone
to higher-degree anticollisions. We recommend taking into account not just the
number of steps and the number of multiplications required to precompute those
steps, but also the impact of higher-degree anticollisions.

5. Searching for better chains for small primes

If ` is small then by simply enumerating addition chains one can find generic
discrete-logarithm algorithms that use fewer multiplications than the rho method.

This section reports, for each small prime `, the results of two different computer
searches. One search greedily obtained as many slopes as it could after each multi-
plication, deferring anticollisions as long as possible. The other search minimized
the number of multiplications required to find an average slope. Chains found
by such searches are directly usable in discrete-logarithm computations for these
values of `; perhaps they also provide some indication of what one can hope to
achieve for much larger values of `. These searches also show that merely counting
the size of a slope cover, as in [9, Section 3], underestimates the cost of discrete-
logarithm algorithms, although one can hope that the gap becomes negligible as `
increases.

A continuing theme in this section is that the obvious quantification of the
Nechaev-Shoup bound is not tight. The bound says that an m-addition chain has
�.mC3/.mC2/=2 slopes; but there is actually a gap, increasing with m, between
.mC 3/.mC 2/=2 and the maximum number of slopes in an m-addition chain.



102 DANIEL J. BERNSTEIN AND TANJA LANGE

This section explains part of this gap by identifying two types of anticollisions
that addition chains cannot avoid and stating an improved bound that accounts
for these anticollisions. However, the improved bound is still not tight for most
of these values of `, and for long chains the improved bound is only negligibly
stronger than the Nechaev-Shoup bound.

Greedy slopes. Define di as the number of distinct finite slopes among the points
.x0;y0/; .x1;y1/; .x2;y2/; : : : ; .xi ;yi/ in .Z=`/2. For example, the chain

.0; 0/; .0; 1/; .1; 0/; .0; 2/; .1; 2/; .1; 4/

in .Z=7/2 has .d0; d1; d2; d3; d4; d5/D .0; 0; 2; 3; 5; 7/: There are 2 distinct finite
slopes among .0; 0/, .0; 1/, .1; 0/; 3 distinct finite slopes among .0; 0/, .0; 1/, .1; 0/,
.0; 2/; 5 distinct finite slopes among .0; 0/, .0; 1/, .1; 0/, .0; 2/, .1; 2/; and 7 distinct
finite slopes among .0; 0/, .0; 1/, .1; 0/, .0; 2/, .1; 2/, .1; 4/.

For each prime ` < 128 we computed the lexicographically maximum sequence
.d0; d1; : : :/ for all infinite addition chains starting .0; 0/; .0; 1/; .1; 0/ in .Z=`/2.
These maxima, truncated to the first occurrence of `, are displayed in Table 5. For
example, Table 5 lists .0; 0; 2; 3; 5; 7/ for `D 7, indicating that the lexicographic
maximum is .0; 0; 2; 3; 5; 7; 7; 7; 7; 7; : : :/: One always has d0 D 0, d1 D 0, and
d2 D 2; the maximum possible d3 is 3; given d3 D 3, the maximum possible d4 is
5; given d3 D 3 and d4 D 5, the maximum possible d5 is 7.

This computation was not quite instantaneous, because it naturally ended up
computing all finite chains achieving the truncated maximum (and, along the way,
all chains achieving every prefix of the truncated maximum). There are, for ex-
ample, 5420 length-21 chains that match the .d0; d1; : : :/ shown in Table 5 for
`D 109.

Minimal weight. We also computed `-slope addition chains of minimal weight for
each prime ` < 48. Here “weight” means

P
i�1 i.di �di�1/. Dividing this weight

by ` produces the average, over all s 2 Z=`, of the number of multiplications (plus
2 to account for the inputs g and h) used to find slope s. It might make more
sense to compute .`� 1/-slope addition chains of minimal weight, since a generic
discrete-logarithm algorithm that finds `� 1 slopes also recognizes the remaining
slope by exclusion, but the gap becomes negligible as ` increases.

Lexicographically maximizing .d0; d1; : : :/, as in Table 5, does not always pro-
duce minimal-weight `-slope addition chains. For example, the chain

.0;0/; .0;1/; .1;0/; .0;2/; .0;3/; .1;3/; .1;6/; .2;12/; .2;14/; .2;16/; .3;17/; .4;28/

for `D29 has weight 210 with .d0; d1; : : :/D .0; 0; 2; 3; 4; 7; 10; 14; 19; 23; 27; 29/,
while chains achieving the lexicographic maximum in Table 5 have weight 211. We
similarly found weight 299 (compared to 300) for `D 37, weight 372 (compared



TWO GRUMPY GIANTS AND A BABY 103

` Weight d0 d1 : : :

