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We give an algorithm that finds a sequence of approximations with Dirichlet
coefficients bounded by a constant only depending on the dimension. The algo-
rithm uses LLL lattice basis reduction. We present a version of the algorithm
that runs in polynomial time of the input.

1. Introduction

The regular continued fraction algorithm is a classical algorithm to approximate
reals by rational numbers. The denominators of continued fraction convergents
furnish, for every a 2 R, infinitely many integers q such that

kq ak< q�1;

where kxk denotes the distance between x and the nearest integer. The exponent
�1 of q is minimal; if it is replaced by any number e < �1, then there exist real
numbers a such that only finitely many integers q satisfy kq ak< qe.

Hurwitz [9] proved that the continued fraction algorithm finds, for every a 2

R nQ, an infinite sequence of increasing integers qn with

kqn ak<
1
p

5
q�1

n :

If the constant 1=
p

5 is replaced by any smaller one, then this statement is false.
Legendre [15] showed that the continued fraction algorithm finds all good approx-
imations, in the sense that if for some positive integer q

kq ak< 1
2

q�1;

then q is one of the qn found by the algorithm.
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As to the generalization of approximations in higher dimensions Dirichlet [16]
proved the following theorem; see Chapter II of [19].

Theorem 1.1. Let an n�m matrix A with entries aij 2RnQ be given and suppose
that 1; ai1; : : : ; aim are linearly independent over Q for some i with 1 � i � n.
There exist infinitely many coprime m-tuples of integers .q1; : : : ; qm/ such that,
with q Dmax

j
jqj j � 1, we have

max
i
kq1 ai1C � � �C qm aimk< q�m=n: (1)

If the exponent �m=n is replaced by any smaller number, there exists a matrix A

for which the inequality holds for only finitely many coprime tuples .q1; q2; : : : ; qm/.

Definition 1.2. Let an n�m matrix A with entries aij 2RnQ be given. The Dirich-
let coefficient of an m-tuple .q1; : : : ; qm/ is qm=nmax

i
kq1 ai1C � � �C qm aimk :

The proof of the theorem does not give an efficient way of finding a series
of approximations with a Dirichlet coefficient less than 1. For the case m D 1

the first multidimensional continued fraction algorithm was given by Jacobi [10].
Many more followed, see for instance Perron [18], Brun [5; 6], Lagarias [14] and
Just [11]. Brentjes [4] gives a detailed history and description of such algorithms.
Schweiger’s book [20] gives a broad overview. For nD 1 there is, amongst others,
the algorithm by Ferguson and Forcade [8]. However, there is no efficient algorithm
guaranteed to find a series of approximations with Dirichlet coefficient smaller
than 1.

In 1982 the LLL algorithm for lattice basis reduction was published in [17].
The authors noted that their algorithm could be used for finding Diophantine ap-
proximations of given rationals with Dirichlet coefficient only depending on the
dimension; see Corollary 2.4. Just [11] developed an algorithm based on lattice
reduction that detects Z-linear dependence in the ai , in the case mD 1. If no such
dependence is found her algorithm returns integers q with

max
i
kqaik � c

� nX
iD1

a2
i

�1=2

q�1=.2n.n�1//;

where c is a constant depending on n. The exponent �1=.2n.n� 1// is larger than
the Dirichlet exponent �1=n. Lagarias [13] used the LLL algorithm in a series of
lattices to find good approximations for the case mD 1. Let a1; : : : ; an 2Q and
let N be a positive integer; suppose there exists Q 2 N with 1�Q�N such that
maxj kQ ajk< ". Then Lagarias’s algorithm on input a1; : : : ; an and N finds in
polynomial time a q with 1� q � 2n=2N such that maxj kq ajk �

p
5n2.n�1/=2".

