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We describe improvements to the subexponential methods for computing the
ideal class group, the regulator and a system of fundamental units in number
fields under the generalized Riemann hypothesis. We use sieving techniques
adapted from the number field sieve algorithm to derive relations between ele-
ments of the ideal class group, and p-adic approximations to manage the loss of
precision during the computation of units. These improvements are particularly
efficient for number fields of small degree for which a speedup of an order of
magnitude is achieved with respect to the standard methods.

1. Introduction

Let K D Q.�/ be a number field of degree n and discriminant �. In this paper,
we present improved fast methods for computing the structure of the ideal class
group of the maximal order OK of K, along with the regulator and a system of
fundamental units of OK .

Class group and unit group computation are two of the four principal tasks for
computational algebraic number theory postulated by Zassenhaus (together with
the computation of the ring of integers and the Galois group). In particular, they
occur in the resolution of Diophantine equations. For example, the Pell equation

T 2��U 2 D 1; T; U 2 Z;

boils down to finding the fundamental unit in a real quadratic number field of
discriminant � (see [26]). In addition, the Schäffer equation

y2 D 1kC 2kC � � �C .x� 1/k; k � 2;
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can be solved using solutions to the Pell equation [24]. Unit computations are
key ingredients in solving almost all Diophantine equations, for example when
solving Thue equations [8]. On the other hand, the computation of the ideal
class group Cl.OK/ of a number field K allows in particular to provide numerical
evidence in favor of unproven conjectures such as the heuristics of Cohen and
Lenstra [14] on the ideal class group of a quadratic number field, Littlewood’s
bounds [32] on L.1; �/, or Bach’s bound on the minimal bound B such that ideals
of norm lower than B generate the ideal class group. The class group enters also
into the computation of the Mordell-Weil group of elliptic curves with the descent
method, or the Brauer group computations for representation theory [16].

In 1968, Shanks [41; 42] proposed an algorithm relying on the baby-step giant-
step method to compute the structure of the class number and the regulator of a qua-
dratic number field in time O.j�j1=4C�/, or O.j�j1=5C�/ under the extended Rie-
mann hypothesis [30]. In 1985 Pohst and Zassenhaus [37] published an algorithm
that could determine the class group of arbitrary number fields. Then, a subexpo-
nential strategy for the computation of the group structure of the class group of
an imaginary quadratic field was described in 1989 by Hafner and McCurley [21].
The expected running time of this method is bounded by L�.1=2;

p
2C o.1//

where

L�.˛; ˇ/ WD e
ˇ.logj�j/˛.log logj�j/1�˛

:

Buchmann [11] generalized this result to the case of an arbitrary extension, the
heuristic complexity being valid for fixed degree n and � tending to infinity. In a
recent work [6], Biasse described an algorithm achieving the heuristic complexity
L�.1=3;O.1// for certain classes of number fields where both the discriminant
and the degree tend to infinity.

In parallel with theoretical improvements, considerable efforts have been in-
vested to make the implementations of the subexponential methods efficient. In
the quadratic case, Jacobson [25] described an algorithm based on the quadratic
sieve for deriving relations between elements of Cl.OK/. He successfully used it
for computing the class group and the fundamental unit of quadratic number fields.
His implementation contained some of the practical improvements described in
the context of factorization such as self-initialization and the single large prime
variant. This strategy was later improved by Biasse [7] who used a double large
prime variant and a dedicated Gaussian elimination technique. Attempts have been
made to generalize sieving techniques to general number fields [12; 34]. A variant
of the number field sieve was used for deriving relations in the class group of
cubic fields. On special classes of cubic number fields for which the regulator can
be precomputed, it allowed the computation of the ideal class group. Promising
timings were presented in [12; 34], for sizes of factor base that do not (to the best
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of our knowledge) certify the result under the generalized Riemann hypothesis.
In particular, a significant speedup was obtained over the standard random ideal
factorization method.

Our contribution. In this paper, we present an algorithm based on sieving tech-
niques adapted from recent implementations of the number field sieve [28] for
computing Cl.OK/ under the generalized Riemann hypothesis (GRH) for an ar-
bitrary number field K. We also describe a p-adic method for computing the
regulator and a system of fundamental units. We show that these methods allow a
significant improvement for number fields of low degree over the current state of
the art based on enumeration techniques.

2. Generalities on number fields

Let K be a number field of degree d . It has r1 � d real embeddings .�i /i�r1
and 2r2 complex embeddings .�i /r1<i�d coming as r2 pairs of conjugates, which
we number so that �iCr2 D �i for r1 < i � r1C r2. The field K is isomorphic
to OK ˝Q where OK denotes the ring of integers of K. We can embed K in
KR WD K ˝ R ' Rr1 � Cr2 ; and extend the �i to KR. Let T2 be the Hermitian
form on KR defined by T2.x; x0/ WD

P
i �i .x/�i .x

0/, and let kxk WD
p
T2.x; x/

be the corresponding L2-norm. Choose .˛i /i�d such that OK D
L
i Z˛i ; then

the discriminant of K is given by �D det2.T2.˛i ; j̨ //. The norm of an element
x 2K is defined as N.x/D

Q
i �i .x/.

Let I be the group of nonzero fractional ideals ofK and P�I is the subgroup of
principal fractional ideals. The norm of integral ideals is given by N.I / WD ŒOK W I �,
which extends to fractional ideals by N.I=J / WD N.I /=N.J /. The norm of a
principal ideal agrees with the norm of its generator: N.xOK/D jN.x/j.

