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Let Q be a 5 � 5 symmetric matrix with integral entries and with detQ ¤ 0,
but neither positive nor negative definite. We describe a probabilistic algorithm
which solves the equation txQx D 0 over Z without factoring detQ. The
method can easily be generalized to forms of higher dimensions by reduction
to a suitable subspace.

1. Introduction

Solving quadratic equations in dimension 1 is trivial: Since the equation is ax2D 0,
the only solution is x D 0. In two dimensions, the homogeneous equation is
ax2C bxyC cy2 D 0, and the solution is obtained by computing a square root. In
dimension 3, the equation is

ax2
C by2

C cz2
C 2dxyC 2exzC 2fyz D 0;

where the coefficients are integers. Since the polynomial becomes more compli-
cated as the dimension increases, we use matrix notation instead. We define Q
as the associated quadratic form. If we denote by X D .x; y; z/ the row vector
containing the variables, the equation becomes

tX

24a d e

d b f

e f c

35X D 0:
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If the equation has a solution, several algorithms exist for finding solutions, for
instance see Simon [11] or Cremona [3]. In dimension 3 it is known that find-
ing a (nontrivial) isotropic vector is equivalent to factoring the determinant of the
form.

The situation is almost the same in dimension 4 when the determinant is a square:
Solutions may not exist, and if a solution exists, finding one is equivalent to factor-
ing the determinant.

The situation is quite different in dimensions greater than or equal to 5. The
Hasse-Minkowski theorem [9] asserts that in such dimensions a nontrivial solution
always exists. It is easy to see that one just needs the result in dimension 5, since
larger dimensions can handled by restricting the form to a subspace of dimension 5
where the form has a suitable signature. This is why we will focus on quadratic
forms in dimension 5. As in dimensions 3 and 4, there exist algorithms such as
the ones given in [10], but since they are generalizations of algorithms in smaller
dimensions, they still need the factorization of the determinant, which rapidly be-
comes prohibitive. Thus, if we know the factorization of the determinant we can
easily find a solution, so the question is whether it is possible to find a solution (in
polynomial time) without factorizing the determinant. The goal of this paper is to
show that this is indeed possible; in other words, we will give an algorithm which
finds a (nontrivial) isotropic vector for a 5-dimensional quadratic form which does
not require the factorization of the determinant.

As already mentioned, this algorithm can also be used for forms of higher di-
mensions by restricting the form to a dimension 5 subspace where the restricted
form has a suitable signature. The solution is found over the integers, but since the
equation is homogeneous, this is equivalent to finding a rational solution.

The first part of this paper gives the definitions needed to understand the algo-
rithm, the second part explains how the algorithm works, and the last part gives
some ideas of the complexity of the method. The full analysis of its complexity is
not done here, since it requires a number of tools from analytic number theory and
the Cebotarev density theorem [6]. I refer the interested reader to [1].

Basic definitions and notation

To begin, we give definitions and basic properties which we need.
We denote the set of integral quadratic forms as follows.

Definition 1.1. Let n be a nonzero positive integer. We denote by Sym.n;Z/ the
set of n�n symmetric matrices with nonzero determinant and integral entries.

We recall the definition of the Smith normal form of a matrix; for more details,
see [2].
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Definition 1.2 (Smith normal form). Let A be an n�n matrix with coefficients in Z

and nonzero determinant. There exists a unique matrix in Smith normal form B

such that B D VAU with U and V elements of GLn.Z/. If we set di D bi;i , the di

are called the elementary divisors of the matrix A, and we have

AD U�1

266664
d1 0 : : : 0

0 d2
: : :

:::
:::
: : :

: : : 0

0 : : : 0 dn

377775V �1

with diC1 j di for 1� i < n.

Definition 1.3. For a matrix M 2Mn.Z/ with nonzero determinant, we denote by
d1.M/; : : : ; dn.M/ its elementary divisors (given by its Smith normal form). If
there is no possible confusion, they will be denoted d1; : : : ; dn.

We can now add a restriction to the set of quadratic forms.

Definition 1.4. Let n be a nonzero positive integer. We denote by Sym�.n;Z/ the
set of n�n symmetric matrices with nonzero determinant and integral entries, such
that their coefficient d2 as defined above is equal to 1.

