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We describe a tabulation of (conjecturally) modular elliptic curves over the field
Q.
p

5/ up to the first elliptic curve of rank 2. Using an efficient implementation
of an algorithm of Lassina Dembélé, we computed tables of Hilbert modular
forms of weight .2; 2/ over Q.

p
5/, and via a variety of methods we constructed

corresponding elliptic curves, including (again, conjecturally) all elliptic curves
over Q.

p
5/ that have conductor with norm less than or equal to 1831.

1. Introduction

1A. Elliptic curves over Q. Tables of elliptic curves over Q have been of great
value in mathematical research. Some of the first such tables were those in Antwerp
IV [4], which included all elliptic curves over Q of conductor up to 200, and also
a table of all elliptic curves with bad reduction only at 2 and 3.

Cremona’s book [10] gives a detailed description of algorithms that together out-
put a list of all elliptic curves over Q of any given conductor, along with extensive
data about each curve. The proof that his algorithm outputs all curves of given
conductor had to wait for the proof of the full modularity theorem in [8]. Cremona
has subsequently computed tables [12] of all elliptic curves over Q of conductor
up to 300;000, including Mordell-Weil groups and other extensive data about each
curve.

In another direction, Stein and Watkins (see [33; 1]) created a table of 136,832,795
elliptic curves over Q of conductor � 108, and a table of 11,378,911 elliptic curves
over Q of prime conductor � 1010. There are many curves of large discriminant
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missing from the Stein-Watkins tables, since these tables are made by enumerating
curves with relatively small defining equations, and discarding those of large con-
ductor, rather than systematically finding all curves of given conductor no matter
how large the defining equation.

1B. Why Q.
p

5/? Like Q, the field F DQ.
p

5/ is a totally real field, and many
of the theorems and ideas about elliptic curves over Q have been generalized to
totally real fields. As is the case over Q, there is a notion of modularity of elliptic
curves over F , and work of Zhang [36] has extended many results of Gross and
Zagier [20] and Kolyvagin [24] to the context of elliptic curves over totally real
fields.

If we order totally real number fields K by the absolute value of their discrim-
inant, then F D Q.

p
5/ comes next after Q (the Minkowski bound implies that

jDK j � .n
n=n!/2, where nD ŒK WQ�, so if n� 3 then jDK j> 20). That 5 divides

disc.F /D 5 thwarts attempts to easily generalize the method of Taylor and Wiles
to elliptic curves over F , which makes Q.

p
5/ even more interesting. Furthermore

F is a PID and elliptic curves over F admit global minimal models and have well-
defined notions of minimal discriminants. The field F also has 31 CM j -invariants,
which is far more than any other quadratic field (see Section 5). Letting ' D 1C

p
5

2
,

we have that the group of units f˙1g � h'i of the ring RDOF D ZŒ'� of integers
of F is infinite, leading to additional complications. Finally, F has even degree,
which makes certain computations more difficult, as the cohomological techniques
of [19] are not available.

1C. Modularity conjecture. The following conjecture is open:

Conjecture 1.1 (Modularity). The set of L-functions of elliptic curves over F

equals the set of L-functions associated to cuspidal Hilbert modular newforms
over F of weight .2; 2/ with rational Hecke eigenvalues.

Given the progress on modularity theorems initiated by [35], we are optimistic that
Conjecture 1.1 will be proved. We assume Conjecture 1.1 for the rest of this paper.

In Section 2 we sketch how to compute Hilbert modular forms using arithmetic
in quaternion algebras. Section 3 gives numerous methods for finding an elliptic
curve corresponding to a Hilbert modular form. It should be noted that these are
the methods originally used to make the tables – in hindsight, it was discovered
that some of the elliptic curves found using the more specific techniques could
be found using a better implementation of the sieved enumeration of Section 3B.
Section 4 addresses how to find all curves that are isogenous to a given curve. In
Section 5 we enumerate the CM j -invariants in F . We discuss some projects for
future work in Section 6. Finally, Section 7 contains tables that summarize various
information about our dataset [5].
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2. Computing Hilbert modular forms over F

In Section 2A we sketch Dembélé’s approach to computing Hilbert modular forms
over F , then in Section 2B we make some remarks about our fast implementation.

2A. Hilbert modular forms and quaternion algebras. Dembélé [14] introduced
an algebraic approach via the Jacquet-Langlands correspondence to computing
Hilbert modular forms of weight .2; 2/ over F . The Hamiltonian quaternion al-
gebra F Œi; j ; k� over F is ramified exactly at the two infinite places, and contains
the maximal order

S DR
�

1
2
.1�'i C'j /; 1

2
.�'i C j C'k/; 1

2
.' i �'j C k/; 1

2
.i C'j �'k/

�
:

For any nonzero ideal n in RDOF , let P1.R=n/ be the set of equivalence classes of
column vectors with two coprime entries a; b 2R=n modulo the action of .R=n/�.
We use the notation Œa W b� to denote the equivalence class of

�
a
b

�
. For each prime

p jn, we fix a choice of isomorphism F Œi; j ; k�˝Fp�M2.Fp/, which induces a left
action of S� on P1.R=n/. The action of Tp, for p − n, is Tp.Œx�/D

P
Œ˛x�, where

the sum is over the classes Œ˛� 2 S=S� with Nred.˛/ D �p (reduced quaternion
norm), where �p is a fixed choice of totally positive generator of p. The Jacquet-
Langlands correspondence implies that the space of Hilbert modular forms of level
n and weight .2; 2/ is noncanonically isomorphic as a module over the Hecke
algebra

TD ZŒTp W p nonzero prime ideal of R �

to the finite dimensional complex vector space V D CŒS�nP1.R=n/�.