The ideal class group of OK is defined by Cl.OK/ WD I=P. We denote by Œa�
the class of a fractional ideal a in Cl.OK/ and by h the cardinality of Cl.OK/.
Elements of I admit a unique decomposition as a power product of prime ideals
of OK (with possibly negative exponents). An element x 2 OK is said to be a unit if
.x/OK D OK , or equivalently if jN.x/j D 1. The units of OK form a multiplicative
group of the form

U D �� h
1i � � � � � h
ri;

where � is the torsion subgroup of U , r WD r1C r2 � 1 and the generators 
i of
the nontorsion part are called a system of fundamental units. The regulator is an
invariant of K which allows us to certify the calculation of Cl.OK/ and U . It is
defined as RD Vol.�/ where � is the lattice generated by vectors of the form

.c1 logj
i j1; : : : ; crC1 logj
i jrC1/;

with jxji WD j�i .x/j for i � r C 1, c1 D 1 for i � r1, ci D 2 otherwise.



116 JEAN-FRANÇOIS BIASSE AND CLAUS FIEKER

3. The subexponential strategy

The idea behind the algorithm of Buchmann [11] is to find a set of ideals B D

fp1; : : : ; pN g whose classes generate Cl.OK/, and then consider the surjective mor-
phism

Zn
' // I

� // Cl.OK/

.e1; : : : ; eN /
� // Q

i p
ei
i

� //
Q
i Œpi �

ei :

From the fundamental theorem of homomorphisms, the ideal class group satisfies
Cl.OK/' ZN=ker.� ı'/. Therefore, the knowledge of ker.� ı'/, which has the
structure of a Z-lattice, enables us to derive Cl.OK/. In the meantime, elements of
ker.'/ give us units as power-products of relations. From these units, we hope to
derive a system of fundamental units of OK . The subexponential strategy can be
broken down into three essential tasks: collecting relations, calculating the class
group and calculating the unit group. The subexponentiality is a consequence of a
careful choice of B .

3.1. Relation collection. A preliminary step to the relation collection is the choice
of a generating set BD fp1; : : : ; pN g of Cl.OK/. We choose the set of prime ideals
of norm bounded by an integer B . The use of the Minkowski bound certifies the
result unconditionally, but it causes the algorithm to take a time exponential in
the size of �. To achieve subexponentiality, many authors chose the bound of
Bach [2], who proved that under GRH, Cl.OK/ was generated by the classes of the
prime ideals p satisfying N.p/� 12.log j�j/2. Although asymptotically better, in
practice this bound can be larger than the one described by Belabas et al. [4] who
stated that under GRH, the class group is generated by the classes of the prime
ideals of norm bounded by B provided thatX
.m;p/WN.pm/�B

log N.p/

N.pm=2/

�
1�

log N.pm/

logB

�
>
1

2
logj�j � 1:9n� 0:785r1C

2:468nC 1:832r1

logB
:

In the rest of the paper, we assume that B is constructed with the bound of
Belabas et al. Indeed, Bach’s bound enlarges the dimensions of the matrices that
are processed during the computation of Cl.OK/, thus inducing a slow-down that
is not compensated by the fact that the relations are found more rapidly.

During the relation collection phase, we collect relations of the form

.�i /D p
ei;1
1 � � � p

ei;N
N ;

where �i 2K. We progressively build the matrix M WD .ei;j / 2 Zk�N where k is
the number of relations collected so far. Let ƒ� ker.� ı'/ be the lattice generated
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by the rows of M . Operations on the rows of M allow us to retrieve a basis
for ƒ and its determinant. To determine if ƒ has rank N , we perform operations
modulo a random wordsize prime p. In particular, the LU decomposition of M
modulo p allows us to identify the prime ideals that do not contribute to the rank
of ƒ. Additional relations involving these primes increase the rank of M , whose
rows eventually generate a finite index sublattice of ker.�/. To find this index, we
compute the Hermite normal form (HNF) of M , that is, we perform unimodular
operations encoded by U 2 GLk.Z/ such that

UM D

0BBBBBBBB@

h11 0 � � � 0
::: h22

: : :
:::

:::
:::

: : : 0

� � � � � hNN
��������������������������������������

.0/

1CCCCCCCCA
;

with 0� hij < hjj whenever j < i and hij D 0 whenever j > i . Once the HNF of
M is computed, adding new rows can be done very efficiently. In the meantime, the
product

Q
i hi;i gives us an indication on Œƒ W ker.� ı'/�, as we see in Section 3.3.

3.2. Class group computation. Given a matrix A 2 ZN�N whose rows generate
ker.� ı'/, unimodular transformations on both rows and columns of A yield the
structure of Cl.OK/. More precisely, for every nonsingular matrix A 2 ZN�N ,
there exist unimodular matrices U; V 2 ZN�N such that

S WD UAV D diag.d1; : : : ; dN /;

where diC1 j di for all i with 1� i < N . The matrix S is called the Smith normal
form (SNF) of A.