2. The algorithm

2A. The main idea. The key idea of the method is to increase by 1 the dimension
of the form by adding a row and a column, then to use an efficient algorithm to
find solutions to our new form, and finally to deduce a solution to the original form
by considering intersections of hyperbolic spaces of suitable dimensions.

Since Simon’s algorithm [10] is very efficient when the factorization of the de-
terminant is known, we are going to build a new 6-dimensional quadratic form Q6

starting from Q, whose determinant will be equal to 2p where p is an odd prime
number. We will call this the completion step. To do this, we choose an integral
vector X D .x1; : : : ; x5/ of dimension 5 and an integer z and we complete Q in
the following way:

Q6 D

26664
x1

Q
:::

x5

x1 � � � x5 z

37775 : (1)

Lemma 2.1. LetQ be a symmetric matrix with integral entries and with detQ¤ 0.
If we complete Q to the form Q6 as described in (1) above, then we have

detQ6 D z detQ� tX Co.Q/X; (2)
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where Co.Q/ is the matrix of cofactors of the matrix Q.

Proof. Simply use the formula involving the cofactors of Q6 for computing its de-
terminant, and expand it along the row and then the column containing the xi . �

Some special cases may occur: There exist cases where all the values taken
by detQ6 have a common factor. To avoid these cases we will have to do some
minimizations of the form Q before completing it. In order to be able to do a
complexity analysis of the algorithm we will need the determinant of Q6 to be odd,
so we will also have to perform a reduction of the even part of the determinant.

2B. Minimizations. The values taken by the determinant of the form Q6 will fol-
low from the next result.

Theorem 2.2. Let Q 2 Sym.5;Z/ and �D detQ. Then for all X 2 Z5 and for all
z 2 Z we have that d2.Q/ divides detQ6, where Q6 is defined by (1).

Proof. Consider the Smith normal form of Q: There exist three matrices D, U ,
and V with integer entries such that D is diagonal with the elementary divisors
on the diagonal, U and V have determinant ˙1, and D D UQV . Because of the
relation (2), let us consider the values of �tX Co.Q/X .mod�/. We have

Co.Q/D Co.V �1/Co.D/Co.U�1/

D .detV /.detU/ tV Co.D/ tU

D˙t
�
U t Co.D/V

�
D˙t.U Co.D/V /:

Since D is the diagonal matrix of elementary divisors, it follows that Co.D/ is
also diagonal and that every coefficient is divisible by d2.Q/. We thus have

tX Co.Q/X D˙tX t.U Co.D/V /X

� 0 .mod d2.Q//:

Combining this congruence with the formula (2) proves the result. �

Remark. If d1.Q/¤ detQ it will not be possible to have detQ6 equal to a prime
or twice an odd prime number, so we will first need to minimize Q so as to obtain
an equivalent form Q0 such that d2.Q

0/D 1.

Remark 2.3. If we perform a change of basis using the matrix V of the previous
result with di .Q/ ¤ 1 and diC1.Q/ D 1, the first i columns and rows will be
divisible by di .Q/.

We are now going to explain what to do in order to avoid the case d2.Q/¤ 1.
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Case d5 ¤ 1.

Proposition 2.4. Let Q 2 Sym.5;Z/ such that d5.Q/¤ 1. There exist two 5� 5
matrices with integral entries G and Qf such that

d5Qf D
tGQG;

detQf D
1

d5
5

detQ:

The proof is given by the following algorithm.

Algorithm 2.5 (Minimization 5).

Input: Q 2 Sym.5;Z/ such that d5.Q/¤ 1 and m¤ 1 2 Z dividing d5.Q/.

Output: Qf : a form equivalent to Q such that detQf D .1=m
5/ detQ;

G : the corresponding change of basis such that d5Qf D
tGQG.

1. Set G WD Id5.

2. Set Qf WD .1=m/Q.

3. Return Qf , G.

When the coefficient d5 of the Smith normal form of Q is different from 1, the
whole matrix Q is divisible by d5, so the minimization simply consists in dividing
the matrix by d5 and the corresponding change of basis G is equal to Id5.

Case d4 ¤ 1 and d5 D 1.

Proposition 2.6. Let Q 2 Sym.5;Z/ such that d4.Q/¤ 1 and d5.Q/D 1. There
exist two 5� 5 matrices with integral entries G and Qf such that

d4Qf D
tGQG;

detQf D
1

d3
4

detQ:

The proof is given by the following algorithm.