2B. Remarks on computing with P1.R=n/. In order to implement the algorithm
sketched in Section 2A, it is critical that we can compute with P1.R=n/ very, very
quickly. For example, to apply the method of Section 3G below, in some cases
we have to compute tens of thousands of Hecke operators. Thus in this section we
make some additional remarks about this fast implementation.

When n D pe is a prime power, it is straightforward to efficiently enumerate
representative elements of P1.R=pe/, since each element Œx W y� of P1.R=pe/ has
a unique representative of the form Œ1 W b� or Œa W 1� with a divisible by p, and these
are all distinct. It is easy to put any Œx W y� in this canonical form and enumerate the
elements of P1.R=pe/, after choosing a way to enumerate the elements of R=pe.
An enumeration of R=pe is easy to give once we decide on how to represent R=pe .

In general, consider the factorization nD
Qm

iD1 p
ei

i . We have a bijection between
P1.R=n/ and

Qm
iD1 P1.R=p

ei

i /, which allows us to reduce to the prime power case,
at the expense of having to compute the bijection R=nŠ

Q
R=p

ei

i . To this end,
we represent elements of R=n as m-tuples in

Q
R=p

ei

i , thus making computation
of the bijection trivial.
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To minimize dynamic memory allocation, thus speeding up the code by an order
of magnitude, in the implementation we make some arbitrary bounds; this is not a
serious constraint, since the linear algebra needed to isolate eigenforms for levels
beyond this bound is prohibitive. We assume m� 16 and each individual p

ei

i � 231,
where pi is the residue characteristic of pi . In all cases, we represent an element
of R=p

ei

i as a pair of 64-bit integers, and represent an element of R=n as an array
of 16 pairs of 64-bit integers. We use this representation in all cases, even if n is
divisible by less than 16 primes; the gain in speed coming from avoiding dynamic
memory allocation more than compensates for the wasted memory.

Let pe be one of the prime power factors of n, and let p be the residue charac-
teristic of p. We have one of the following cases:

� p splits in R; then R=pŠ Z=pZ and we represent elements of R=pe as pairs
.a; 0/ mod pe with the usual addition and multiplication in the first factor.

� p is inert in R; then R=pe Š .Z=peZ/Œx�=.x2 � x � 1/, and we represent
elements by pairs .a; b/ 2 Z=peZ with multiplication

.a; b/.c; d/D .acC bd; ad C bd C bc/ mod pe:

� p is ramified and e D 2f is even; this is exactly the same as the case when p

is inert but with e replaced by f , since R=peRŠ .Z=pf Z/Œx�=.x2�x� 1/.

� p is ramified (so p D 5) and e D 2f � 1 is odd; the ring ADR=pe is trickier
than the rest, because it is not of the form ZŒx�=.m;g/ where m 2 Z and
g 2 ZŒx�. We have A� .Z=5f Z/Œx�=.x2�5; 5f�1x/, and represent elements
of A as pairs .a; b/ 2 .Z=5f /� .Z=5f�1Z/, with arithmetic given by

.a; b/C .c; d/D .aC c mod 5f ; bC d mod 5f�1/

.a; b/ � .c; d/D .acC 5bd mod 5f ; ad C bc mod 5f�1/:

We find that ' 2R 7! .1=2; 1=2/.

3. Strategies for finding an elliptic curve attached to a Hilbert modular form

In this section we describe various strategies to find an elliptic curve associated to
each of the Hilbert modular forms computed in Section 2. Let f be a rational cusp-
idal Hilbert newform of weight .2; 2/ as in Section 2. According to Conjecture 1.1,
there is some elliptic curve Ef over F such that L.f; s/D L.Ef ; s/. (Note that
Ef is only well defined up to isogeny.) Unlike the case for elliptic curves over
Q (see [10]), there seems to be no known efficient direct algorithm to find Ef .
Nonetheless, there are several approaches coming from various directions, which
are each efficient in some cases.
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Everywhere below, we continue to assume that Conjecture 1.1 is true and assume
that we have computed (as in Section 2) the Hecke eigenvalues ap 2Z of all rational
Hilbert newforms of some level n, for Norm.p/�B a good prime, where B is large
enough to distinguish newforms. In some cases we will need far more ap in order
to compute with the L-function attached to a newform. We will also need the ap

for bad p in a few cases, which we obtain using the functional equation for the
L-function (as an application of Dokchitser’s algorithm [16]).

We define the norm conductor of an elliptic curve over F to be the absolute
norm of the conductor ideal of the curve.

In Section 3A we give a very simple enumeration method for finding curves,
then in Section 3B we refine it by taking into account point counts modulo primes;
together, these two methods found a substantial fraction of our curves. Sections 3C
and 3D describe methods for searching in certain families of curves, for example,
curves with a torsion point of given order or curves with a given irreducible mod
` Galois representation. Section 3E is about how to find all twists of a curve with
bounded norm conductor. In Section 3F we mention the Cremona-Lingham algo-
rithm, which relies on computing all S-integral points on many auxiliary curves.
Finally, Section 3G explains in detail an algorithm of Dembélé that uses explicit
computations with special values of L-functions to find curves.