Theorem 1. If the rows ofA2ZN�N are a basis for ker.�ı'/ and diag.d1; : : : ;dN /
is the SNF of A, then

Cl.OK/' Z=d1Z� � � � �Z=dNZ:

Once enough relations have been found, the rows of M generate ker.� ı'/, and
the N nonzero rows of the HNF of M are a matrix A 2 ZN�N whose rows are
a basis for ker.� ı '/, and the SNF of A gives us Cl.OK/. However, finding the
structure of Cl.OK/ can also be done by computing the SNF of a matrix which is
in practice significantly smaller than A, namely the essential part of A. Indeed, for
each matrix H in HNF, there exists an index l such that hi;i D 1 for all i > l . The
upper left l � l submatrix of H is called its essential part. As the classes of pi
for i > l are generated by those of the pj , j � l , the SNF of the essential part of A
suffices to recover Cl.OK/.



118 JEAN-FRANÇOIS BIASSE AND CLAUS FIEKER

3.3. Regulator and fundamental units computation. Computing the regulator and
a system of fundamental units of K consists of finding kernel vectors of M . Indeed,
if X D .x1; : : : ; xk/ satisfies XM D 0, then we have�Q

i

�
xi
i

�
OK D OK :

In other words, 
 WD
Q
i�
xi
i is a unit. Every kernel vector X of M yields a unit,

and we want to compute the group generated by all those elements as well as the
regulator of this group, defined to be zero if the group is not of full rank. So far,
finding of relations between units is mostly done using real linear algebra (LLL),
the core problem here being the numerical instability of the matrices. This in
itself is a consequence of the well-known fact that units are very large in general:
Writing the fundamental unit of a real quadratic fields explicitly with the canon-
ical basis needs exponentially many digits while it is always possible to find a
product representation of size polynomial in logj�j (see [13; 43]). At the end
of the procedure, we verify that the assumption we made on the completeness of
the lattice of relations is true. To this end, we use an approximation of the Euler
product

hRD
j�j
p
j�j

2r1.2�/r2
lim
s!1

..s� 1/�K.s//;

where �K.s/D
P

a 1=N.a/s is the usual �-function associated to K and j�j is the
cardinality of �. Indeed, it allows us to derive a bound h� in polynomial time
under ERH that satisfies h� � hR < 2h�; see [3]. If the values det.�/ and det.ƒ/
do not satisfy this inequality, then we need to collect more relations.

4. Sieving techniques

In this section, we describe sieving techniques to derive relations in Cl.OK/ for gen-
eral number fields. This is a generalization of Jacobson’s results [25] for quadratic
number fields. Similar ideas were suggested in [12; 34] but the corresponding
algorithms were either not implemented or are no longer available for compari-
son. Here we provide numerical data illustrating the considerable impact of these
techniques for class group and unit group computation in the case of low degree
number fields.

Given a generating set BD fp1; : : : pN g for Cl.OK/, the usual method for deriv-
ing relations consists of computing random exponents Ee WD .e1; : : : ; eN /, ˛ 2 OK
and a reduced ideal IEe such that

pe11 � � � p
eN
N D .˛/IEe:
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Then, every time IEe is B-smooth (that is, is a power product of elements of B),
we obtain a relation. As the arithmetic of ideals is rather expensive when n > 2,
the relation search in the computer algebra software PARI [35] and versions 2:x
for x < 18 of Magma [9] consists of enumerating short elements of IEe via the
Fincke-Pohst method [18].

Our method consists of deriving relations from smooth values of polynomials,
thus avoiding the cost of the ideal arithmetic and of the ideal reduction. Our method
for finding smooth values is based on the recent development of the number field
sieve algorithm [28]. The use of trivial methods such as trial division for finding
smooth values of our polynomials would yield the same theoretical complexity, but
would be impractical for large discriminants. The most efficient implementation of
the enumeration-based strategy for finding relations is the one of PARI. Therefore,
in the following, we assess the impact of our sieving method by comparing its
performance with those of PARI.

4.1. Polynomial selection. Let a be a B-smooth ideal of OK . In this section, we
show how to provide polynomials P 2 ZŒX; Y � of degree n derived from a such
that every .x; y/ 2 Z2 such that P.x; y/ is B-smooth yields a relation. Note that
in theory, a can be any ideal, however, we obtained the best results by choosing
aD OK . Let ˛ and ˇ be two linearly independent elements of a. Then, we create
by interpolation a P˛;ˇ 2 ZŒX; Y � such that

P˛;ˇ .x; y/D N.x˛Cyˇ/ for all x; y 2 Z2:

Every time �x;y WD x˛C yˇ has a smooth norm, we add the relation correspond-
ing to the principal ideal .�x;y/ to the relation matrix. Before applying sieving
algorithms to P˛;ˇ to derive relations, we need to ensure that it is likely to yield
enough smooth values. Polynomial selection is an important part of the number
field sieve algorithm, and so it is in our algorithm. However, the specificities of
our context prevent us from directly adapting the methods of NFS for selecting
the sieving polynomial. First of all, we can afford to find relations with many
different choices of ˛ and ˇ, whereas the choice of a sieving polynomial in the
NFS algorithm is fixed. We require that our choices of ˛ and ˇ yield polynomials
with small coefficients, and that we have a sufficient randomization at the infinite
places to avoid drawing �x;y spanning the same subgroup of the unit group of OK .