2 4 0 0 2
3 7 0 0 2 3
5 15 0 0 2 3 5
7 25 0 0 2 3 5 7

11 50 0 0 2 3 5 7 10 11
13 64 0 0 2 3 5 7 10 13
17 96 0 0 2 3 5 7 10 14 16 17
19 113 0 0 2 3 5 7 10 14 17 19
23 148 0 0 2 3 5 7 10 14 19 22 23
29 211 0 0 2 3 5 7 10 14 19 23 26 28 29
31 230 0 0 2 3 5 7 10 14 19 23 28 31
37 300 0 0 2 3 5 7 10 14 19 23 29 33 36 37
41 347 0 0 2 3 5 7 10 14 19 24 29 34 39 41
43 375 0 0 2 3 5 7 10 14 19 24 29 34 38 42 43
47 425 0 0 2 3 5 7 10 14 19 24 30 35 40 44 47
53 510 0 0 2 3 5 7 10 14 19 24 30 36 41 45 50 52 53
59 596 0 0 2 3 5 7 10 14 19 24 30 36 42 48 52 57 58 59
61 631 0 0 2 3 5 7 10 14 19 24 30 35 42 48 52 56 59 61
67 727 0 0 2 3 5 7 10 14 19 24 30 36 41 47 53 59 63 66 67
71 788 0 0 2 3 5 7 10 14 19 24 30 36 42 48 54 60 66 70 71
73 815 0 0 2 3 5 7 10 14 19 24 30 36 43 50 56 62 67 71 73
79 919 0 0 2 3 5 7 10 14 19 24 30 37 43 49 57 64 69 73 76 79
83 978 0 0 2 3 5 7 10 14 19 24 30 37 44 51 59 65 72 77 80 83
89 1081 0 0 2 3 5 7 10 14 19 24 30 37 44 53 60 66 74 80 84 87 89
97 1224 0 0 2 3 5 7 10 14 19 24 30 37 44 51 61 69 78 83 88 92 96 97

101 1307 0 0 2 3 5 7 10 14 19 24 30 37 45 53 60 69 76 82 89 93 97 100 101
103 1351 0 0 2 3 5 7 10 14 19 24 30 37 45 52 60 67 74 83 89 94 98 102 103
107 1422 0 0 2 3 5 7 10 14 19 24 30 37 45 53 61 70 77 84 91 96 100 104 107
109 1466 0 0 2 3 5 7 10 14 19 24 30 37 44 52 60 68 77 84 91 98 102 106 108 109
113 1536 0 0 2 3 5 7 10 14 19 24 30 37 44 52 62 70 78 86 94 99 105 109 113
127 1806 0 0 2 3 5 7 10 14 19 24 30 37 45 53 63 73 84 92 98 105 112 118 122 126 127

Table 5. For each ` < 128, the lexicographically maximum .d0; d1; : : :/.
“Weight” means

P
i�1 i.di � di�1/.

to 375) for `D 43, and weight 423 (compared to 425) for `D 47. It is not clear
whether this gap becomes negligible as ` increases.

Some obstructions. We explain here two simple ways that anticollisions appear in
addition chains. Every addition chain produces at least a linear number of anticol-
lisions that follow these simple patterns.



104 DANIEL J. BERNSTEIN AND TANJA LANGE

First, doubling a point .xj ;yj / produces two anticollisions: The slopes from
2.xj ;yj / to .xj ;yj / and to .0; 0/ are the same as the slope from .xj ;yj / to .0; 0/.
Doubling another point .xk ;yk/ produces three anticollisions: The slope from
2.xk ;yk/ to 2.xj ;yj / is the same as the slope from .xk ;yk/ to .xj ;yj /. A third
doubling produces four anticollisions, and so on; doubling n points produces a
total of n.nC 3/=2 anticollisions of this type.

Second, adding .xi ;yi/ to a distinct point .xj ;yj / produces two anticollisions:
The slopes from .xi ;yi/C .xj ;yj / to .xi ;yi/ and to .xj ;yj / are the same as the
slopes from .xj ;yj / and from .xi ;yi/ to .0; 0/. Subsequently adding the same
.xi ;yi/ to another point .xk ;yk/ produces three anticollisions: The slope from
.xi ;yi/C .xk ;yk/ to .xi ;yi/C .xj ;yj / is the same as the slope from .xk ;yk/ to
.xj ;yj /, exactly as in Section 3.

Applying these principles easily explains the initial pattern 0; 0; 2; 3; 5; 7 that
appears in Table 5. The first addition (whether or not a doubling) must produce
at least two anticollisions, and therefore produces at most one new slope to the
previous three points; this explains the 3. The second addition also produces at
least two anticollisions, and therefore at most two new slopes to the previous four
points; this explains the 5. One might think that the next step is 8, but having only
two anticollisions in each of the first three additions would imply that those three
additions include at most one doubling and no other reuse of summands, for a total
of at least five summands, while there are only four nonzero summands available
for the first three additions.

More generally, a chain of m� 2 nontrivial additions involves 2m inputs selected
from mC 1 nonzero points, so there must be at least m� 1 repetitions of inputs.
These repetitions produce at least m�2 occurrences of three anticollisions (one dou-
bling is free), on top of m occurrences of two anticollisions and one anticollision
for the infinite slope from .0; 0/ to .0; 1/, for a total of at least 3m�1 anticollisions,
and thus a total of at most .mC3/.mC2/=2� .3m�1/D .m2�mC8/=2 slopes.
This explains 5; 7; 10; 14; 19 in Table 5 but does not explain 24.

6. Two grumpy giants and a baby

This section presents the algorithm featured in the title of this paper. This algo-
rithm is, as the name suggests, a modification to the standard baby-step-giant-step
method. The modification increases the number of different slopes produced within
m multiplications, and for a typical range of m increases the number beyond the
effectiveness of the rho method.