3A. Extremely naïve enumeration. The most naïve strategy is to systematically
enumerate elliptic curves EWy2 D x3C axC b, with a; b 2 R, and for each E,
to compute ap.E/ for p not dividing Disc.E/ by counting points on E reduced
modulo p. If all the ap.E/ match with those of the input newform f up to the
bound B, we then compute the conductor nE , and if it equals n, we conclude from
the sufficient largeness of B that E is in the isogeny class of Ef .

Under our hypotheses, this approach provides a deterministic and terminating
algorithm to find all Ef . However, it can be extremely slow when n is small but
the simplest curve in the isogeny class of Ef has large coefficients. For example,
using this search method it would be infeasible to find the curve (1) computed by
Fisher using the visibility of XŒ7�.

3B. Sieved enumeration. A refinement to the approach discussed above uses the
ap values to impose congruence conditions modulo p on E. If f is a newform
with Hecke eigenvalues ap, then # QEf .R=p/DN.p/C1�ap. Given p not dividing
the level n, we can find all elliptic curves modulo p with the specified number of
points, especially when N.p/C 1� ap has few prime factors. We impose these
congruence conditions at multiple primes pi , use the Chinese remainder theorem,
and lift the resulting elliptic curves modulo R=

Q
pi to nonsingular elliptic curves

over R.
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While this method, like the previous one, will eventually terminate, it too is very
ineffective if every E in the class of isogenous elliptic curves corresponding to f
has large coefficients. However in practice, by optimally choosing the number of
primes pi , a reasonably efficient implementation of this method can be obtained.

3C. Torsion families. We find elliptic curves of small conductor by specializing
explicit parametrizations of families of elliptic curves over F having specified tor-
sion subgroups. We use the parametrizations of [25].

Theorem 3.1 (Kamienny and Najman, [22]). The following is a complete list of
torsion structures for elliptic curves over F :

Z=mZ; 1�m� 10; mD 12;

Z=2Z˚Z=2mZ; 1�m� 4;

Z=15Z:

Moreover, there is a unique elliptic curve over F with 15-torsion.

We use the following proposition to determine in which family to search.

Proposition 3.2. Let ` be a prime and let E be an elliptic curve over F . Then
` j #E0.F /tor for some elliptic curve E0 in the isogeny class of E if and only if
` jN.p/C 1� ap for all odd primes p at which E has good reduction.

Proof. If ` j #E0.F /tor, from the injectivity of the reduction map at good primes
[23, Appendix], we have that ` j # QE0.Fp/DN.p/C1�ap. The converse statement
is one of the main results of [23]. �

By applying Proposition 3.2 for all ap with p up to some bound, we can decide
whether or not it is likely that some elliptic curve in the isogeny class of E contains
an F -rational `-torsion point. If this is the case, then we search over those families
of elliptic curves with rational `-torsion. With a relatively small search space, we
thus find many elliptic curves with large coefficients more quickly than with the
algorithm of Section 3A. For example, we first found the elliptic curve E given by

y2
C'y D x3

C .27' � 43/xC .�80'C 128/

with norm conductor 145 by searching for elliptic curves with torsion subgroup
Z=7Z.

3D. Congruence families. Suppose that we are searching for an elliptic curve E

and we already know another elliptic curve E0 with EŒ`��E0Œ`�, where ` is some
prime and EŒ`� is irreducible. Twists of the modular curve X.`/ parametrize pairs
of elliptic curves with isomorphic `-torsion subgroups, so finding rational points on
the correct twist allows us to find curves with the same mod ` Galois representation



A DATABASE OF ELLIPTIC CURVES OVER Q.
p

5/: A FIRST REPORT 151

as E0. Using this idea, we found the curve E given by

y2
C'xy D x3

C .' � 1/x2

C .�257364' � 159063/xC .�75257037' � 46511406/ (1)

with conductor �6' C 42, which has norm 1476. Just given the ap, we noticed
that EŒ7�� E0Œ7�, where E0 has norm conductor 369. The curve E0 had already
been found via naïve search, since it is given by the equation y2C .'C 1/y D

x3 C .' � 1/x2 C .�2'/x. For any elliptic curve, the equation for the correct
twist of X.7/ was found both by Halberstadt and Kraus [21] and by Fisher [18],
whose methods also yield formulas for the appropriate twists of X.9/ and X.11/.

Fisher had already implemented Magma [6] routines to find `-congruent elliptic
curves over Q using these equations and was able to modify his work for Q.

p
5/.

Fortunately, our curve E was then easily found.

3E. Twisting. Let E be an elliptic curve over F . A twist E0 of E is an elliptic
curve over F that is isomorphic to E over some extension of F . A quadratic twist
is a twist in which the extension has degree 2. We can use twisting to find elliptic
curves that may otherwise be difficult to find as follows: Starting with a known
elliptic curve E of some (small) conductor, we compute its twists of conductor up
to some bound, and add them to our table.

More explicitly, if E is given by y2 D x3C axC b and d 2 F�, then the twist
Ed of E by d is given by dy2 D x3C axC b; in particular, we may assume that
d is squarefree. The following is well known:

Proposition 3.3. If n is the conductor of E and d 2OF is nonzero, squarefree and
coprime to n, then the conductor of Ed is divisible by d2n.