To randomize the choice of ˛; ˇ, we consider random coefficients a1; : : : ; an2Rn

such that
P
i�n ai D 0. For every such n-tuple Ea, we define the embedding

 Ea W a! Rn; ˛ 7! .a1 logj˛j1; : : : ; an logj˛jn/:

For every choice of Ea, the set of elements of the form  Ea.˛/ for ˛ 2 a is a
lattice ƒEa of Rn for which we can find an LLL reduced basis for the norm
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T Ea2 W .x1; : : : ; xn/ 7! e2a1x21 C � � �C e
2anx2n:

For every choice of Ea, the first two vectors ˛; ˇ of an LLL reduced basis of ƒEa
are potential candidates for the creation of a polynomial yielding smooth values.
Every time we draw such a pair of elements of a, we need to make sure that they
do not generate the same Z-module as another pair previously used. To prevent
this from happening, every time we draw a pair ˛; ˇ by the previous method, we
express them in terms of the canonical Z-basis of OK . Thus, to every pair ˛; ˇ
corresponds the matrix M˛;ˇ 2 Z2�n of their coordinates. The HNF of M˛;ˇ

uniquely represents the Z-module spanned by .˛; ˇ/. Thus, to avoid duplicates,
we store a hash of the HNF of M˛;ˇ in a hash table every time we use a pair
.˛; ˇ/ to draw relations. We summarize the procedure of the selection of a sieving
polynomial in Algorithm 1.

Algorithm 1 (Polynomial selection).

Input: a, .A1; : : : ; An/, HashTable.
Output: Sieving polynomial P˛;ˇ corresponding to ˛; ˇ 2 a.
1: while a new ˛; ˇ has not been found do
2: Draw ja1j � A1; : : : ; janj � An at random such that a1C � � �C an D 0.
3: Let ˛ and ˇ be the first two elements of a LLL-reduced basis of ƒEa for

EaD .a1; : : : ; an/.
4: Compute the hash h˛;ˇ of the HNF of M˛;ˇ .
5: if h˛;ˇ … HashTable then
6: Compute by interpolation P˛;ˇ 2ZŒX; Y � with P˛;ˇ .x; y/DN.x˛Cyˇ/.
7: end if
8: end while
9: return ˛; ˇ; P˛;ˇ .

4.2. Line sieving. The quadratic sieve algorithm [39] used to derive smooth values
of a binary quadratic form generalizes to the case of polynomials of arbitrary degree.
Its design follows from the observation that if P 2 ZŒX; Y � is a polynomial of
degree n, then

p j P.rp; y0/ for all y0 2 Z D) p j P.rpC ip; y0/ for all i 2 Z: (1)

Given y0 2 Z, we wish to find the x 2 Œ�I=2; I=2� such that P.x; y0/ is B-smooth,
where B is the bound on the norm of the prime ideals in the factor base. Instead
of trying them all, we prefer to isolate a short list of good candidates that we
test by trial division. If p j P.x; y0/ for many p � B , then P.x; y0/ is likely
to be B-smooth. From (1), we know that once we have one root rp of P.X; y0/
mod p, then we can derive all the others by translation by .p; 0/. Line sieving
consists of initializing to zero an array S of length I whose cells represent the x 2
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Œ�I=2; I=2�. Then, for each p�B , we compute the smallest roots xp 2 Œ�I=2; I=2�
of P.X; y0/ mod p and repeat

SŒxp� SŒxp�C logp; xp xpCp:

Then, whenever SŒx� � logP.x; y0/ for x 2 Œ�I=2; I=2�, the value P.x; y0/ is
likely to be B-smooth. We summarize this procedure in Algorithm 2.

Algorithm 2 (Line sieving).

Input: P 2ZŒX; Y �, I; B; y0 2 Z.
Output: Smooth values of P.X; y0/ in Œ�I=2; I=2�.
1: L ¿; SŒx� 0 for all x 2 Œ�I=2; I=2�.
2: for p � B do
3: Let xp be the smallest root of P.X; y0/ mod p in Œ�I=2; I=2�.
4: while rp � I=2 do
5: SŒxp� SŒxp�C logp, xp xpCp.
6: end while
7: end for
8: for x 2 Œ�I=2; I=2� do
9: if SŒx�� logP.x; y0/ then
10: If P.x; y0/ is B-smooth, L L[fxg.
11: end if
12: end for
13: return L.

4.3. Lattice sieving. Let P˛;ˇ .X; Y / 2 ZŒX; Y � be the sieving polynomial de-
scribed in Section 4.1, B the bound on the norm of the ideals in the factor base,
and I; J 2 Z>0. Every pair .x; y/ 2 Œ�I=2; I=2Œ� Œ1; J � such that P˛;ˇ .x; y/ is
B-smooth yields a relations. Therefore, one can repeat the line sieving operation
on P˛;ˇ .X; y0/ for every y0 2 Œ1; J �. This method is efficient when sieving with
primes p < I . but when the primes are significantly larger than I , the root compu-
tation at Step 3 of Algorithm 2 is often performed for nothing since there is a good
chance that none of the x 2 Œ�I=2; I=2Œ will be a root of P˛;ˇ .X; y0/ mod p. A
way around that is to have an array S of length IJ representing Œ�I=2; I=2Œ and
to fill it by line sieving methods for the primes p < I and by lattice sieving for the
other primes.