One difference with our work is that Lagarias focuses on the quality kq ajk, while
we focus on the Dirichlet coefficient q1=nkq ajk. We also consider the case m> 1.
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The main result of the present paper is an algorithm that by iterating the LLL
algorithm gives a series of approximations of given rationals with optimal Dirich-
let exponent. Where the LLL algorithm gives one approximation, our dynamic
algorithm gives a series of successive approximations. To be more precise: For
a given n�m-matrix A with entries aij 2 Q and a given upper bound qmax the
algorithm returns a sequence of m-tuples .q1; : : : ; qm/ such that for every Q with
2.mCnC3/.mCn/=.4m/ �Q� qmax one of these m-tuples satisfies

max
j
jqj j �Q

and
max

i
kq1ai1C � � �C qmaimk � 2.mCnC3/.mCn/=.4n/Q�m=n:

The exponent �m=n of Q can not be improved, and therefore we say that these
approximations have optimal Dirichlet exponent.

Our algorithm is a multidimensional continued fraction algorithm in the sense
that we work in a lattice basis and that we only interchange basis vectors and
add integer multiples of basis vectors to another. Our algorithm differs from other
multidimensional continued fraction algorithms in that the lattice is not fixed across
iterations. In Lemma 3.6 we show that if there exists an extremely good approxi-
mation, our algorithm finds a very good one. We derive in Theorem 3.8 how the
output of our algorithm gives a lower bound on the quality of possible approxima-
tions with coefficients up to a certain limit. In Section 4 we show that a slightly
modified version of our algorithm runs in polynomial time. In Section 5 we present
some numerical data.

An earlier version of this paper appeared as Chapter V of Smeets’s thesis [21].

2. Lattice reduction and the LLL algorithm

In this section we give the definitions and results that we need for our algorithm.
Let r be a positive integer. A subset L of the r -dimensional real Euclidean

vector space Rr is called a lattice if there exists a basis b1; : : : ; br of Rr such that

LD

rX
iD1

Zbi D

� rX
iD1

zibi

ˇ̌
zi 2 Z for i D 1; : : : ; r

�
:

We say that b1; : : : ; br is a basis for L. The determinant of the lattice L is defined
by j det.b1; : : : ; br /j and we denote it as det L.

For any linearly independent b1; : : : ; br 2 Rr the Gram-Schmidt process yields
an orthogonal basis b�

1
; : : : ; b�r for Rr , defined inductively by

b�i D bi �

i�1X
jD1

�ij b�j for 1� i � r
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and

�ij D
.bi ; b

�
j /

.b�j ; b
�
j /
;

where . ; / denotes the ordinary inner product on Rr .
We call a basis b1; : : : ; br for a lattice L reduced if

j�ij j �
1
2

for 1� j < i � r

and ˇ̌
b�i C�ii�1b�i�1

ˇ̌2
�

3
4
jb�i�1j

2 for 1� i � r;

where jxj denotes the Euclidean length of x.

Proposition 2.1 [17, Proposition 1.6]. Let b1; : : : ; br be a reduced basis for a
lattice L in Rr . Then

(1) jb1j � 2.r�1/=4 .det L/1=r ;

(2) jb1j
2 � 2r�1 jxj2 for every nonzero x 2L,

(3)
rY

iD1

jbi j � 2r.r�1/=4 det L.

Proposition 2.2 [17, Proposition 1.26]. Let L � Zr be a lattice with a basis
b1; b2; : : : ; br , and let F 2 R, F � 2, be such that jbi j

2 � F for 1 � i � r . Then
the number of arithmetic operations needed by the LLL algorithm is O.r4 log F /

and the integers on which these operations are performed each have binary length
O.r log F /.

In the following lemma the approach suggested in the original LLL-paper for
finding (simultaneous) Diophantine approximations is generalized to the case m> 1.

Lemma 2.3. Let an n�m-matrix A with entries aij 2R and an " 2 .0; 1/ be given.
Let L be the lattice formed by the columns of the .mC n/� .mC n/-matrix

B D

266666666664

1 0 � � � 0 a11 � � � a1m

0 1 0 a21 � � � a2m
:::

: : :
:::

:::
:::

0 � � � 0 1 an1 � � � anm

0 � � � 0 0 c 0
:::

:::
:::

: : :