Proof. There are choices of Weierstrass equations such that �.Ed /D 212d6�.E/,
where � is the discriminant. Thus the elliptic curve Ed has bad reduction at each
prime that divides d , because twisting introduces a 6th power of the squarefree
d into the discriminant, and d is coprime to �.E/, so no change of Weierstrass
equation can remove this 6th power. Moreover, Ed is isomorphic to E over an
extension of the base field, so Ed has potentially good reduction at each prime
dividing d . Thus the reduction at each prime dividing d is additive. The conductor
is unchanged at the primes dividing n because of the formula relating the conductor,
discriminant and reduction type (see [31, App. C,§15]), that formation of Néron
models commutes with unramified base change, and the fact that at the primes that
divide n the minimal discriminant of Ed is the same as that of E. �

To find all twists Ed with norm conductor at most B, we twist E by all d of the
form ˙'ıd0d1, where ı 2 f0; 1g, d0 is a product of a fixed choice of generators for
the prime divisors of n, d1 is a squarefree product of a fixed choice of generators of
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primes not dividing n, and jN.d1/j �
p

B=C , where C is the norm of the product
of the primes that exactly divide n. We know from 3.3 that this search is exhaustive.

For example, let E be given by y2 C xy C 'y D x3 C .�' � 1/x2 of con-
ductor 5' � 3 having norm 31. Following the above strategy to find twists of
norm conductor � B WD 1831, we have C D 31 and squarefree d1 such that
jN.d1/j �

p
B=C � 7:6 : : :. Thus d1 2 f1; 2; '; 2'g and checking all possibilities

for 'ıd0d1, we find the elliptic curve E�'�2 having norm conductor 775 and the
elliptic curve E5'�3 having norm conductor 961. Other twists have larger norm
conductors; for example, E2 has norm conductor 126976D 212 � 31.

3F. Elliptic Curves with good reduction outside S . We use the algorithm of Cre-
mona and Lingham from [11] to find all elliptic curves E having good reduction at
primes outside of a finite set S of primes in F . This algorithm has limitations over
a general number field K due to the difficulty of finding a generating set for E.K/

and points on E defined over OK . Using Cremona’s Magma implementation of
the algorithm, we found several elliptic curves not found by other methods, for
example, y2C .'C 1/xyCy D x3�x2C .�19' � 39/xC .�143' � 4/, which
has norm conductor 1331.

3G. Special values of twisted L-series. In [15], Lassina Dembélé outlines some
methods for finding modular elliptic curves from Hilbert modular forms over real
quadratic fields. Formally, these methods are not proven to be any better than a
direct search procedure, as they involve making a large number of guesses, and a
priori we do not know just how many guesses we will need to make. And unlike
other methods described in this paper, this method requires many Hecke eigen-
values, and computing these takes a lot of time. However, this method certainly
works extremely well in many cases, and after tuning it by using large tables of
elliptic curves that we had already computed, we are able to use it to find more
elliptic curves that we would have had no hope of finding otherwise; we will give
an example of one of these elliptic curves later.

When the level n is not square, Dembélé’s method relies on computing or guess-
ing periods of the elliptic curve by using special values of L-functions of twists
of the elliptic curve. In particular, the only inputs required are the level of the
Hilbert modular form and its L-series. So we suppose that we know the level
n D .N / of the form, where N is totally positive, and that we have sufficiently
many coefficients of its L-series ap1

; ap2
; ap3

; : : :.
Let �1 and �2 denote the embeddings of F into the real numbers, with �1.'/�

1:61803 : : :. For an elliptic curve E over F we get two associated embeddings
into the complex numbers, and hence a pair of period lattices. Let �C

E
denote

the smallest positive real period corresponding to the embedding �1, and similarly
define ��

E
to be the smallest period which lies on the positive imaginary axis. We
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will refer to these as the periods of E, and as the period lattices are interchanged
when E is replaced with its conjugate elliptic curve, we let �C

E
and ��

E
denote

the least real and imaginary periods of the lattice under the embedding �2.
For ease, we write

�CC
E
D�C

E
�C

E
�C�

E
D�C

E
��

E

��C
E
D��E�

C

E
���E D��E�

�

E
:

We refer to these numbers as the mixed periods of E.

3G.1. Recovering the elliptic curve from its mixed periods. If we know these mixed
periods to sufficient precision, it is not hard to recover the elliptic curve E. Without
the knowledge of the discriminant of the elliptic curve, we do not know the lattice
type of the elliptic curve and its conjugate, but there are only a few possibilities
for what they might be. This gives us a few possibilities for the j -invariant of
E. Observe that �1.j .E// is either j .�1.E// or j .�2.E// and �2.j .E// is either
j .�1.E// or j .�2.E//, where

�1.E/D
��C

E

�CC
E

D
��

E

�C
E

�2.E/D
1

2

 
1C

��C
E

�CC
E

!
D

1

2

 
1C

��
E

�C
E

!

�1.E/D
�C�

E

�CC
E

D
��

E

�C
E

�2.E/D
1

2

 
1C

�C�
E

�CC
E

!
D

1

2

 
1C

��
E

�C
E

!
and j .�/ is the familiar

j .�/D e�2�i�
C 744C 196884e2� i�

C 21493760e4�i�
C � � � :

We try each pair of possible embeddings for j .E/ in turn, and recognize pos-
sibilities for j .E/ as an algebraic number. We then construct elliptic curves E0

corresponding to each possibility for j .E/. By computing a few ap.E/, we should
be able to determine whether we have chosen the correct j -invariant, in which case
E0 will be a twist of E. We can then recognize which twist it is in order to recover
E.