In the baby-step-giant-step algorithm the baby steps compute hxi gyi for .xi ;yi/2

.0; 0/Cf0; 1; 2; : : : ; d
p
`eg.0; 1/ and the giant steps compute hxi gyi for .xi ;yi/ 2

.1; 0/Cf0; 1; 2; : : : ; b
p
`cg.0; d

p
`e/. The first observation is that the slopes within



TWO GRUMPY GIANTS AND A BABY 105

one type of step are constant; the second observation is that once all steps are
done all ` slopes appear. Our idea is to make the lines of fixed slope shorter;
that is, we introduce more players. Note that introducing a second baby is not
useful: Lines between the points in .x;y/Cf0; 1; 2; : : : ; d

p
`eg.0; 1/ and .0; 0/C

f0; 1; 2; : : : ; d
p
`eg.0; 1/ repeat each slope �

p
` times. We thus need to introduce

more giants to make progress.
The two-grumpy-giants-and-a-baby method is parametrized by a positive integer

n, normally proportional to
p
`; the reader should imagine n being approximately

0:5
p
`. The number of multiplications in the method is approximately 3n. Here is

the set of points .xi ;yi/ 2 .Z=`/
2 produced by the method:

Baby W .0; 0/Cf0; : : : ; n� 1g.0; 1/

Giant1 W .1; 0/Cf1; : : : ; ng.0; n/

Giant2 W .2; 0/�f1; : : : ; ng.0; nC 1/

The initial negation .0;�.nC 1// for Giant2 has negligible cost, approximately
log2 ` multiplications. Choosing n and nC 1 for the steps in the y direction for
the two giants gives a good coverage of slopes since n and nC 1 are coprime. The
grumpy giants make big steps (on the scale of

p
`) and quickly walk in opposite

directions away from each other. Luckily they are not minding the baby.
We now analyze the slopes covered by this method. Again it is not interesting to

look at the slopes among one type of points. The slope between a point .0; i/ in the
Baby set and a point .1; j n/ in the Giant1 set is j n� i ; this means that all slopes in
f1; : : : ; n2g are covered. The slope between .0; i/ in the Baby set and .2;�j .nC

1// in the Giant2 set is .�j .nC 1/� i/=2 2
˚
�n2� 2nC 1; : : : ;�n� 1

	
=2; there

are n2 distinct slopes here, almost exactly covering
˚
�n2� 2nC 1; : : : ;�n� 1

	
=2.

The slope between .1; i n/ in the Giant1 set and .2;�j .nC 1// in the Giant2 set is
�j .nC 1/� i n 2

˚
�2n2� n; : : : ;�2n� 1

	
; there are another n2 distinct slopes

here, covering about half the elements of
˚
�2n2� n; : : : ;�2n� 1

	
.

To summarize, there are three sets of n2 distinct slopes here, all between �2n2�

nC 1 and n2. One can hope for a total of 3n2 distinct slopes if ` > 3n2C n, but
this hope runs into two obstacles. The first obstacle is that the “odd” elements of˚
�n2� 2nC 1; : : : ;�n� 1

	
can bump into the other sets when computing .2i C

1/=2D iC .`C1/=2; but for ` 2 4n2CO.n/ this effect loses only O.n/ elements.
The second obstacle is that any Giant1–Giant2 slopes between .�n2� 2n/=2 and
.�n�2/=2 will bump into

˚
�n2� 2nC 1; : : : ;�n� 1

	
=2 for the “even” elements

of
˚
�n2� 2nC 1; : : : ;�n� 1

	
. This is approximately the rightmost 1=4 of the

Giant1–Giant2 interval, but only n2=8CO.n/ of the Giant1–Giant2 slopes are in
this interval. Overall there are 23n2=8CO.n/ distinct slopes, that is, .0:71875C

o.1//` distinct slopes.



106 DANIEL J. BERNSTEIN AND TANJA LANGE

For comparison, the same .3C o.1//n multiplications allow the original baby-
step-giant-step method to compute .1:5C o.1//n baby steps and .1:5C o.1//n

giant steps, producing only .2:25C o.1//n2 D .0:5625C o.1//` distinct slopes.
The same number of multiplications in the rho method (with r 2 1=o.1/ differ-
ent steps, simulating a uniform random walk within a factor 1C o.1/) produces
.9C o.1//n2=2 D .1:125C o.1//` random slopes, and thus .1 � exp.1:125/C

o.1//`D .0:6753 : : :C o.1//` distinct slopes with overwhelming probability. We
have performed computer experiments to check each of these numbers.

Weighing the giants. We repeat a warning from Section 1: One algorithm can be
better than another after a particular number of multiplications but nevertheless
have worse average-case performance.

For example, the baby-step-giant-step method has two standard variants, which
we call the baby-steps-then-giant-steps method (introduced by Shanks in [22, pages
419–420]) and the interleaved-baby-step-giant-step method (introduced much later
by Pollard in [17, p. 439, top]). Both variants (with giant steps chosen to be of
size .1C o.1//

p
`) reach 100% success probability using .2C o.1//

p
` multi-

plications, while the rho method has a lower success probability for that number
of multiplications. Average-case performance tells a quite different story: The
baby-steps-then-giant-steps method uses .1:5C o.1//

p
` multiplications on aver-

age; the interleaved-baby-step-giant-step method is better, using .4=3Co.1//
p
`D

.1:3333 : : :C o.1//
p
` multiplications on average; the rho method (again with

1=r 2 o.1/) is best, using .
p
�=2C o.1//

p
`D .1:2533 : : :C o.1//

p
` multiplica-

tions on average.
Our analysis above shows that the two-grumpy-giants-and-a-baby method is

more effective than the rho method (and the baby-step-giant-step method) as a way
to use .1:5C o.1//

p
` multiplications. One might nevertheless guess that the rho

method has better average-case performance; for example, an anonymous referee
stated that the new method “presumably has worse average-case running time”.