0 � � � 0 0 0 c

377777777775
; (2)

with c D .2�.mCn�1/=4"/.mCn/=m.
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The LLL algorithm applied to L will yield an m-tuple .q1; : : : ; qm/ of integers
with

max
j
jqj j � 2.mCn�1/.mCn/=.4m/"�n=m (3)

and
max

i
kq1ai1C � � �C qmaimk � ":

Proof. The LLL algorithm finds a reduced basis b1; : : : ; bmCn for the lattice L.
For each vector b in this basis there exist pi 2 Z, for 1 � i � n, and qj 2 Z, for
1� j �m, such that

b D

2666666664

q1a11C � � �C qma1m�p1
:::

q1an1C � � �C qmanm�pn

cq1
:::

cqm

3777777775
:

Proposition 2.1(i) gives an upper bound for the length of the first basis vector,

jb1j � 2.mCn�1/=4cm=.mCn/:

From this vector b1 we find integers q1; : : : ; qm, such that

max
j
jqj j � 2.mCn�1/=4c�n=.mCn/ (4)

and

max
i
kq1ai1C � � �C qmaimk � 2.mCn�1/=4cm=.mCn/: (5)

Substituting c D .2�.mCn�1/=4"/.mCn/=m gives the results. �

From (4) and (5) we obtain the following corollary.

Corollary 2.4. For any n�m-matrix A with entries aij 2 R the LLL algorithm
can be used to obtain an m-tuple .q1; : : : ; qm/ that satisfies, with q Dmaxj jqj j,

max
i
kq1ai1C � � �C qmaimk � 2.mCn�1/.mCn/=.4n/q�m=n:

3. The iterated LLL algorithm

We iterate the LLL algorithm over a series of lattices to find a sequence of approx-
imations. We start with a lattice determined by a basis of the form (2). After the
LLL algorithm finds a reduced basis for this lattice, we decrease the constant c by
dividing the last m rows of the matrix by a constant d greater than 1. By doing
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so, " is divided by dm=.mCn/. We repeat this process until the upper bound (3) for
max jqj j guaranteed by the LLL algorithm exceeds a given upper bound qmax.

To ease notation we put d D 2 and "D 1=2.

Algorithm 3.1 (Iterated LLL algorithm (ILLL)).

Input: An n�m-matrix A with entries aij in R, and an upper bound qmax > 1.

Output: For each integer k � 1 no larger than the k 0 defined in (8), a vector
q.k/ 2 Zm with

max
j
jqj .k/j � 2.mCn�1/.mCn/=.4m/ 2kn=m (6)

and

max
i
kq1.k/ ai1C � � �C qm.k/ aimk � 1=2k : (7)

1. Construct the basis matrix B as given in (2) from A.

2. Apply the LLL algorithm to B.

3. Deduce q1; : : : ; qm from the first vector in the reduced basis returned by the
LLL algorithm.

4. Divide the last m rows of B by 2.mCn/=m

5. Stop if the upper bound for q guaranteed by the algorithm (6) exceeds qmax;
else go to Step 2.

Remark 3.2. The number 2.mCn/=m in Step 4 may be replaced by d .mCn/=m for
any real number d > 1. When we additionally set "D 1=d this yields

max
j
jqj .k/j � 2.mCn�1/.mCn/=.4m/dkn=m

and

max
i
kq1.k/ai1C � � �C qm.k/aimk< d�k :

In this paper, with the exception of the numerical examples in Section 5, we always
take d D 2 and "D 1=2.

Define

k 0 WD

�
�
.mC n� 1/.mC n/

4n
C

m log2 qmax

n

�
: (8)

Lemma 3.3. Let an n �m-matrix A with entries aij in R and an upper bound
qmax > 1 be given. With this input, the number of times the ILLL algorithm applies
the LLL algorithm equals k 0 from (8).

Proof. One derives the number of iterations by solving k from the stopping crite-
rion (6)

qmax � 2.mCn�1/.mCn/=.4m/2kn=m;
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that is:
m

n
log2 qmax �

.mC n� 1/.mC n/

4n
C k:

We stop iterating as soon as the integer k reaches the ceiling k 0 as in (8). �

For each k � 1 we define

c.k/D .2�k�.mCn�5/=4"/.mCn/=m:

Note that c.1/ is the constant c from Lemma 2.3. In the k-th iteration we are
working in the lattice defined by the basis in (2) with c replaced by c.k/.