Algorithm 2.7 (Minimization 4).

Input: Q 2 Sym.5;Z/ such that d4.Q/ ¤ 1 and d5.Q/D 1, m¤ 1 2 Z divid-
ing d4.Q/.

Output: Qf : a form equivalent to Q such that detQf D .1=m
3/ detQ;

G : the corresponding change of basis such that mQf D
tGQG.

1. Let V be the V matrix given by the SNF of Q.

2. Let H be the diagonal matrix such that for 1� i � 4, Hi;i D 1 and H5;5 Dm.

3. Set G WD V �H ; Q0 WD .1=m/ tGQG.



218 PIERRE CASTEL

4. Apply the LLL algorithm for indefinite forms to Q0 (see [11] for more details).
Let Qf be the returned form and G0 the corresponding change of basis.

5. Set G WDG �G0.

6. Return Qf , G.

As stated in Remark 2.3, after the change of basis in step 1, the first four columns
and rows are divisible by d4. Thus we apply this change of basis, multiply the last
row and column by d4, and divide the whole matrix by d4.

Remark. The notion of equivalence between quadratic forms used here simply
means that both corresponding quadratic equations have the same solutions up to
a change of basis.

Case d3 ¤ 1 and d4 D 1.

Proposition 2.8. Let Q 2 Sym.5;Z/ such that d3.Q/¤ 1 and d4.Q/D 1. There
exist two 5� 5 matrices with integer entries G and Qf such that

d3Qf D
tGQG;

detQf D
1

d3
detQ:

The proof is given by the following algorithm:

Algorithm 2.9 (Minimization 3).

Input: Q 2 Sym.5;Z/ such that d3.Q/ ¤ 1 and d4.Q/D 1, m¤ 1 2 Z divid-
ing d3.Q/.

Output: Qf : a form equivalent to Q such that detQf D .1=m/ detQ;
G : the corresponding change of basis such that mQf D

tGQG.

1. Let V be the V matrix given by the SNF of Q.

2. Let H be the diagonal matrix such that for 1 � i � 3, Hi;i D 1 and H4;4 D

H5;5 Dm.

3. Set G WD V �H ; Q0 WD .1=m/ tGQG.

4. Apply the LLL algorithm to Q0. Let Qf be the returned form and G0 the
corresponding change of basis.

5. Set G WDG �G0.

6. Return Qf , G.

The minimizing method for this case is essentially the same as for the previous
one.
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Case d2 ¤ 1 and d3 D 1. This case is much more complicated than the previous
ones. If we try to do it in the same way, we will multiply the determinant by some
factor which is of course not what we want. The idea is first to perform a change of
basis thanks to the matrix V given by the SNF of Q, and then to work on the 3� 3
block that remains which may not be divisible by d2.Q/. What we need to do in
order to be able to apply the same method is to be in the case where the upper-left
coefficient of this block is already divisible by d2.Q/. We are thus going to do a
special change of basis in order to succeed. The method is given by the following
result.

Proposition 2.10. Let Q 2 Sym.5;Z/ such that d2.Q/¤ 1 and d3 D 1. Let m be
an integer such that m ¤ 1 and m j d2.Q/. There exist two 5� 5 matrices with
integral entries G and Qf , with G unimodular, and such that

mQf D
tGQG;

detQf D
1

m
detQ:

Proof. We first compute the SNF of Q, so that D D UQV where D, U , V have
integral entries and U and V are unimodular. We apply the change of basis given by
the matrix V . The quadratic form Q0 D tVQV is equivalent to the form Q and its
first two rows and columns are divisible by m. Denote by Q3 the restriction of Q0

to the space spanned by the last three columns of the matrix V . This corresponds
to the submatrix .Q3/i;j D .Q

0/i;j with 3 � i � 5, 3 � j � 5. We now want to
have Q31;1 � 0 .modm/. We apply a Gram-Schmidt orthogonalization process
to the matrix Q3 modulo m. If we find a noninvertible element modulo m, this
means that we have found a factor of m. In that case we start the process again
by replacing m by its divisor. During the process, if we find a vector whose norm
is 0 modulo m, we just have to skip this step since this vector is exactly the one
we need. Otherwise the process ends and gives us a change of basis such that in
this new basis, the form Q3 .modm/ has the shape24a 0

b

0 c

35 .modm/:

We must now solve the following quadratic equation:

ax2
C by2

C cz2
� 0 .modm/: (3)

Since we do not want to factor m, we have to use a method which does not use its
factorization. Such a method is described in [8]: If the coefficient a is not invertible
modulo m we have found a factor of m, so we can continue the process with both
factors, obtain the solution for each of them and combine them using the Chinese
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remainder theorem and Hensel lifting if needed. We are thus reduced to the case
where a is invertible modulo m. Solving (3) is equivalent to solving the equation

x2
C ba�1y2

��ca�1z2 .modm/: (4)

If we take the arbitrary choice z D 1, we have exactly the type of equation that is
solved in [8]. We thus use this method to obtain a solution S of (3). We complete
the single vector family fSg to a unimodular matrix G, and we extend the matrix G
to a matrix G0 of dimension 5 by taking the identity matrix Id5 and replacing the
3� 3 lower-right block by G. We now apply G0 to Q0 and obtain Q00 which has
the form

tG0Q0G0 DQ00 D

266664
mM2;2 mM2;3

m� � �

mM3;2 � � �

� � �

377775 ;
where the � are integers. It is now possible to use the same methods explained in
the previous cases: We multiply the last rows and columns by m and divide the
whole matrix by m. �

Remark. The case where we find a factor of m practically never happens. The
reason is simply that the forms used to test the algorithm always have a determinant
which is very hard to factor. So finding a factor in such a way is quite hopeless.

The corresponding algorithm is the following.

Algorithm 2.11 (Minimization 2).

Input: Q 2 Sym.5;Z/ such that d2.Q/ ¤ 1 and d3.Q/D 1, m¤ 1 2 Z divid-
ing d2.Q/.

Output: Qf : a form equivalent form to Q;
G : the corresponding change of basis such that m0Qf D

tGQG with
1 < m0 jm.

1. Compute the SNF of Q with the algorithm described in [5].

2. Set G WD V and Q WD tGQG.

3. Let Q3 be the 3� 3 bottom-right submatrix of Q.

4. Apply a modified Gram-Schmidt orthogonalization process (see below) to Q3

and m.

5. If the Gram-Schmidt process returns a vector, store it in S and go to step 10. If
it returns an integer m0, go back to step 4 with mDm0.

6. Denote by D3 the returned matrix and by G3 the corresponding change of basis.
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7. Let d D gcd.D3Œ1; 1�;m/. If d ¤ 1, go back to step 5 with mD d .

8. Use the Pollard-Schnorr algorithm [8] to solve

X2
C
D3Œ2; 2�

D3Œ1; 1�
Y 2
��

D3Œ3; 3�

D3Œ1; 1�
.modm/:

Let S be a solution.

9. Set S WD ŒS; 1�.

10. Let H be a 3� 3 matrix whose first column is equal to S and whose columns
form a Z3 basis. This can be done using the Hermite normal form algorithm.

11. Set G3 WDG3 �H .

12. Let zG be the block-diagonal 5� 5 matrix such that the 2� 2 upper-left block
is the identity and the 3� 3 bottom-right block is equal to G3.

13. Set G WDG � zG and Q0 WD .1=m/ tGQG.

14. Apply the LLL algorithm to reduce Q0, and denote by Qf the returned form
and by G0 the corresponding change of basis.

15. Set G WDG �G0.

16. Return Qf , G.

The minimization algorithm. We can now give the complete algorithm that mini-
mizes an integral quadratic form of dimension 5.

Algorithm 2.12 (Minimization).

Input: Q 2 Sym.5;Z/.

Output: Qt 2 Sym�.5;Z/ equivalent to Q;
B : the corresponding change of basis.

1. Set Qt WDQ.

2. Compute the SNF D of Q.

3. If d1 D detQ, go to step 8.

4. If d5 ¤ 1 set i WD 5.

5. Let i � 5 be such that di ¤ 1 and diC1 D 1 or di D d5 if d5 ¤ 1.

6. Set B WD Id5.

7. While d1 ¤ detQt :

(a) Switch according to i :

Case i D 5: apply Algorithm 2.5 to Qt and di .
Case i D 4: apply Algorithm 2.7 to Qt and di .
Case i D 3: apply Algorithm 2.9 to Qt and di .
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Case i D 2: apply Algorithm 2.11 to Qt and di .