Our computer experiments indicate that the (interleaved-)two-grumpy-giants-
and-a-baby method actually has better average-case running time than the rho
method. For example, for ` D 65537, we found a chain of weight 20644183 D

.1:23046 : : :/`1:5 with the two-grumpy-giants-and-a-baby method. Here we chose
n D 146, used (suboptimal) binary addition chains for .0; n/ and .0; `� n� 1/,
and then cycled between points .0; i/ and .1; i n/ and .2;�i.nC 1// until we had
` different slopes. For ` D 1000003 we found a chain of weight 1205458963 D

.1:20545 : : :/`1:5 in the same way with nD 558.

Variants. We have been exploring many variants of this algorithm. We have found
experimentally that a 4-giants algorithm (two in one direction, two in the other,
with computer-optimized shifts of the initial positions) outperforms this 2-giants



TWO GRUMPY GIANTS AND A BABY 107

algorithm for m�
p
`. We speculate that gradually increasing the number of giants

will produce an algorithm with .0:5C o.1//m2 distinct slopes, the best possible
result (automatically also optimizing the average number of multiplications, the
maximum, and so on), but it is not clear how to choose the shift distances properly.

Acknowledgments

This work was supported by the National Science Foundation under grants 0716498
and 1018836 and by the European Commission under Contract ICT-2007-216676
ECRYPT II. Computations were carried out on the LISA cluster at the SARA super-
computer center, supported by NCF grant MP-230-11. We thank the anonymous
referees for several useful comments and questions. No babies (or giants) were
harmed in the preparation of this paper.

Appendix A. Computing limits of anticollision factors

This appendix shows, for each integer r > 3, a reasonably fast method to compute
the limit of the sequence of generic uniform heuristic nonrandomness factors

1=
p

1� 1=r ;

1=

q
1� 1=r � 1=r2C 1=r3;

1=

q
1� 1=r � 1=r2� 2=r3C 7=r4� 4=r5;

: : :

considered in Section 4. For example, these factors converge to approximately
1:129162 for r D 6.

We are indebted to Neil Sloane’s Online Encyclopedia of Integer Sequences [24]
for leading us to [5] (by a search for the integer 4229523740916 shown below),
and to Armin Straub for explaining how to use [2] and [18] to compute the sumP

k uk=r2k discussed here. Our contribution here is the connection described
below between anticollision factors and sums of squares of multinomials.

Review of sums of squares of multinomials. Define U D
P

i

P
j si=sj in the r -

variable function field Q.s1; : : : ; sr /, and define uk as the constant coefficient of
U k . Consider the problem of computing

P
k�0 uk=r2k .

Note that U k D
P

i1;:::;ik

P
j1;:::;jk

si1
� � � sik

=sj1
� � � sjk

, so uk is the number of
tuples .i1; : : : ; ik ; j1; : : : ; jk/ such that si1

� � � sik
=sj1
� � � sjk

D 1; that is, such that
.i1; : : : ; ik/ is a permutation of .j1; : : : ; jk/. The tuples counted here were named
“abelian squares” by Erdős in 1961, according to [19]; uk here is “fr .k/” in the
notation of [19].



108 DANIEL J. BERNSTEIN AND TANJA LANGE

For example, u0 D 1; u1 D r ; and u2 D 2r2 � r , which one can partition into
counting 2r2� 2r tuples .i1; i2; j1; j2/ with i1 ¤ i2 and fi1; i2g D fj1; j2g, and r

tuples with i1 D i2 D j1 D j2. More generally, the number of ways for si1
� � � sik

to equal s
a1

1
� � � s

ar
r is the multinomial coefficient

�
k

a1;a2;:::;ar

�
, so

uk D

X
a1;a2;:::;ar W

a1Ca2C���CarDk

�
k

a1; a2; : : : ; ar

�2

D

X
m�0

�
r

m

� X
a1;a2;:::;amW

a1Ca2C���CamDk;
a1>0;a2>0;:::;am>0

�
k

a1; a2; : : : ; am

�2

:

Richmond and Rousseau, proving a conjecture of Ruehr, showed in [18] that
uk is asymptotically r2kCr=2=.4�k/.r�1/=2 as k!1. See also [19, Theorem 4]
for another proof. We conclude that

P
k uk=r2k converges for r > 3 (and not for

r D 3). For example, with r D 6, the ratio uk=r2k is asymptotically 63=.4�k/2:5,
so
P

k uk=r2k converges, and the tail
P

k>n uk=r2k is ‚.1=n1:5/.
This ‚ is not an explicit bound; [18] and [19] are not stated constructively. How-

ever, inspecting examples strongly suggests that .uk=r2k/=.r r=2=.4�k/.r�1/=2/

converges upwards to 1 as k!1, so it seems reasonably safe to hypothesize that
uk=r2k is at most 2r r=2=.4�k/.r�1/=2. This hypothesis implies that

X
k>n

uk

r2k
�

X
k>n

2r r=2

.4�k/.r�1/=2

<

Z 1
n

2r r=2

.4�k/.r�1/=2
dk

D
4r r=2

.4�/.r�1/=2.r � 3/n.r�3/=2
;

so to compute tight bounds on
P

k uk=r2k it suffices to compute
P

0�k�n uk=r2k

for a moderately large integer n.
One can easily use the multinomial formula above to compute, for example,

that u10 D 4229523740916 for r D 6, but if k and r are not very small then it is
much more efficient to compute uk from the generating function