In practice, of course, as we have limited precision, and as j .E/ will not be
an algebraic integer, it may not be feasible to directly determine its exact value,
especially if its denominator is large.

To get around the problem of limited precision, we suppose that we have some
extra information; namely, the discriminant �E of the elliptic curve we are looking
for. With �E in hand we can directly determine which � to choose: If �1.�E/ > 0

then �1.j .E//D j .�1.E//, and if �1.�E/ < 0 then �1.j .E//D j .�2.E//, and
similarly for �2. We then compute �1.c4.E//D.j .�/�1.�E//

1=3 and �2.c4.E//D

.j .� 0/�2.�E//
1=3.
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Using the approximations of the two embeddings of c4, we can recognize c4

approximately as an algebraic integer. Specifically, we compute

˛ D
�1.c4/C �2.c4/

2
and ˇ D

�1.c4/� �2.c4/

2
p

5
:

Then c4 D ˛Cˇ
p

5, and we can find c6.
In practice, there are two important difficulties we must overcome: We do not

know �E and it may be quite difficult to get high precision approximations to
the mixed periods, and thus we may not be able to easily compute c4. Thus, we
actually proceed by choosing a �guess from which we compute half-integers ˛ and
ˇ and an integer aCb' � ˛Cˇ

p
5, arbitrarily rounding either a or b if necessary.

We then make some choice of search range M , and for each pair of integers m

and n, bounded in absolute value by M , we try each c4;guessD .aCm/C .bCn/'.
Given c4;guess, we attempt to solve

c6;guess D˙

q
c3

4;guess� 1728�guess;

and, if we can, we use these to construct a elliptic curve Eguess. If Eguess has
the correct conductor and the correct Hecke eigenvalues, we declare that we have
found the correct elliptic curve; otherwise, we proceed to the next guess.

For a choice of �guess, we will generally start with the conductor NE , and then
continue by trying unit multiples and by adding in powers of factors of NE .

3G.2. Guessing the mixed periods. We have thus far ignored the issue of actually
finding the mixed periods of the elliptic curve that we are looking for. Finding
them presents an extra difficulty as our procedure involves even more guesswork.
Dembélé’s idea is to use special values of twists of the L-function L.f; s/. Specif-
ically, we twist by primitive quadratic Dirichlet characters over OF , which are
homomorphisms �W .OF=c/

�!˙1, pulled back to OF .
In the case of odd prime conductor, which we will stick to here, there is just

a single primitive quadratic character, which is the quadratic residue symbol. A
simple way to compute it is by making a table of squares, or by choosing a primitive
root of g 2 .OF=c/

�, assigning �.g/D�1, and again making a table by extending
multiplicatively. Alternatively, one could use a reciprocity formula as described
in [7]. For general conductor, one can compute with products of characters having
prime conductor.

For a given f and a primitive �, we can construct the twisted L-function

L.f; �; s/D
X

m�OF

�.m/am

N.m/s
;

where m is a totally positive generator of m. (Note that � is not well defined
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on ideals, but is well defined on totally positive generators of ideals.) L.f; �; s/

will satisfy a functional equation similar to that of L.f; s/, but the conductor is
multiplied by Norm.c/2 and the sign is multiplied by �.�N /.

Oda [28] conjectured relations between the periods of f and the associated ellip-
tic curve E and gave some relations between the periods of f and central values of
L.s; �; 1/. Stronger versions of these relations are conjectured, and they are what
Dembélé uses to obtain information about the mixed periods of E. Specifically,
Dembélé distills the following conjecture from [2], which we further simplify to
state specifically for Q.

p
5/.

Conjecture 3.4. If � is a primitive quadratic character with conductor c relatively
prime to the conductor of E, with �.'/ D s0 and �.1 � '/ D s, (where s; s0 2

fC;�g D f˙1g), then

�
s;s0

E
D c��.�/L.E; �; 1/

p
5;

for some integer c�, where �.�/ is the Gauss sum

�.�/D
X
˛ mod c

�.˛/ exp
�
2� i Tr

�
˛=m
p

5
��
;

with m a totally positive generator of c.

Remark. The Gauss sum is more innocuous than it seems. For odd conductor
c it is of size

p
Norm.c/, while for an even conductor it is of size

p
2 Norm.c/.

Its sign is a 4-th root of unity, and whether it is real or imaginary can be deduced
directly from the conjecture, as it matches with the sign of �s;s0

E
. In particular, �.�/

is real when �.�1/ D 1 and imaginary when �.�1/ D �1, which is a condition
on Norm.c/ mod 4, as �.�1/ � Norm.c/ .mod 4/. This can all be deduced, for
example, from [7].

Also, note that Dembélé writes this conjecture with an additional factor of 4�2;
this factor does not occur with the definition of L.f; s/ that we have given.

Remark. Contained in this conjecture is the obstruction to carrying out the method
described here when n is a square. If the sign of the functional equation of L.f; s/

is �f , then the sign of L.f; �; s/ will be �.�N /�f . When n is a perfect square,
this is completely determined by whether or not �.'/D �.1�'/, so we can only
obtain information about either ��� and �CC or ��C and �C�, and we need
three of these values to find E.