The lattice sieve was first described by Pollard [38]. Since then, it has been exten-
sively studied and improved in the past 15 years, and the most recent developments
of this methods yielded the factorization of RSA768 (see [28]). This strategy relies
on a one-time enumeration of roots of P˛;ˇ .X; Y / mod p in Œ�I=2; I=2Œ� Œ1; J �.
The entry x � IJ of the array S that we use to store the logarithmic contributions
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corresponds to the pair .i; j / 2 Œ�I=2; I=2Œ� Œ1; J � where

i D .x� I=2/ mod I; j D .x� i � I=2/=I:

As in the line sieving case, every entry of S is initialized to zero, and for every
p � B and every .i; j / 2 Œ�I=2; I=2Œ� Œ1; J � such that p j P˛;ˇ .i; j /, we want
to perform the operation SŒx� SŒx�C logp. Line sieving repeated on every
line j � J allows us to efficiently do this for p < I . For the others, we fol-
lowed the approach of [19], as it is done in [28] for the factorization of RSA768.
By [19, Proposition 1], we know that for every p such that we have a root rp
of P˛;ˇ .X; 1/ modulo p, there exists a basis f.a; b/; .c; d/g of the lattice spanned
by f.rp; 1/; .p; 0/g that satisfies

� b > 0 and d > 0;

� �I < a � 0� c < I ;

� c � a � I .

This basis is computed via an algorithm described in [19] that relies on the con-
tinued fraction expansion of rp. It satisfies p j P˛;ˇ .ia C jc; ib C jd/ for all
.i; j / 2 Z2. To fill the array S , we start from .i; j /D .0; 0/ which is a common
root modulo all primes. Then, by induction, we construct the next pair .i 0; j 0/ from
.i; j / by choosing

� .i; j /C .a; b/ if i � �a;

� .i; j /C .c; d/ if i < I � c;

� .i; j /C .a; b/C .c; d/ if I � c � i < �a.

4.4. Special-q. The sieving space Œ�I=2; I=2Œ�Œ1; J � only contains a limited num-
ber of pairs .i; j / yielding a smooth value. Enlarging I and J might cause its size to
rapidly exceed single precision. For a fixed prime q, the special-q strategy consists
of sieving with a polynomial Pq derived from the original sieving polynomial P
such that

8.i; j / 2 Œ�I=2; I=2Œ� Œ1; J �; 9.x; y/ 2 Z2; Pq.i; j /D P.x; y/;

8.i; j / 2 Œ�I=2; I=2Œ� Œ1; J �; q j Pq.i; j /:

This strategy was used by Pollard in his original paper [38] to sieve on the rational
side, but most current implementations use it on the algebraic side as well [28].
To create Pq for a given q, we need a root rq of P modulo q. Then, we find a
reduced basis .a0; b0/; .a1; b1/ of the lattice spanned by the vectors .q; 0/; .rq; 1/.
The polynomial Pq is then simply given by

Pq.i; j /D P.ia0C ja1; ib0C jb1/:
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The reduced basis is given by successive Gaussian reductions, as explained in [19].
Then, to sieve with a given polynomial P , we repeat the procedure described
in Section 4.3 for many different polynomials of the form Pq . Fortunately, once
the roots of P mod p for all p � B have been computed, it is possible to use these
values to compute the roots of Pq mod p for p � B . Indeed,

P.ia0C ja1; ib0C jb1/� 0 mod p

means that there is some root rp of P.X;1/ mod p such that rp�
ia0Cja1
ib0Cjb1

mod p.
This implies that we have Pq.r

q
p ; 1/� 0 mod p for

rqp �
i

j
��

a1� rpb1

a0� rpb0
mod p;

which gives us a root of Pq.X; 1/ mod p from .a0; b0/; .a1; b1/ and a root of
P.X; 1/ mod p. We summarize our procedure to derive relations from an ideal
a� OK in Algorithm 3.

Algorithm 3 (Sieving procedure).

Input: a� OK , BD fp j N.p/� Bg, I; J 2 Z>0.
1: Select ˛; ˇ 2 OK and a sieving polynomial P˛;ˇ with Algorithm 1.
2: For all p � B , compute the roots of P˛;ˇ .X; 1/ mod p.
3: for q � B do
4: Compute Pq and its roots modulo the p � B as in Section 4.4.
5: Let S be an array of size IJ initialized to 0.
6: for p � I do
7: Do SŒx� SŒx�C logp for each x representing .i; j / 2 Œ�I=2; I=2Œ�

Œ1; J � such that p jPq.i; j / by repeating Algorithm 2 for each line j � J .
8: end for
9: for p > I do
10: Calculate a basis f.a; b/; .c; d/g of the lattice of points in Œ�I=2; I=2Œ�

Œ1; J � that are roots of Pq.X; Y / mod p with the method of Section 4.3.
11: Do SŒx� SŒx�C logp for each x representing .i; j / 2 Œ�I=2; I=2Œ�

Œ1; J � such that p j Pq.i; j / by using the method of Section 4.3.
12: end for
13: end for
14: for x � IJ do
15: if SŒx�� logPq.i; j /, where x represent .i; j / 2 Œ�I=2; I=2Œ� Œ1; J � then
16: If logPq.i; j / is B-smooth, store the corresponding relation.
17: end if
18: end for
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4.5. Overall relation collection phase. A necessary condition to compute the class
group and the unit group is to produce a full-rank relation matrix M . Our sieving
methods allow us to derive relations in Cl.OK/ very rapidly, but it is hard to force a
given prime to occur in a relation. The best performance is obtained by sieving with
the trivial ideal OK . If we want to see a given prime ideal p j .p/ occur in a relation,
one can use the special-q with q D p, or sieve with the ideal p. However, even
after using those methods, some prime ideals still do not contribute to the rank
of M . Rather than sieving in random power-products involving missing primes,
one might prefer to switch to enumeration-based methods to complete the relation
search. To identify the primes that need to appear in a relation, we perform an LU
decomposition of the relation matrix modulo a random wordsize prime. We try to
produce enough relations with sieving so that the rank of M is 97% of #B. Then
we find additional relations with enumeration. We summarize this procedure:

Algorithm 4 (Full rank relation matrix computation).