Lemma 3.4. The output q.k/D .q1.k/; q2.k/; : : : ; qm.k// of the ILLL algorithm
satisfies (6) and (7), for 1� k � k 0.

Proof. Since we take "D 1=2, in the k-th iteration we use

c.k/D .2�k�.mCn�1/=4/.mCn/=m:

Substituting c.k/ for c in (4) and (5) yields (6) and (7), respectively. �

The following theorem gives the main result of the present paper, as mentioned
in the introduction. The algorithm returns a sequence of approximations with all
coefficients smaller than Q, optimal Dirichlet exponent and Dirichlet coefficient
only depending on the dimensions m and n .

Theorem 3.5. Let an n�m-matrix A with entries aij in R, and qmax > 1 be given.
The ILLL algorithm finds a sequence of m-tuples .q1; : : : ; qm/ of integers such that
for every Q with 2.mCnC3/.mCn/=.4m/ �Q� qmax one of these m-tuples satisfies

max
j
jqj j �Q and

max
i
kq1ai1C � � �C qmaimk � 2.mCnC3/.mCn/=.4n/Q�m=n:

Proof. Take k 2 N such that

2.k�1/n=m
�Q � 24m=..mCnC3/.mCn// < 2kn=m: (9)

From Lemma 3.4 we know that q.k/D .q1.k/; q2.k/; : : : ; qm.k// satisfies the
inequality

max
j
jqj .k/j � 2.mCnC3/.mCn/=.4m/ 2.k�1/n=m

�Q:

From the right side of inequality (9) it follows that

1

2k
< 2.mCnC3/.mCn/=.4n/Q�m=n:
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From Lemma 3.4 and this inequality we derive that

max
i
kq1.k/ ai1C � � �C qm.k/ aimk �

1

2k
< 2.mCnC3/.mCn/=.4n/Q�m=n: �

Proposition 2.1(2) guarantees that if there exists an extremely short vector in the
lattice, then the LLL algorithm finds a rather short lattice vector. We extend this
result to the realm of successive approximations. In the next lemma we show that
for every very good approximation (satisfying (11)), the ILLL algorithm finds a
rather good one (satisfying (14)) not too far away from it (as specified by (13)).

Lemma 3.6. Let an n�m-matrix A with entries aij in R, a real number 0< ı < 1,
and an integer s > 1 be given. If there exists an m-tuple .s1; : : : ; sm/ of integers
with

s Dmax
j
jsj j> 2.mCn�1/n=.4m/

�
nı2

m

�n=.2.mCn//
(10)

and

max
i
ks1ai1C � � �C smaimk � ıs

�m=n; (11)

then applying the ILLL algorithm with

qmax > 2.m
2Cm.n�1/C4n/=.4m/

� m

nı2

�n=.2.mCn//

s (12)

yields an m-tuple .q1; : : : ; qm/ of integers with

max
j
jqj j � 2.m

2Cm.n�1/C4n/=.4m/
� m

nı2

�n=.2.mCn//

s (13)

and

max
i
kq1ai1C � � �C qmaimk � 2.mCn/=2

p
nıs�m=n: (14)

Proof. Let 1� k � k 0 be an integer. Proposition 2.1(2) gives that for each m-tuple
q.k/ found by the algorithm, we have

nX
iD1

kq1.k/ai1C � � �C qm.k/aimk
2
C c.k/2

mX
jD1

qj .k/
2

� 2mCn�1

� nX
iD1

ks1a11C � � �C smaimk
2
C c.k/2

mX
jD1

s2
j

�
:

From this and (10) and (11) it follows that

max
i
kq1.k/ai1C � � �C qm.k/aimk

2
� 2mCn�1

�
nı2s�2m=n

C c.k/2ms2
�
: (15)
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Take the smallest positive integer K such that

c.K/�

r
n

m
ıs�.mCn/=n: (16)