P
k ukxk=k!2 D�P

k xk=k!2
�r in the power-series ring QŒŒx��. Barrucand in [2] pointed out this

formula for uk and explained how to use it to compute a recurrence for uk . For
r D 6 we simply computed the 6th power of

P
k xk=k!2 in QŒx�=x5001, obtaining

the exact values of uk for 0� k � 5000 and concluding that
P

0�k�5000 uk=6
2k �

1:275007093. This computation was fast enough that we did not bother to explore



TWO GRUMPY GIANTS AND A BABY 109

optimizations such as computing
�P

k xk=k!2
�r modulo various small primes or

analyzing the numerical stability of Barrucand’s recurrence.

Anticollision factors via sums of squares of multinomials. Define hk as the num-
ber of tuples .i1; i2; : : : ; ik ; j1; j2; : : : ; jk/ 2 f1; : : : ; rg

2k such that

si1
¤ sj1

; si1
si2
¤ sj1

sj2
; : : : ; and si1

si2
� � � sik

¤ sj1
sj2
� � � sjk

in the polynomial ring ZŒs1; : : : ; sr �. For example, h0 D 1; h1 D r2 � r ; and
h2 D r4� r3� r2C r .

The degree-�k generic uniform heuristic nonrandomness factor is 1=
p

hk=r2k .
The goal of this appendix is to compute limk!1 1=

p
hk=r2k .

Define Hk as the sum of quotients si1
� � � sik

=sj1
� � � sjk

over the same tuples
.i1; : : : ; ik ; j1; : : : ; jk/ counted by hk . For k � 1 the product

Hk�1U DHk�1

X
ik

X
jk

sik

sjk

is the sum of quotients si1
� � � sik

=sj1
� � � sjk

over the tuples .i1; : : : ; ik ; j1; : : : ; jk/

with

si1
¤ sj1

; si1
si2
¤ sj1

sj2
; : : : ; and si1

si2
� � � sik�1

¤ sj1
sj2
� � � sjk�1

:

These are the same as the tuples contributing to Hk , except for tuples having
si1

si2
� � � sik

D sj1
sj2
� � � sjk

. The product Hk�1U is therefore the same as Hk ,
except for its constant coefficient. The constant coefficient of Hk is 0, so Hk D

Hk�1U � ck where ck is the constant coefficient of Hk�1U .
By induction Hk DU k � c1U k�1� c2U k�2�� � �� ck . Recall that the constant

coefficient of U k is uk , so 0D uk � c1uk�1� c2uk�2� � � � � ck . In other words,
.1� c1x� c2x2� � � � /.1Cu1xCu2x2C � � � /D 1 in the power-series ring ZŒŒx��.
For the same reason, the product .1� c1x� � � � � ckxk/.1Cu1xC � � �Cukxk/ is
1� .c1uk C � � �C cku1/x

kC1� � � � � ckukx2k , so�
1�

c1

r2
� � � � �

ck

r2k

��
1C

u1

r2
C � � �C

uk

r2k

�
D 1� �k

where �k D .c1uk C � � �C cku1/=r2kC2C � � �C ckuk=r4k . The bounds

0� �k �
ukC1

r2kC2
C

ukC2

r2kC4
C � � �

show that �k ! 0 as k!1, so�
1�

c1

r2
�

c2

r4
� � � �

��
1C

u1

r2
C

u2

r4
C � � �

�
D 1:



110 DANIEL J. BERNSTEIN AND TANJA LANGE

Mapping s1 7! 1, s2 7! 1, . . . , sr 7! 1 takes Hk to hk and takes U to r2, so
hk D hk�1r2� ck ; that is, hk=r2k D hk�1=r2k�2� ck=r2k . By induction,

hk

r2k
D 1�

c1

r2
�

c2

r4
� � � � �

ck

r2k
:

Hence

lim
k!1

hk

r2k
D 1�

c1

r2
�

c2

r4
� � � � D

1

1Cu1=r2Cu2=r4C � � �
:

The desired value limk!1 1=
p

hk=r2k is therefore the square root of the sumP
k uk=r2k computed above. In particular, for r D 6 we find

lim
k!1

1p
hk=r2k

� 1:129162:

References

[1] Daniel V. Bailey, Lejla Batina, Daniel J. Bernstein, Peter Birkner, Joppe W. Bos, Hsieh-Chung
Chen, Chen-Mou Cheng, Gauthier van Damme, Giacomo de Meulenaer, Luis Julian Dominguez
Perez, Junfeng Fan, Tim Güneysu, Frank Gurkaynak, Thorsten Kleinjung, Tanja Lange, Nele
Mentens, Ruben Niederhagen, Christof Paar, Francesco Regazzoni, Peter Schwabe, Leif Uh-
sadel, Anthony Van Herrewege, and Bo-Yin Yang, Breaking ECC2K-130, Cryptology ePrint
Archive, Report 2009/541, 2009. http://eprint.iacr.org/2009/541

[2] Pierre Barrucand, Sur la somme des puissances des coefficients multinomiaux et les puissances
successives d’une fonction de Bessel, C. R. Acad. Sci. Paris 258 (1964), 5318–5320. MR 29
#40