With this conjecture in place, we can describe a method for guessing the mixed
periods of E. Now, to proceed, we construct four lists of characters up to some
conductor bound M (we are restricting to odd prime modulus here for simplicity,
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as primitivity is ensured, but this is not necessary):

S s;s0

D
˚
� mod p W�.'/Ds0; �.1�'/Ds; .p; n/D1;Norm.p/<M; �.�N /D�f

	
:

Here s; s0 2 fC;�g D f˙1g again, and we restrict our choice of characters to force
the functional equation of L.s; �; f / to have positive sign so that there is a good
chance that it does not vanish as the central point. We will consider these lists to
be ordered by the norms of the conductors of the characters in increasing order,
and index their elements as �s;s0

0
; �

s;s0

1
; �

s;s0

2
; : : :. For each character we compute

the central value of the twisted L-function to get four new lists

Ls;s0

D
˚
i ss0p

5 Norm.p/L.E; �; 1/; � 2 S s;s0	
D fLs;s0

0
;Ls;s0

1
; : : :g:

These numbers should now all be integer multiples of the mixed periods, so to get
an idea of which integer multiples they might be, we compute each of the ratios

Ls;s0

0

Ls;s0

k

D

c
�

s;s0

0

c
�

s;s0

k

2Q; k D 1; 2; : : : ;

attempt to recognize these as rational numbers, and choose as an initial guess

�ss0

E;guess D L
s;s0

0

�
lcm

�
numerator

�Ls;s0

0

Ls;s0

k

�
W k D 1; 2; : : :

���1

:

3G.3. An example. We give an example of an elliptic curve that we were only able
to find by using this method. At level nD .�38'C 26/ we found a newform f ,
computed

a.2/.f /D�1; a.�2'C1/.f /D 1;

a.3/.f /D�1; a.�3'C1/.f /D�1; a.�3'C2/.f /D�6;

: : : ;

a.200'�101/.f /D 168;

and determined, by examining the L-function, that the sign of the functional equa-
tion should be �1. (In fact, we do not really need to know the sign of the functional
equation, as we would quickly determine that C1 is wrong when attempting to
find the mixed periods.) Computing the sets of characters described above, and
choosing the first 3 of each, we have

S�� D f�.'C6/; �.7/; �.7'�4/g; S�C D f�.�3'C1/; �.5'�2/; �.'�9/g

SC� D f�.�4'C3/; �.5'�3/; �.�2'C13/g SCC D f�.'C9/; �.9'�5/; �.'C13/g:
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By using the 5133 eigenvalues above as input to Rubinstein’s lcalc [29], we
compute the lists of approximate values

L�� D f�33:5784397862407; �3:73093775400387; �18:6546887691646 g;

L�C D f 18:2648617736017i; 32:8767511924831i; 3:65297235421633ig;

LC� D f 41:4805656925342i; 8:29611313850694i; 41:4805677827298i g;

LCC D f 32:4909970742969; 162:454985515474; 162:454973589303 g:

Note that lcalc will warn us that we do not have enough coefficients to obtain
good accuracy, and we make no claim as far as the accuracy of these values is
concerned. Hoping that the ends will justify the means, we proceed forward.

Dividing each list by the first entry, and recognizing the quotients as rational
numbers, we get the lists

f1:000; 9:00000000005519; 1:80000000009351 g � f1; 9; 9=5g;

f1:000; 0:555555555555555; 5:00000000068986 g � f1; 5=9; 5g;

f1:000; 4:99999999999994; 0:999999949610245g � f1; 5; 1g;

f1:000; 0:199999999822733; 0:200000014505165g � f1; 1=5; 1=5g;

which may give an indication of the accuracy of our values. We now proceed with
the guesses

���E;guess � �33:5784397862407=9 � �3:73093775402141;

��C
E;guess � 18:2648617736017i=5� 3:65297235472034i;

�C�
E;guess � 41:4805656925342i=5� 8:29611313850683i;

�CC
E;guess � 32:4909970742969 D 32:4909970742969:

These cannot possibly be all correct, as ���
E
�CC

E
D ��C

E
�C�

E
. Still, we can

choose any three and get a reasonable guess, and in fact we may choose all possible
triples, dividing some of the guesses by small rational numbers, and choosing the
fourth guess to be consistent with the first three; we build a list of possible embed-
dings of j .E/, which will contain the possibility �1.j .E//� 1:365554233954�

1012, �2.j .E//� 221270:95861123, which is a possibility if

��C
E
D��C

E;guess; �C�
E
D�C�

E;guess; ��C
E
D

��C
E;guess

2
; �CC

E
D

�CC
E;guess

8
:

Cycling through many discriminants, we eventually try

�guess D ' � 2
5
� .19' � 13/;
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which leads us to the guess

�1.c4;guess/D .�1.j .E//�1.�guess//
1=3
� 107850:372979378;

�2.c4;guess/D .�2.j .E//�2.�guess//
1=3
� 476:625892034286:

We have enough precision to easily recognize this as

c4;guess D
108327C 48019

p
5

2
D 48019'C 30154;

and q
c3

4;guess� 1728�guess

does in fact have two square roots: ˙.15835084' C 9796985/. We try both of
them, and the choice with the minus sign gives the elliptic curve

y2
C'xyC'y D x3

C .' � 1/x2
C .�1001' � 628/xC .17899'C 11079/ ;

which has the correct conductor. We compute a few values of ap for this elliptic
curve, and it turns out to be the one that we are looking for.