We find for the K-th iteration from (15) and (16)

max
i
kq1.K/ai1C � � �C qm.K/aimk � 2.mCn/=2

p
nıs�m=n;

which gives (14).
We show that under assumption (12) the ILLL algorithm performs at least K

iterations. We may assume K > 1, since the ILLL algorithm always performs at
least 1 iteration. From Lemma 3.3 we find that if qmax satisfies

qmax > 2Kn=m2.mCn�1/.mCn/=.4m/;

then the ILLL algorithm performs at least K iterations. Our choice of K implies

c.K� 1/D
c.1/

2.mCn/.K�2/=m
D

2�.mCnC3/.mCn/=.4m/

2.mCn/.K�2/=m
>

r
n

m
ıs�.mCn/=n;

and we obtain

2Kn=m < 2�.mCn�5/n=.4m/
� m

nı2

�n=.2.mCn//

s:

From this we find that

qmax > 2.m
2Cm.n�1/C4n/=.4m/

� m

nı2

�n=.2.mCn//

s

is a sufficient condition to guarantee that the algorithm performs at least K itera-
tions.

Furthermore, either 2�.mCn/=m
p

n=m ıs�.mCn/=n < c.K/ or K D 1. In the
former case we find from (4) that

max
j
jqj .K/j � 2.mCn�1/=4c.K/�n=.mCn/ < 2.mCn�1/=42n=m

� m

nı2

�n=.2.mCn//

s:

In the latter case we obtain from (4) that

max
j
jqj .1/j � 2.mCn�1/=4c.1/�n=.mCn/

D 2.mCn�1/=42.mCnC3/n=.4m/

and, by (10),

2.mCn�1/=42.mCnC3/n=.4m/
D 2.mCn�1/=42n=m2.mCn�1/n=.4m/

< 2.mCn�1/=42n=m
� m

nı2

�n=.2.mCn//

s:
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We conclude that for all K � 1,

max
j
jqj .K/j � 2.m

2Cm.n�1/C4n/=.4m/
� m

nı2

�n=.2.mCn//

s: �

From (13) and (14) we obtain the following corollary.

Corollary 3.7. With the assumptions of Lemma 3.6, the ILLL algorithm can be
used to obtain an m-tuple .q1; : : : ; qm/ of integers that satisfies

qm=n max
i
kq1ai1C � � �C qmaimk

� 2.m
2Cm.3n�1/C4nC2n2/=.4n/mm=.2.mCn//.nı2/n=.2.mCn//;

where again q Dmax
j
jqj j.

Theorem 3.8. Let an n�m-matrix A with entries aij in R and qmax > 1 be given.
Assume that 
 is such that for every m-tuple .q1; : : : ; qm/ returned by the ILLL
algorithm, we have

qm=n max
i
kq1ai1C : : : qmaimk> 
 , where q Dmax

j
jqj j: (17)

Set

ı D 2�.mCn/.m2Cm.3n�1/C4nC2n2/=.4n2/m�m=.2n/n�1=2
 .mCn/=n: (18)

Let .s1; : : : ; sm/ be an m-tuple of integers, and set s Dmaxj jsj j. If

s > 2.mCn�1/n=.4m/
�

nı2

m

�n=.2.mCn//
(19)

and

s < 2�.m
2Cm.n�1/C4n/=.4m/

�
nı2

m

�n=.2.mCn//
qmax (20)

then
sm=n max

i
ks1ai1C � � �C smaimk> ı: (21)

Proof. Assume that every vector returned by our algorithm satisfies (17) and that
there exists an m-tuple .s1; : : : ; sm/ satisfying (19) and (20) but not satisfying
Equation (21). From Equation (20) it follows that qmax satisfies (12). We apply
Lemma 3.6 and find that the algorithm finds an m-tuple .q1; : : : ; qm/ that satis-
fies (17). Substituting ı as given in (18) gives

qm=n max
i
kq1ai1C � � �C qmaimk � 
;

in contradiction with our assumption. �
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4. A polynomial time version of the ILLL algorithm

We have used real numbers in our theoretical results, but in a practical implemen-
tation of the algorithm we only use rational numbers. Without loss of generality
we may assume that these numbers are in the interval Œ0; 1�. In this section we
describe the changes to the algorithm and we show that this modified version of
the algorithm runs in polynomial time.