[3] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe, On the correct use of the negation map
in the Pollard rho method, in Catalano et al. [8], 2011, pp. 128–146, expanded version at http://
eprint.iacr.org/2011/003. MR 2012h:94145

[4] Simon R. Blackburn and Sean Murphy, The number of partitions in Pollard rho, technical re-
port RHUL-MA-2011-11, Department of Mathematics, Royal Holloway, University of London,
2011. http://www.ma.rhul.ac.uk/static/techrep/2011/RHUL-MA-2011-11.pdf

[5] Jonathan M. Borwein, Dirk Nuyens, Armin Straub, and James Wan, Some arithmetic properties
of short random walk integrals, Ramanujan J. 26 (2011), no. 1, 109–132. MR 2012j:60114

[6] Joppe W. Bos, Thorsten Kleinjung, and Arjen K. Lenstra, On the use of the negation map in the
Pollard rho method, in Hanrot et al. [12], 2010, pp. 66–82. MR 2011k:11175

[7] Richard P. Brent and John M. Pollard, Factorization of the eighth Fermat number, Math. Comp.
36 (1981), no. 154, 627–630. MR 83h:10014

[8] Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi (eds.), Public key cryptog-
raphy — PKC 2011: Proceedings of the 14th International Conference on Practice and Theory
in Public Key Cryptography held in Taormina, March 6–9, 2011, Lecture Notes in Computer
Science, no. 6571, Springer, Heidelberg, 2011. MR 2012h:94007

[9] M. Chateauneuf, A. C. H. Ling, and D. R. Stinson, Slope packings and coverings, and generic
algorithms for the discrete logarithm problem, J. Combin. Des. 11 (2003), no. 1, 36–50, preprint
version at http://eprint.iacr.org/2001/094. MR 2003j:05035

[10] Jung Hee Cheon, Jin Hong, and Minkyu Kim, Speeding up the Pollard rho method on prime
fields, in Pieprzyk [16], 2008, pp. 471–488. MR 2546112

http://eprint.iacr.org/2009/541
http://gallica.bnf.fr/ark:/12148/bpt6k4012p/f971
http://gallica.bnf.fr/ark:/12148/bpt6k4012p/f971
http://msp.org/idx/mr/29:40
http://msp.org/idx/mr/29:40
http://dx.doi.org/10.1007/978-3-642-19379-8_8
http://dx.doi.org/10.1007/978-3-642-19379-8_8
http://eprint.iacr.org/2011/003
http://msp.org/idx/mr/2012h:94145
http://www.ma.rhul.ac.uk/static/techrep/2011/RHUL-MA-2011-11.pdf
http://dx.doi.org/10.1007/s11139-011-9325-y
http://dx.doi.org/10.1007/s11139-011-9325-y
http://msp.org/idx/mr/2012j:60114
http://dx.doi.org/10.1007/978-3-642-14518-6_9
http://dx.doi.org/10.1007/978-3-642-14518-6_9
http://msp.org/idx/mr/2011k:11175
http://dx.doi.org/10.2307/2007666
http://msp.org/idx/mr/83h:10014
http://dx.doi.org/10.1007/978-3-642-19379-8
http://dx.doi.org/10.1007/978-3-642-19379-8
http://dx.doi.org/10.1007/978-3-642-19379-8
http://msp.org/idx/mr/2012h:94007
http://dx.doi.org/10.1002/jcd.10033
http://dx.doi.org/10.1002/jcd.10033
http://eprint.iacr.org/2001/094
http://eprint.iacr.org/2001/094
http://msp.org/idx/mr/2003j:05035
http://dx.doi.org/10.1007/978-3-540-89255-7_29
http://dx.doi.org/10.1007/978-3-540-89255-7_29
http://msp.org/idx/mr/2546112


TWO GRUMPY GIANTS AND A BABY 111

[11] Walter Fumy (ed.), Advances in cryptology — EUROCRYPT ’97: Proceedings of the 16th In-
ternational Conference on the Theory and Application of Cryptographic Techniques held in
Konstanz, May 11–15, 1997, Lecture Notes in Computer Science, no. 1233, Springer, Berlin,
1997. MR 98i:94002

[12] Guillaume Hanrot, François Morain, and Emmanuel Thomé (eds.), Algorithmic number theory:
Proceedings of the 9th Biennial International Symposium (ANTS-IX) held in Nancy, July 19–23,
2010, Lecture Notes in Computer Science, no. 6197, Springer, Berlin, 2010. MR 2011g:11002

[13] Martin Hildebrand, Random walks supported on random points of Z=nZ, Probab. Theory Re-
lated Fields 100 (1994), no. 2, 191–203. MR 95j:60015

[14] Donald J. Lewis (ed.), 1969 Number Theory Institute: Proceedings of the 1969 Summer In-
stitutes on Number Theory: Analytic Number Theory, Diophantine Problems, and Algebraic
Number Theory; held at the State University of New York at Stony Brook, July 7–August 1,
1969, Proceedings of Symposia in Pure Mathematics, no. 20, American Mathematical Society,
Providence, R.I., 1971. MR 47 #3286

[15] V. I. Nechaev, Complexity of a determinate algorithm for the discrete logarithm, Math. Notes
55 (1994), no. 2, 165–172. MR 96a:11145

[16] Josef Pieprzyk (ed.), Advances in cryptology — ASIACRYPT 2008: Proceedings of the 14th
International Conference on the Theory and Application of Cryptology and Information Secu-
rity held in Melbourne, December 7–11, 2008, Lecture Notes in Computer Science, no. 5350,
Springer, Berlin, 2008. MR 2010j:94005

[17] J. M. Pollard, Kangaroos, Monopoly and discrete logarithms, J. Cryptology 13 (2000), no. 4,
437–447. MR 2001i:94059

[18] Bruce Richmond and Cecil Rousseau, A multinomial summation (Donald Richards and Stama-
tis Cambanis), SIAM Rev. 31 (1989), no. 1, 122–125, comment on Problem 87-2, SIAM Rev.
30 (1988), pp. 128–130.