Input: K, B .
Output: A full-rank relation matrix for the primes of norm bounded by B .
1: B fp j N.p/� Bg D fp1; : : : ; pN g.
2: Derive N relations by repeating Algorithm 3 with a D .1/. Let M be the

relation matrix.
3: Perform an LU decomposition of M and let EmptyList be the list of zero

columns.
4: for p 2 EmptyList do
5: Sieve with p, update M .
6: end for
7: Update EmptyList by updating the LU decomposition of M .
8: for p 2 EmptyList do
9: Find a relation involving p by enumerating short elements in random power-

products.
10: end for
11: return M .

To assess the advantage of sieving over enumeration techniques, we need to
isolate its contribution to the performances of the class group and unit group com-
putation. To do this, we used a modified version of the function bnfinit of the
computer algebra software PARI that accepts in input a list of precomputed rela-
tions. We interfaced via Sage this version of PARI with a development version of
Magma containing a function creating relations with the sieving algorithm. The
Magma function tries to create enough relations so that the rank of M is 97%
of #B and passes it to PARI which adds new relations with enumeration methods
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and calculates the class group and the unit group. We compared the performance
of this approach to the traditional bnfinit function of PARI. There are two main
reasons for using a hybrid version. The first one is that PARI’s implementation of
enumeration techniques is the most efficient. As these are necessary to finish the
creation of the relation matrix after calling the sieving algorithm, it is interesting
to see how the two perform together. Another reason for this choice is the fact that
many different algorithms contribute to the computation of the class group and the
unit group. In particular, we use time-consuming linear algebra methods such as
the HNF computation. Our methodology avoids the risk of seeing the influence of
the quality of the implementation of other algorithms occurring in the class group
and unit group computation.

We performed our computations on a 2.6 GHz Opteron with 4 GB of memory.
We used a branch of the development version 2.6.0 of PARI provided by Loïc
Grenié and the development version of Magma, interfaced via Sage 4.7.2. We
allocated 3 GB of memory to the computation made with PARI. For each size d ,
we drew at random 10 number fields with discriminant satisfying log2j�j D d . For
each discriminant, we computed the class group and the unit group with bnfinit,
which we refer to as the PARI method, and with the hybrid version which we refer
to as the PARI+Sieving method. The average timings, in CPU sec (rounded to
the nearest integer), are presented in Table 1. They illustrate the impact of sieving
methods for small degree number fields. It is very strong for number fields of
degree 3, 4, and 5, for which we often witness a speedup by a factor at least 10,
while it is rather moderate for degree-6 number fields, and negligible for number
fields of degree 7 and 8. Finding smooth values of a polynomial gets more difficult
when we increase its degree, but it is not the only reason why the impact of sieving
decreases with the degree. Indeed, for degree 6 number field, our sieving algorithm
still derives relations at a competitive pace, but there are many linear dependencies

n log2j�j PARI PARI+Sieving

3 120 76 11
3 140 694 66
3 160 6828 333
3 180 29807 2453

4 120 38 7
4 140 366 24
4 160 4266 175
4 180 31661 1201

n log2j�j PARI PARI+Sieving

5 120 33 18
5 140 295 64
5 160 3402 378
5 180 16048 2342

6 120 40 111
6 140 294 161
6 160 1709 1012
6 180 14549 8413

Table 1. Impact of sieving on class group and unit group computation of small
degree number fields. Timings in CPU-seconds.
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n Magma 2.18 PARI PARI+Sieving

20 0.7 0.5 0.2
30 6 5 3
40 22 44 66
45 128 271 556
50 170 593 1562
54 1453 1085 9251

Table 2. Impact of the quadratic sieve on computations in fields generated by a
root of X2C 4.10nC 1/. Timings in CPU-seconds.

whereas enumeration allows a more targeted search, thus avoiding linear depen-
dencies. To put these improvements into perspective, we show in Table 2 the
impact of Jacobson’s self-initializing quadratic sieve [25] which is implemented in
Magma 2.18. The timings for PARI and PARI+Sieving are derived under the same
setting as for Table 1. In addition, we added the performances of Magma 2.18
which uses different methods for linear algebra. Timings for the same series of
number fields were reported by Jacobson in [25, Table A.3] on a 296-MHz Sun
processor (for a fair comparison one has to take into account the verification time
since the timings of Table 1 and Table 2 correspond to a certification under GRH).

5. Computing the unit group

Assume that we have created a relation matrix .ei;j / corresponding to the relations

.�i /D p
ei;1
1 � � � p

ei;N
N :

Every kernel vector allows us to derive a unit of OK . Let ˇ1; : : : ; ˇk be a generating
set of the units created so far. We compute a new unit ˇ0, and we wish to find a
new minimal generating set for hˇ1; : : : ; ˇk; ˇi. Usually this is done by computing
(real) logarithms of the units followed by some approximate linear algebra to find
a (tentative) relation as well as the (tentative) new basis. This is then followed
by some verification of the relation to guarantee correctness, by using real based
computations. The difficulty comes from the fact that the entries in the real matrix
differ vastly in size — by several orders of magnitude — thus making it necessary
to work with a huge precision; in fact the precision is also subexponential in the
discriminant for guaranteed results.