4. Enumerating the elliptic curves in an isogeny class

Given an elliptic curve E=F , we wish to find representatives up to isomorphism
for all elliptic curves E0=F that are isogenous to E via an isogeny defined over F .
The analogue of this problem over Q has an algorithmic solution as explained in
[10, §3.8]; it relies on:

(1) Mazur’s theorem [27] that if  WE ! E0 is a Q-rational isogeny of prime
degree, then deg. /� 163.

(2) Formulas of Vélu [34] that provide a way to explicitly enumerate all p-isogenies
(if any) with domain E. Vélu’s formulas are valid for any number field, but
so far there has not been an explicit generalization of Mazur’s theorem for any
number field other than Q.

Remark. Assume the generalized Riemann hypothesis. Then work of Larson and
Vaintrob from [26] implies that there is an effectively computable constant CF

such that if 'WE! E0 is a prime-degree isogeny defined over F and E0 and E

are not isomorphic over F , then ' has degree at most CF .

Since we are interested in specific isogeny classes, we can use the algorithm de-
scribed in [3] that takes as input a specific non-CM elliptic curve E over a number
field K, and outputs a provably finite list of primes p such that E might have a
p-isogeny. The algorithm is particularly easy to implement in the case when K is
a quadratic field, as explained in [3, §2.3.4]. Using this algorithm combined with
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Vélu’s formulas, we were able to enumerate all isomorphism classes of elliptic
curves isogenous to the elliptic curves we found via the methods of Section 3, and
thus divide our isogeny classes into isomorphism classes.

5. CM elliptic curves over F

In this section we make some general remarks about CM elliptic curves over F .
The main surprise is that there are 31 distinct Q-isomorphism classes of CM elliptic
curves defined over F , more than for any other quadratic field.

Proposition 5.1. The field F has more isomorphism classes of CM elliptic curves
than any other quadratic field.

Proof. Let K be a quadratic extension of Q. Let HD denote the Hilbert class
polynomial of the CM order OD of discriminant D, so HD 2 QŒX � is the mini-
mal polynomial of the j -invariant jD of any elliptic curve E DED with CM by
OD . Since K is Galois, we have jD 2 K if and only if HD is either linear or
quadratic with both roots in K. The D for which HD is linear are the thirteen val-
ues �3;�4;�7;�8;�11;�12;�16;�19;�27;�28;�43;�67;�163. According
to [9], the D for which HD is quadratic are the following 29 discriminants:

�15;�20;�24;�32;�35;�36;�40;�48;�51;�52;�60;

�64;�72;�75;�88;�91;�99;�100;�112;�115;�123;

�147;�148;�187;�232;�235;�267;�403;�427:

By computing discriminants of these Hilbert class polynomials, we obtain Table 1.
The claim follows because the Q.

p
5/ row is largest, containing 9 entries. There

are thus 31D 2 � 9C 13 distinct CM j -invariants in Q.
p

5/. �

6. Related future projects

It would be natural to extend the tables to the first known elliptic curve of rank 3

over F , which may be the elliptic curve y2Cy D x3� 2xC 1 of norm conductor
1632 D 26569. It would also be interesting to make a table in the style of [33],
and compute analytic ranks of the large number of elliptic curves that we would
find; this would benefit from Sutherland’s smalljac program, which has very fast
code for computing L-series coefficients. Some aspects of the tables could also be
generalized to modular abelian varieties Af attached to Hilbert modular newforms
with not necessarily rational Hecke eigenvalues; in particular, we could enumerate
the Af up to some norm conductor, and numerically compute their analytic ranks.
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K D

Q.
p

2/ �24;�32;�64;�88

Q.
p

3/ �36;�48

Q.
p

5/ �15;�20;�35;�40;�60;�75;�100;�115;�235

Q.
p

6/ �72

Q.
p

7/ �112

Q.
p

13/ �52;�91;�403

Q.
p

17/ �51;�187

Q.
p

21/ �147

Q.
p

29/ �232

Q.
p

33/ �99

Q.
p

37/ �148

Q.
p

41/ �123

Q.
p

61/ �427

Q.
p

89/ �267

Table 1. Quadratic fields K and the values of D for which HD has roots in K

but not in Q.

7. Tables

As explained in Sections 3 and 4, assuming Conjecture 1.1, we found the complete
list of elliptic curves with norm conductor up to 1831, which is the first norm con-
ductor of a rank 2 elliptic curve over F . The complete dataset can be downloaded
from [5].

In each of the following tables #isom refers to the number of isomorphism
classes of elliptic curves, #isog refers to the number of isogeny classes of elliptic
curves, n refers to the conductor of the given elliptic curve, N.n/ is the norm of
the conductor, and Weierstrass equations are given in the form Ja1; a2; a3; a4; a6K.

Table 2 gives the number of elliptic curves and isogeny classes we found. Note
that in these counts we do not exclude conjugate elliptic curves, that is, if � denotes

Rank #Isog #Isom Smallest N.n/

0 745 2174 31

1 667 1192 199

2 2 2 1831

Total 1414 3368 —

Table 2. Number of isogeny classes and number of isomorphism classes of el-
liptic curves over F of norm conductor at most 1831.
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Size of isogeny class

Bound on N.n/ 1 2 3 4 6 8 10 Total

199 2 21 3 20 8 9 1 64
1831 498 530 36 243 66 38 3 1414

Table 3. Number of isogeny classes of a given size for elliptic curves over F

with norm conductors no larger than a given bound.

the nontrivial element of Gal.F=Q/, then we count E and E� separately if they
are not isomorphic.