[19] L. B. Richmond and Jeffrey Shallit, Counting abelian squares, Electron. J. Combin. 16 (2009),
no. 1, Research Paper 72, 9 pages. MR 2010j:05036

[20] J. Sattler and C.-P. Schnorr, Generating random walks in groups, Ann. Univ. Sci. Budapest.
Sect. Comput. 6 (1985), 65–79. MR 89a:68108

[21] C.-P. Schnorr and H. W. Lenstra, Jr., A Monte Carlo factoring algorithm with linear storage,
Math. Comp. 43 (1984), no. 167, 289–311. MR 85d:11106

[22] Daniel Shanks, Class number, a theory of factorization, and genera, in Lewis [14], 1971,
pp. 415–440. MR 47 #4932

[23] Victor Shoup, Lower bounds for discrete logarithms and related problems, in Fumy [11], 1997,
pp. 256–266. MR 98j:94023

[24] Neil J. A. Sloane, The on-line encyclopedia of integer sequences, 2012. http://oeis.org
[25] Edlyn Teske, On random walks for Pollard’s rho method, Math. Comp. 70 (2001), no. 234,

809–825. MR 2001g:11194

DANIEL J. BERNSTEIN: djb@cr.yp.to
Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60607-7053,
United States

TANJA LANGE: tanja@hyperelliptic.org
Department of Mathematics and Computer Science, Technische Universiteit Eindhoven,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

msp

http://dx.doi.org/10.1007/3-540-69053-0
http://dx.doi.org/10.1007/3-540-69053-0
http://dx.doi.org/10.1007/3-540-69053-0
http://msp.org/idx/mr/98i:94002
http://dx.doi.org/10.1007/978-3-642-14518-6
http://dx.doi.org/10.1007/978-3-642-14518-6
http://dx.doi.org/10.1007/978-3-642-14518-6
http://msp.org/idx/mr/2011g:11002
http://dx.doi.org/10.1007/BF01199265
http://msp.org/idx/mr/95j:60015
http://msp.org/idx/mr/47:3286
http://dx.doi.org/10.1007/BF02113297
http://msp.org/idx/mr/96a:11145
http://dx.doi.org/10.1007/978-3-540-89255-7
http://dx.doi.org/10.1007/978-3-540-89255-7
http://dx.doi.org/10.1007/978-3-540-89255-7
http://msp.org/idx/mr/2010j:94005
http://dx.doi.org/10.1007/s001450010010
http://msp.org/idx/mr/2001i:94059
http://dx.doi.org/10.1137/1031013
http://dx.doi.org/10.1137/1031013
http://www.combinatorics.org/Volume_16/Abstracts/v16i1r72.html
http://msp.org/idx/mr/2010j:05036
http://ac.inf.elte.hu/Vol_006_1985/065.pdf
http://msp.org/idx/mr/89a:68108
http://dx.doi.org/10.2307/2007414
http://msp.org/idx/mr/85d:11106
http://msp.org/idx/mr/47:4932
http://dx.doi.org/10.1007/3-540-69053-0_18
http://msp.org/idx/mr/98j:94023
http://oeis.org
http://dx.doi.org/10.1090/S0025-5718-00-01213-8
http://msp.org/idx/mr/2001g:11194
mailto:djb@cr.yp.to
mailto:tanja@hyperelliptic.org
http://msp.org


VOLUME EDITORS

Everett W. Howe
Center for Communications Research

4320 Westerra Court
San Diego, CA 92121-1969

United States

Kiran S. Kedlaya
Department of Mathematics

University of California, San Diego
9500 Gilman Drive #0112
La Jolla, CA 92093-0112

Front cover artwork based on a detail of
Chicano Legacy 40 Años ©2010 Mario Torero.

The contents of this work are copyrighted by MSP or the respective authors.
All rights reserved.

Electronic copies can be obtained free of charge from http://msp.org/obs/1
and printed copies can be ordered from MSP (contact@msp.org).

The Open Book Series is a trademark of Mathematical Sciences Publishers.

ISSN: 2329-9061 (print), 2329-907X (electronic)

ISBN: 978-1-935107-00-2 (print), 978-1-935107-01-9 (electronic)

First published 2013.

msp

MATHEMATICAL SCIENCES PUBLISHERS

798 Evans Hall #3840, c/o University of California, Berkeley CA 94720-3840

contact@msp.org http: //msp.org

http://msp.org/obs/1
mailto:contact@msp.org
mailto:contact@msp.org
http://msp.org


THE OPEN BOOK SERIES 1
Tenth Algorithmic Number Theory Symposium

The Algorithmic Number Theory Symposium (ANTS), held biennially since 1994, is the premier
international forum for research in computational number theory. ANTS is devoted to algorithmic
aspects of number theory, including elementary, algebraic, and analytic number theory, the
geometry of numbers, arithmetic algebraic geometry, the theory of finite fields, and cryptography.