Here, we propose to use p-adic logarithms instead. The key advantage comes
from the much better control of error propagation in the linear algebra: Unless
division by nonunits happens, linear algebra does not increase errors. However,
while the correctness is based on the unproven Leopoldt conjecture about the non-
vanishing of the p-adic regulator, this is not a problem in practice: Any relation
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found by the p-adic method can easily be verified unconditionally, thus a failure
of the algorithm would provide a counterexample to Leopoldt’s conjecture.

We start by choosing a prime p such that the p-adic splitting field Kp has moder-
ate degree; here we allow at most degree 2. In practice, we search for the smallest
prime p > 10000 such that the p-adic splitting field is unramified of degree � 2.
Then we have n embeddings �i WK!Kp, and we define a map Lp WK�!Knp
given by x 7! .log�i .x//i , where �i is the usual p-adic logarithm extended to Kp .
In order to estimate the necessary p-adic precision, we also need the usual real
logarithmic embedding, denoted by L WK�!RrC1. We are looking for a (rational)
solution .xi /i 2QkC1 to

P
xiLp.ˇi /D Lp.ˇ

0/. Using p-adic linear algebra we
will instead get a p-adic solution (or a proof that ˇ0 is independent). Using standard
rational reconstruction techniques, we derive the rational solution from the p-adic
one and then the integral relation between the units. In order to estimate the p-adic
precision, we bound numerator and denominator using Cramer’s rule and universal
lower bounds on the logarithms of units. The rational solution then also satisfiesP
xiL.ˇi /D L.ˇ

0/. Let .˛i /i be a basis for hˇ1; : : : ; ˇs; ˇ0i. By Cramer’s rule,

xi D det.Lp.ˇ1/; : : : ; Lp.ˇ0/; : : : ; Lp.ˇs//=det.Lp.ˇ1/; : : : ; Lp.ˇs//:

Since the (unknown) .˛i / form a basis, we see that

det.Lp.ˇ1/; : : : ; Lp.ˇ0/; : : : ; Lp.ˇs//=det.Lp.˛1/; : : : ; Lp.˛s//

is an integer and the same is true for L instead of Lp; thus we can write xi as a quo-
tient of integers. In either case, to make sense of the determinants, we will have to
select an appropriate number of rows to make the matrices square. To bound the in-
tegers, we make use of the Hadamard bound for det.L.ˇ1/; : : : ; L.ˇ0/; : : : ; L.ˇs//
and some universal lower bound for det.L.˛i //i . For the lower bound we use lower
bounds of logarithms of nontorsion units: kL.˛i /k2 � 21

128
.log d/=d2 (see [17,

3.5]), or, if the unit group has full rank, sD r D r1C r2�1, we use lower regulator
bounds, possibly coming from the Euler product. Having obtained bounds from the
real logarithm (L) with low precision, we calculate the p-adic precision required
to find xi using p-adic linear algebra and rational reconstruction. In the course
of the computation it can happen that the p-adic determinants (p-adic regulators)
have nontrivial valuation. In this case we have to restart the computation with
a correspondingly higher precision to account for the loss. Since the Leopoldt
conjecture has not been proved, we also need to verify the solution by computing
a low-precision estimate for



P xiL.ˇi / � L.ˇ
0/


 to compare it to the lower

bound used above.
From the relation xi we can easily obtain a presentation of the new basis ˛i in

terms of the ˇi , ˇ0. For optimization, we then proceed to compute a new basis z̨i
such that the real logarithms are (roughly) LLL-reduced. We note that we do not
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rely on any LLL estimates here, so any heuristic algorithm that aims at reducing
the apparent size will do. Since we do not have any LLL algorithm that will accept
real input (as opposed to rational), it is important that this does not influence the
correctness.

5.1. Advantages of the p-adic method. There are two core advantages of the p-
adic logarithms over the ordinary, complex, ones: First, the linear algebra problems
we need to solve in order to find dependencies or relations between units have a
much simpler error analysis. In fact, contrary to the complex case, it is possible
through the use of ring based operations to solve linear equations without any
additional loss of precision. This is very important in the context of unit computa-
tion since the matrices representing the image of L.˛/ are very badly conditioned
for classical numerical methods. The other advantage of the p-adic logarithms is
more subtle: If we assume Leopoldt’s conjecture to hold for the field(s) we are
interested in, then instead of doing linear algebra over R with a precision of say q
to find dependencies, it is sufficient to work with a real precision of q=2 and a
p-adic precision of q=2 as well. Thus, assuming classical multiplication, we gain
a factor of about 4 through the use of lower precision. Using fast multiplication
(in high precision), the gain is smaller but still noticeable. But the most important
advantage is the much easier precision control: Instead of complicated and very
delicate estimates for linear algebra problems, all we need are upper bounds on
linear combinations with integral coefficients — which are trivial to obtain.

We should also mention that one disadvantage of the p-adic method lies in the
total lack of control over the real size of the units, thus it needs to be paired with
a crude (and uncritical for correctness) size reduction algorithm. Also, it is (cur-
rently) not possible to avoid completely the use of complex (or real) logarithms, as
the p-adic method is not capable to proving a unit to be torsion without knowledge
of bounds on the real size.