As input for the rational algorithm we take

� the dimensions m and n,

� a rational number " 2 .0; 1/,

� an integer M that is large compared to .mCn/2

m
�

mCn

m
log ",

� an n�m-matrix A with entries 0 < aij � 1, where each aij D pij=2
M for

some integer pij ,

� an integer qmax < 2M .

Remark 4.1. In this rational algorithm all irrational numbers are approximated
by rational numbers with denominator 2M . Thus M denotes the precision that is
used.

When we construct the matrix B in Step 1 of the ILLL algorithm we approximate
c as given in (2) by a rational number

Oc D 2�M
d2M ce D 2�M

˙
2M

�
2�.mCn�1/=4"

�.mCn/=m�
: (22)

Hence c < Oc � cC 2�M .
In iteration k we use a rational Oc .k/ that for k � 2 is given by

Oc .k/D 2�M
˙
2M
Oc .k � 1/2�.mCn/=m

�
and Oc .1/D Oc as in (22);

and we change Step 4 of the ILLL algorithm to “Multiply the last m rows of B by
Oc .k � 1/= Oc .k/.” The other steps of the rational iterated algorithm are as described
in Section 3.

The running time of the rational algorithm.

Theorem 4.2. Let the input be given as described above. Then the number of arith-
metic operations needed by the ILLL algorithm and the binary length of the integers
on which these operations are performed are both bounded by a polynomial in m,
n, and M .

Proof. The number of times we apply the LLL algorithm is not changed by ratio-
nalizing c, so we find the number of iterations k 0 from Lemma 3.3

k 0 D

�
�
.mC n� 1/.mC n/

4n
C

m log2 qmax

n

�
<

�
mM

n

�
:
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It is obvious that Steps 1, 3, 4 and 5 of the algorithm are polynomial in the size
of the input and we focus on the LLL-step. We determine an upper bound for the
length of a basis vector used at the beginning of an iteration in the ILLL algorithm.

In the first application of the LLL algorithm the length of the initial basis vectors
as given in (2) is bounded by

jbi j
2
�max

j

˚
1; a2

1j C � � �C a2
nj Cm Oc 2

	
�mC n for 1� i �mC n;

where we use that 0< aij < 1 and Oc � 1.
The input of each following application of the LLL algorithm is derived from the

reduced basis found in the previous iteration by making some of the entries strictly
smaller. Part (2) of Proposition 2.1 yields that for every vector bi in a reduced basis
we have

jbi j
2
� 2.mCn/.mCn�1/=2.det L/2

mCnY
jD1
j¤i

jbi j
�2:

The determinant of our starting lattice is given by Oc m and the determinants of all
subsequent lattices are strictly smaller. Every vector bi in the lattice is at least
as long as the shortest nonzero vector in the lattice. Thus for each i we have
jbi j

2 �
1

2M . Combining this yields

jbi j
2
� 2.mCnC2M /.mCn�1/=2

Oc 2m
� 2.mCnC2M /.mCn�1/=2

for every vector used as input for the LLL-step after the first iteration.
Thus we have

jbi j
2 <max

˚
mC n ; 2.mCnC2M /.mCn�1/=2

	
D 2.mCnC2M /.mCn�1/=2 (23)

for any basis vector that is used as input for an LLL-step in the ILLL algorithm.
Proposition 2.2 shows that for a given basis b1; : : : ; bmCn for ZmCn with F 2R,

F � 2 such that jbi j
2 � F for 1� i �mC n the number of arithmetic operations

needed to find a reduced basis from this input is O..mC n/4 log F /. For matrices
with entries in Q we need to clear denominators before applying this proposition.
Thus for a basis with basis vectors jbi j

2 � F and rational entries that can all be
written as fractions with denominator 2M the number of arithmetic operations is
O..mC n/4 log.22M F //.