Table 3 gives counts of the number of isogeny classes of elliptic curves in our
data of each size; note that we find some isogeny classes of cardinality 10, which
is bigger than what one observes with elliptic curves over Q.

Table 4 gives the number of elliptic curves and isogeny classes up to a given
norm conductor bound. Note that the first elliptic curve of rank 1 has norm con-
ductor 199, and there are no elliptic curves of norm conductor 200.

#Isogeny classes #Isomorphism classes

Rank Rank

Bound on N.n/ 0 1 2 Total 0 1 2 Total

200 62 2 0 64 257 6 0 263
400 151 32 0 183 580 59 0 639
600 246 94 0 340 827 155 0 982
800 334 172 0 506 1085 285 0 1370

1000 395 237 0 632 1247 399 0 1646
1200 492 321 0 813 1484 551 0 2035
1400 574 411 0 985 1731 723 0 2454
1600 669 531 0 1200 1970 972 0 2942
1800 729 655 0 1384 2128 1178 0 3306
1831 745 667 2 1414 2174 1192 2 3368

Table 4. Number of isogeny classes and number of isomorphism classes of el-
liptic curves over F with specified rank and with norm conductors no larger than
a given bound.

Table 5 gives the number of elliptic curves and isogeny classes with isogenies of
each degree; note that we do not see all possible isogeny degrees. For example, the
elliptic curve X0.19/ has rank 1 over F , so there are infinitely many elliptic curves
over F with degree 19 isogenies (unlike over Q where X0.19/ has rank 0). We



162 BOBER, DEINES, KLAGES-MUNDT, LEVEQUE, OHANA, RABINDRANATH, SHARABA, AND STEIN

Type #Isog #Isom Example curve N.n/

none 498 498 J'C 1, 1, 1, 0, 0 K 991
deg 2 652 2298 J ', �'C 1, 0, �4, 3' � 5 K 99
deg 3 289 950 J ', �', ', �2' � 2, 2'C 1 K 1004
deg 5 65 158 J 1, 0, 0, �28, 272 K 900
deg 7 19 38 J 0, 'C 1, 'C 1, ' � 1, �3' � 3 K 1025

Table 5. Number of isogeny classes and number of isomorphism classes of el-
liptic curves over F of norm conductor at most 1831 having isogenies of a given
type. “None” indicates curves having no cyclic isogenies.

also give an example of an elliptic curve (that need not have minimal conductor)
with an isogeny of the given degree.

Table 6 gives the number of elliptic curves with each torsion structure, along
with an example of an elliptic curve (again, not necessarily with minimal conductor)
with that torsion structure.

Group structure #Isom Example curve N.n/

0 796 J 0, �1, 1, �8, �7 K 225
Z=2Z 1453 J ', �1, 0, �' � 1, ' � 3 K 164
Z=3Z 202 J 1, 0, 1, �1, �2 K 100
Z=4Z 243 J'C 1, ' � 1, ', 0, 0 K 79

Z=2Z˚Z=2Z 312 J 0, 'C 1, 0, ', 0 K 256
Z=5Z 56 J 1, 1, 1, 22, �9 K 100
Z=6Z 183 J 1, ', 1, ' � 1, 0 K 55
Z=7Z 13 J 0, ' � 1, 'C 1, 0, �' K 41
Z=8Z 21 J 1, 'C 1, ', ', 0 K 31

Z=2Z˚Z=4Z 51 J'C 1, 0, 0, �4, �3' � 2 K 99
Z=9Z 6 J ', �'C 1, 1, �1, 0 K 76

Z=10Z 12 J'C 1, ', ', 0, 0 K 36
Z=12Z 6 J ', 'C 1, 0, 2' � 3, �'C 2 K 220

Z=2Z˚Z=6Z 11 J 0, 1, 0, �1, 0 K 80
Z=15Z 1 J 1, 1, 1, �3, 1 K 100

Z=2Z˚Z=8Z 2 J 1, 1, 1, �5, 2 K 45

Table 6. Number of isomorphism classes of elliptic curves over F of norm con-
ductor at most 1831 having given torsion subgroups.

We computed the invariants in the Birch and Swinnerton-Dyer conjecture for
our elliptic curves, and solved for the conjectural order of X; Table 7 gives the
number of elliptic curves in our data having each order of X, and Table 8 lists
elliptic curves of minimal conductor exhibiting each of these orders.
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#X 1 4 9 16 25 36
#Isom 3191 84 43 16 2 2

Table 7. Number of isomorphism classes of elliptic curves over F of norm con-
ductor at most 1831 having given order of X.

#X First elliptic curve over F having X of this order N.n/

1 J 1; 'C 1; '; '; 0 K 31
4 J 1; 1; 1;�110;�880 K 45
9 J'C 1;�'; 1;�54686' � 35336;�7490886' � 4653177 K 76

16 J 1; '; 'C 1;�4976733' � 3075797;�6393196918' � 3951212998 K 45
25 J 0;�1; 1;�7820;�263580 K 121
36 J 1;�'C 1; '; 1326667' � 2146665; 880354255' � 1424443332 K 1580

Table 8. Elliptic curves over F of smallest norm conductor having X of a given order.
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