5.2. Lower bound from Euler product. Suppose that, as in the class group algo-
rithm, we are given an approximation of the Euler product; that is, we have a real
number E such that 1=

p
2� hR=E �

p
2. After the relation matrix has full rank,

and assuming the factor base is large enough for correctness, we have an upper
bound for the class number, thus a lower bound for R. This lower bound will be
several orders of magnitude larger than the universal bounds available otherwise.

5.3. Saturation. After the initial steps of the algorithm, when the relation matrix
has full rank, we have a tentative class number h and a tentative regulator R. Ex-
perimentally, at this point, hR does not approximate the Euler product very well —
the product will be off by several orders of magnitude. However, after finding
one or two more relations, the product has the same size as the Euler product;
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it frequently even looks like only a factor of 2 is missing in either h or R. To
find the last missing relation can easily take more time than the entire previous
run, therefore we suggest using saturation methods instead. At this point in the
algorithm the relations define a subgroup U of the S -unit group US where S is the
factor basis. From the Euler product we know that the index .US WU/DW b is small,
let’s say b < B . For any prime p j b there is some u 2 US nU such that up 2 U .
Let us fix the prime p. For any prime ideal Q … S such that p j N.Q/� 1 we
can define the map �Q W U ! F�Q=.F

�
Q/
p mapping S-units into the multiplicative

group of the residue class field modulo p-th powers. The Chebotarev theorem [44]
guarantees that if u 2U is not a p-th power, there will be some Q such that �Q.u/
is nontrivial, that is, u is not a p-th power modulo Q. We now simply intersect
ker�Q for several Q until either the intersection is U p or it does not change for
five consecutive Q. We expect that any u 2 U=

T
ker�Q will have a p-th root

in US but not in U . Therefore vp D u is a new relation that will change hR by
p. Repeating this for all p < B until we cannot enlarge U any more we find the
missing relations. Similar techniques have been used a long time but were confined
to the unit group [45; 36]. This appears to be the first time that saturation has been
applied to the full relation lattice.

5.4. Representation. During the execution of the algorithm, all (S-)units are nat-
urally represented as power products of the relations coming from the sieving (or
the saturation). It is well known that the explicit representation of the units with
respect to a fixed basis for the field can require exponentially large coefficients, so it
is important to operate on the power products as much as possible. However, even
the exponent vectors constructed for the basis of the unit group, or the saturation,
will become huge, so we need to “size reduce” the power products. In particular,
this happens even if the resulting element is not too large. Using ideas of [13] for
compact representations and [22] for reduced divisors in function fields, we can
find a representation for those elements that depends only on the logarithmic size
(and the number field) rather than the execution path. For any prime p we can write
any unit uD

Q
r
ei
i D

Q
a
pi

i with elements such that the size of ai depends on the
discriminant and p only. The length of the product comes from L.u/. Furthermore,
in this presentation it is easy to test for p-th powers as only a0 needs to be tested
and this is a small element.

5.5. Example. To illustrate the power of the p-adic method, we look at a to-
tally real quartic field generated by a root of

x4C 17211x3C 5213x2� 176910463x� 4958:

The discriminant � of the maximal order has 38 digits. In the course of the com-
putation, we found 534 relations involving prime ideals of norm up to 3000 D
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0:4 log2j�j describing a trivial class group. We then searched for 5 further rela-
tions to obtain units ui (1� i � 5). As power products of the relations, the units
are given via exponent vectors ei with keik1 ranging between 1080 and 10160

and 20 < keik1=keik1 < 92. So, while not uniformly large, the exponents are
nonsparse, involving huge integers. Using a decimal precision of 170 digits, we
establish that the logarithms of the units are roughly kL.ui /k1 � 10160. The first
three units are indeed independent, giving a basis for a subgroup of full rank, the
fourth is then dependent. Choosing the prime p D 10337 we get Qp as a splitting
field. Using a p-adic precision of 245 digits (that is, working in Zp mod p245), we
compute the dependency for the fourth unit, involving exponents of around 10360.
The new unit group is then tentatively LLL reduced, producing a new basis where
the kL.zui /k1 are bounded by 107 only. The last unit then involves a much smaller
dependency, here the exponents are only around 1060.

Unfortunately, looking at the Euler product, the unit group is not complete.
However, the saturation technique outlined above takes 1 sec to determine that
the product of the three basis elements is (probably) a square. Finding a better
representation where the exponents are all powers of 2 takes less than 1 sec and
then we can enlarge the unit group easily.

Due to the implementation, the p-adic precision used was actually higher: Chang-
ing (increasing) precision is very computationally expensive, so we try to avoid this
and simply double the precision. We used a precision of 320 for the p-adics and
a maximal precision of 1000 for the real precision. The computation of the log is
the dominating part: We spent 50 sec or 90% of the total processing time here.

6. Conclusion

We introduced new techniques to enhance the performances of the subexponential
methods for computing the class group and the unit group of a number field. In
particular, sieving allows a speedup of an order of magnitude for number fields
of small degree. These techniques could be developed even further. Indeed, we
have not taken into account all the improvements to sieving techniques described
in the context of the number field sieve algorithm, such as large prime variations or
cache-friendly methods. It is also notable that fast techniques for deriving relations
in the class group of a small degree number field have applications in evaluating
isogenies between small genus curves via complex multiplication methods. Indeed,
in that case, evaluating isogenies between genus g curves involves relations in the
class group of a degree 2g number field.
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