Combining this with (23) and the number of iterations yields the theorem. �

Approximation results from the rational algorithm. Assume that the input matrix
A (with entries aij D 2�M pij 2 Q) is an approximation of an n�m-matrix A
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(with entries ˛ij 2 R), found by putting aij D 2�M d2M˛ije. In this subsection
we derive the approximation results guaranteed by the rational iterated algorithm
for the ˛ij 2 R.

According to (4) and (5) the LLL algorithm, applied with Oc instead of c, is
guaranteed to find an m-tuple .q1; : : : ; qm/ such that

q Dmax
j
jqj j � 2.mCn�1/.mCn/=.4m/"�n=m

and

max
i
kq1ai1C � � �C qmaimk

� 2.mCn�1/=4
��

2�.mCn�1/=4"
�.mCn/=m

C 2�M
�m=.mCn/

� "C 2.mCn�1/=4�Mm=.mCn/;

the last inequality following from the fact that .xC y/˛ � x˛C y˛ if ˛ < 1 and
x;y > 0.

For the ˛ij we find that

max
i
kq1˛i1C � � �C qm˛imk

�max
i
kq1ai1C � � �C qmaimkCmq 2�M

� "C 2.mCn�1/=4�Mm=.mCn/
Cm "�n=m 2.mCn�1/.mCn/=.4m/�M :

In the introduction to Section 4 we have chosen M large enough to guarantee that
the error introduced by rationalizing the entries is negligible.

We show that the difference between Oc .k/ and c.k/ is bounded by 2=2M .

Lemma 4.3. For each integer k � 0,

c.k/� Oc .k/ < c.k/C 2�M
kX

iD0

2�i.mCn/=m < c.k/C
2

2M
:

Proof. We use induction. For k D 0 we have Oc .0/D 2�M
˙
c.0/2M

�
and trivially

c.0/� Oc .0/ < c.0/C
1

2M
:

Assume that

c.k � 1/� Oc .k � 1/ < c.k � 1/C 2�M
k�1X
iD0

2�i.mCn/=m

and consider Oc .k/. From the definition of Oc .k/ and the induction assumption it
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follows that

Oc .k/D 2�M
˙
Oc .k � 1/ 2�.mCn/=m2M

�
� 2�.mCn/=m

Oc .k � 1/� 2�.mCn/=m c.k � 1/D c.k/

and

Oc .k/D 2�M
˙
Oc .k � 1/ 2�.mCn/=m2M

�
< 2�.mCn/=m

Oc .k � 1/C 2�M

< 2�.mCn/=m

�
c.k � 1/C 2�M

k�1X
iD0

2�i.mCn/=m

�
C 2�M

D c.k/C 2�M
kX

iD0

2�i.mCn/=m:

Finally note that
kP

iD0

2�i.mCn/=m < 2 for all k. �

One can derive analogues of Theorem 3.5, Lemma 3.6 and Theorem 3.8 for the
polynomial version of the ILLL algorithm by carefully adjusting for the introduced
error. We do not give the details, since in practice this error is negligible.

5. Experimental data

In this section we present some experimental data from the rational ILLL algorithm.
In our experiments we choose the dimensions m and n and iteration speed d , so
"D 1

d
. We fill the m� n matrix A with random numbers in the interval Œ0; 1� and

repeat the entire ILLL algorithm for a large number of these random matrices to
find our results. First we look at the distribution of the approximation quality. Then
we look at the growth of the denominators q found by the algorithm.

The distribution of the approximation qualities. For one-dimensional continued
fractions the approximation coefficients ‚k are defined as

‚k D q2
k

ˇ̌̌̌
a�

pk

qk

ˇ̌̌̌
;

where pk=qk is the kth convergent of a.
For the multidimensional case we define ‚k in a similar way:

‚k D q.k/m=n max
i
kq1.k/ ai1C � � �C qm.k/ aimk:

The one-dimensional case m D n D 1. We compare the distribution of the ‚k

found by the ILLL algorithm for m D n D 1 and various values of d with the
distribution of the ‚k as produced by the continued fraction algorithm with the
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best approximation properties. For this optimal continued fraction algorithm it
was shown in [2] that for almost all a, the limit

lim
N!1

1

N
# fk W 1� k �N and ‚k � zg

is equal to F.z/, where

F.z/D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

z

log G
if 0� z � 1=

p
5;

1

log G

�p
1� 4z2C log

�
G

1�
p

1� 4z2

2z

��
if 1=
p

5� z � 1=2;

1 if 1=2� z � 1;

with G D .
p

5C 1/=2.
The optimal continued fraction algorithm finds rational approximations of which

the denominators grow with maximal rate, and it finds all approximations with
‚k < 1=2; for all this, see [1; 2; 3].