This volume is the proceedings of the tenth ANTS meeting, held July 9–13, 2012, at the Univer-
sity of California, San Diego. It includes revised and edited versions of the 25 refereed papers
presented at the conference, together with extended abstracts of two of the five invited talks.

TABLE OF CONTENTS

1Deterministic elliptic curve primality proving for a special sequence of numbers — Alexander Abatzoglou,
Alice Silverberg, Andrew V. Sutherland, and Angela Wong

21Imaginary quadratic fields with isomorphic abelian Galois groups — Athanasios Angelakis and Peter
Stevenhagen

41Iterated Coleman integration for hyperelliptic curves — Jennifer S. Balakrishnan

63Finding ECM-friendly curves through a study of Galois properties — Razvan Bărbulescu, Joppe W. Bos, Cyril
Bouvier, Thorsten Kleinjung, and Peter L. Montgomery

87Two grumpy giants and a baby — Daniel J. Bernstein and Tanja Lange

113Improved techniques for computing the ideal class group and a system of fundamental units in number fields —
Jean-François Biasse and Claus Fieker

135Conditionally bounding analytic ranks of elliptic curves — Jonathan W. Bober

145A database of elliptic curves over Q(
√

5): a first report — Jonathan Bober, Alyson Deines, Ariah Klages-Mundt,
Benjamin LeVeque, R. Andrew Ohana, Ashwath Rabindranath, Paul Sharaba, and William Stein

167Finding simultaneous Diophantine approximations with prescribed quality — Wieb Bosma and Ionica Smeets

187Success and challenges in determining the rational points on curves — Nils Bruin

213Solving quadratic equations in dimension 5 or more without factoring — Pierre Castel

235Counting value sets: algorithm and complexity — Qi Cheng, Joshua E. Hill, and Daqing Wan

249Haberland’s formula and numerical computation of Petersson scalar products — Henri Cohen

271Approximate common divisors via lattices — Henry Cohn and Nadia Heninger

295Explicit descent in the Picard group of a cyclic cover of the projective line — Brendan Creutz

317Computing equations of curves with many points — Virgile Ducet and Claus Fieker

335Computing the unit group, class group, and compact representations in algebraic function fields — Kirsten
Eisenträger and Sean Hallgren

359The complex polynomials P(x) with Gal(P(x)− t)∼= M23 — Noam D. Elkies

369Experiments with the transcendental Brauer-Manin obstruction — Andreas-Stephan Elsenhans and Jörg Jahnel

395Explicit 5-descent on elliptic curves — Tom Fisher

413On the density of abelian surfaces with Tate-Shafarevich group of order five times a square — Stefan Keil and
Remke Kloosterman

437Improved CRT algorithm for class polynomials in genus 2 — Kristin E. Lauter and Damien Robert

463Fast computation of isomorphisms of hyperelliptic curves and explicit Galois descent — Reynald Lercier,
Christophe Ritzenthaler, and Jeroen Sijsling

487Elliptic factors in Jacobians of hyperelliptic curves with certain automorphism groups — Jennifer Paulhus

507Isogeny volcanoes — Andrew V. Sutherland

531On the evaluation of modular polynomials — Andrew V. Sutherland

557Constructing and tabulating dihedral function fields — Colin Weir, Renate Scheidler, and Everett W. Howe

A
N

T
S

X
:

Tenth
A

lgorithm
ic

N
um

ber
Theory

Sym
posium

H
ow

e,Kedlaya
O

B
S

1

http://dx.doi.org/10.2140/obs.2013.1.1
http://dx.doi.org/10.2140/obs.2013.1.21
http://dx.doi.org/10.2140/obs.2013.1.41
http://dx.doi.org/10.2140/obs.2013.1.63
http://dx.doi.org/10.2140/obs.2013.1.113
http://dx.doi.org/10.2140/obs.2013.1.135
http://dx.doi.org/10.2140/obs.2013.1.145
http://dx.doi.org/10.2140/obs.2013.1.167
http://dx.doi.org/10.2140/obs.2013.1.187
http://dx.doi.org/10.2140/obs.2013.1.213
http://dx.doi.org/10.2140/obs.2013.1.235
http://dx.doi.org/10.2140/obs.2013.1.249
http://dx.doi.org/10.2140/obs.2013.1.271
http://dx.doi.org/10.2140/obs.2013.1.295
http://dx.doi.org/10.2140/obs.2013.1.317
http://dx.doi.org/10.2140/obs.2013.1.335
http://dx.doi.org/10.2140/obs.2013.1.359
http://dx.doi.org/10.2140/obs.2013.1.369
http://dx.doi.org/10.2140/obs.2013.1.395
http://dx.doi.org/10.2140/obs.2013.1.413
http://dx.doi.org/10.2140/obs.2013.1.437
http://dx.doi.org/10.2140/obs.2013.1.463
http://dx.doi.org/10.2140/obs.2013.1.487
http://dx.doi.org/10.2140/obs.2013.1.507
http://dx.doi.org/10.2140/obs.2013.1.531
http://dx.doi.org/10.2140/obs.2013.1.557

	1. Introduction
	2. Anticollisions
	3. Review of the Brent-Pollard nonrandomness
	4. Higher-degree local anticollisions
	5. Searching for better chains for small primes
	6. Two grumpy giants and a baby
	Acknowledgments
	Appendix A. Computing limits of anticollision factors
	References
	
	