The following figures display distribution functions for ‚k ; that is, we show the
fraction of the ‚k found up to the value given on the horizontal axis.

We plot the distribution of the ‚k found by the ILLL algorithm for mD nD 1

and d D 2 in Figure 1. The ILLL algorithm might find the same approximation
more than once. We see in Figure 1 that for d D 2 the distribution function dif-
fers depending on whether we leave in the duplicates or sort them out. With the
duplicate approximations removed the distribution of ‚k strongly resembles F.z/

of the optimal continued fraction. The duplicates that the ILLL algorithm finds are
usually good approximations: If they are much better than necessary they will also
be an admissible solution in the next few iterations.
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Figure 1. Distribution function for ‚k from ILLL with mD nD 1 and d D 2,
with and without the duplicate approximations, compared to that of ‚k for
optimal continued fractions.
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Figure 2. Distribution function for ‚k from ILLL with mD nD 1 and d D 64,
with and without the duplicate approximations, compared to that of ‚k for
optimal continued fractions.

For larger d we do not find so many duplicates, because the quality has to im-
prove much more in every iteration; also see Figure 2 for an example with d D 64.

From now on we remove duplicates from our results.

The multidimensional case. In this section we show some results for the distribu-
tion of the ‚k’s found by the ILLL algorithm. For fixed m and n there also appears
to be a limit distribution for ‚k as d grows. See Figure 3 (right) for an example
with mD 3 and nD 2, and compare this with the left half of the same figure. In
this section we fix d D 512.
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Figure 3. Distribution function for ‚k from ILLL (with duplicates removed)
for d D 2; 8; 128 and 512. Left: mD nD 1. Right: mD 3 and nD 2.

In Figure 4 we show some distributions for cases where either m or n is 1.
In Figure 5 we show some distributions for cases where mD n.

Remark 5.1. Very rarely the ILLL algorithm returns an approximation with‚k > 1.

The denominators q. For regular continued fractions, denominators grow expo-
nentially fast; to be more precise, for almost all x we have (see Section 3.5 of [7])

lim
k!1

q
1=k

k
D e�

2=.12 log 2/;
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Figure 4. Distribution for ‚k from ILLL when either mD 1 or nD 1.
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Figure 5. Distribution of ‚k from ILLL when mD n.

For optimal continued fractions, the constant �2=.12 log 2/ in this expression is
replaced by �2=.12 log G/, where G D .

p
5C 1/=2. For multidimensional contin-

ued fraction algorithms little is known about the distribution of the denominators qj .
Lagarias defined in [12] the notion of a best simultaneous Diophantine approxima-
tion and showed that for the ordered denominators 1 D q1 < q2 < � � � of best
approximations for a1; : : : ; an we have

lim
k!1

inf q
1=k

k
� 1C

1

2nC1
:

We look at the growth of the denominators q Dmaxj jqj j that are found by the
ILLL algorithm. Dirichlet’s Theorem 1.1 suggests that if q grows exponentially
with a rate of m=n, then infinitely many approximations with Dirichlet coefficient
smaller than 1 can be found. In the iterated LLL algorithm it is guaranteed by (6)
that q.k/ is smaller than a constant times dkn=m. Our experiments indicate that
q.k/ is about dkn=m, or equivalently that e.m log qk/=.kn/ is about d ; see Figure 6,
which gives a histogram of solutions that satisfy e.m log qk/=.kn/ D x.
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Figure 6. Histograms of e.m log q.k//=.kn/ for various values of m; n and d .
In these experiments we used qmax D 1040 and repeated the ILLL algorithm�
2000=k 0

˘
times, with k 0 from Lemma 3.3.
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