(b) Let Qf and G be the returned matrices.
(c) Set Qt WDQf and B WD B �G.
(d) Compute the SNF D of Qt .
(e) Let di be the diagonal coefficient of the SNF of Qt such that di ¤ 1 with

diC1 D 1 and di D d5 if d5 ¤ 1.

8. Return Qt , B .

Remark. This algorithm computes the Smith normal form at any step. To do this,
it is strongly recommended to use the method described in [5] which is optimized
and also gives the corresponding matrices U and V .

Remark. In this algorithm, we do not use a divisor m of di , but di itself. Using a
divisor would force the algorithm to use factorization.

Remark. Algorithms 2.7, 2.9, and 2.11 include a reduction step using an LLL
algorithm for indefinite quadratic forms given in [11]. This reduction is done to
have concrete bounds for the size of the coefficients at the end of the algorithm.

2C. Reducing the even part of the determinant. After performing the minimiza-
tion step, we get a form whose coefficient d2 is equal to 1. We now need to have
an equivalent form whose determinant is odd. This is performed by what we call
the reducing the even part step.

Lemma 2.13. Let Q 2 Sym�.5;Z/ be indefinite. Let v be the quotient in the Eu-
clidean division of the 2-adic valuation of detQ by 2. There exist two matrices Q0

and G such that

detG D
1

2v
;

Q0 D tGQG;

v2.detQ0/D 0 or 1;

Q0 2 Sym�.5;Z/:

Proof. If detQ is odd, we simply take G D Id5 and Q0 D Q. Thus assume
that v2.detQ/ ¤ 0. We compute the SNF of Q and obtain unimodular integer
matrices U , V and a diagonal matrix D such that D D UQV , and d1;1 D jdetQj.
Since d2.Q/ D 1 the other diagonal coefficients of D are all equal to 1. We
apply to Q the change of basis given by the matrix V . The first row and the first
column of Q00 D tVQV are divisible by 2v2.det Q/. Let v be the quotient in the
Euclidean division of the 2-adic valuation of detQ by 2, F be the diagonal matrix
whose upper-left entry is equal to 1=2v and the others equal to 1. If v2.detQ/ is
even, the determinant of tFQ00F DQ0 is odd. Otherwise the determinant of Q0
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is divisible by 2 but not by 4. So we take G D V � F . It remains to show that
Q0 2 Sym�.5;Z/. We know that Q 2 Sym�.5;Z/. Since the change of basis given
by the SNF is unimodular the invariant factors have not changed during the process.
The last operation is done on the first column and only with a power of 2, so it also
does not change the invariant factors, and so we have Q0 2 Sym�.5;Z/. �

The corresponding algorithm is as follows.

Algorithm 2.14 (Reduction of the even part — I).

Input: Q 2 Sym�.5;Z/ indefinite, of dimension 5, of determinant �.

Output: Q0 2 Sym�.5;Z/ indefinite, of determinant 2kn with n odd and k �
v2.detQ/ .mod 2/, Q0 equivalent to Q;
G the corresponding change of basis.

1. If �� 1 .mod 2/, return Q, Id5.

2. Set G WD Id5.

3. Let v2 be the 2-adic valuation of �.

4. Let v be the quotient in the Euclidean division of v2 by 2.

5. Let U , V and D be the matrices given by the SNF of Q such that D D UQV .

6. Set Q0 WD tVQV and G WDG �V .

7. Let H be the diagonal matrix such that H1;1 D 1=2
v and Hi;i D 1 otherwise.

8. Set Q0 WD tHQ0H and G WDG �H .

9. Return Q0, G.

Lemma 2.15. LetQ 2 Sym�.5;Z/ indefinite and such that detQD 2k, k 2Z, odd.
There exist two matrices Q0 and G such that

detG D
1

23
;

Q0 D 2� tGQG;

detQ0 � k .mod 2/:

Proof. As in proof of the previous lemma, we begin by computing the Smith normal
form of Q to obtain integer matrices U , V unimodular and D diagonal such that
D D UQV and d1;1 D jdetQj. We apply to Q the change of basis given by the
matrix V and obtain Q0 which has the following form:

Q0 D tVQV D

266664
2� 2�

2�

Q1
� �

� �

� � � �

� � � �

377775 :
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We are now interested in the form Q1 which is the restriction of the form Q to
the subspace generated by the second and third vectors of the basis. Denote this
form by the following matrix:

� a b
b c

�
. We are looking for a change of basis such

that the coefficient a in the new basis will be even. This means that we want a
pair .x; y/ such that ax2C cy2 � 0 .mod 2/. We solve this equation, apply the
corresponding change of basis to Q1, and we multiply the whole matrix by 2. The
determinant of the form is now divisible by 26 but not by 27. We rescale the
first two vectors by a factor 2. The determinant is now divisible by 22. We then
compute the SNF of this matrix and apply the change of basis according to the
matrix V . Since the determinant is divisible by 4, we have two possibilities: If the
kernel modulo 2 has dimension 1, the first row and the first column are divisible
by 2 and the upper left coefficient is divisible by 4. In this case, we rescale the
first vector by 2. Otherwise, the kernel has dimension 2. In this case, the first two
rows and columns are divisible by 2. Consider the upper-left 2� 2 block of the
matrix. This corresponds to the restriction of the form to the subspace generated
by the first two vectors of the basis. We are going to apply a change of basis such
that the upper-left coefficient will be divisible by 4. This corresponds to solving
the equation ax2C cy2 � 0 .mod 2/ which can be done as explained above. Once
the change of basis is done, we simply rescale the first vector by 2. In such a basis,
the determinant of the form is now odd. It remains to show that this form belongs
to Sym�.5;Z/. Indeed, since the determinants of the changes of basis that we have
applied are all equal to a power of 2 they are invertible modulo the odd primes
factors of the determinant of the form, and it follows that the rank of the form is
unchanged, so we have Q0 2 Sym�.5;Z/. �

The corresponding algorithm is as follows.

Algorithm 2.16 (Reduction of the even part — II).

Input: Q 2 Sym�.n;Z/ indefinite, with detQD�D 2kn with n odd and kD 0
or 1.

Output: Q0, a form in Sym�.5;Z/ with odd determinant and same solutions as Q
up to a change of basis;
G the corresponding change of basis.

1. If �� 1 .mod 2/ return Q, Id5.

2. Set G WD Id5.

3. Let v be the 2-adic valuation of �.

4. Let U , V and D be the matrices given by the SNF of Q such that D D UQV .

5. Set Q0 WD tVQV and G WDG �V .

6. If .q02;2; q
0
3;3/� .1; 1/ .mod 2/,
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(a) set H WD Id5 and HŒ3; 2� WD 1,
(b) set Q0 WD tHQ0H and G WDG �H .

7. If .q02;2; q
0
3;3/� .1; 0/ .mod 2/,

(a) set H WD

266664
1 0 0 0 0

0 0 0 0 1

0 1 0 0 0

0 0 0 1 0

0 0 1 0 0

377775,

(b) set Q0 WD tHQ0H and G WDG �H .

8. Set Q0 WD 2�Q0.

9. Set P WD Id5 and P Œ2; 2� WD 1=2.

10. Set Q0 WD tPQ0P and G WDG �P .

11. Let U 0, V 0 andD0 be the matrices given by the SNF ofQ0 such thatDDUQ0V .

12. Set Q0 WD tV 0Q0V 0 and G WDG �V 0.

13. If q01;1 � 0 .mod 4/,

(a) set R WD Id5 and RŒ1; 1� WD 1=2,
(b) set Q0 WD tRQ0R and G WDG �R,
(c) return Q0, G.

14. Repeat steps 6 to 2 with .q01;1; q
0
2;2/.

15. Set R WD Id5 and RŒ1; 1� WD 1=2.

16. Set Q0 WD tRQ0R and G WDG �R.

17. Return Q0, G.

2D. Completion. We now explain how to complete the form to a form of dimen-
sion 6 in the way announced in Section 2A, and in particular how to choose the
value of z. Controlling this value will allow us to change the signature of the
completed form Q6.

Lemma 2.17. Let Q 2 Sym.5;Z/ be an indefinite form with signature .r; s/ and
determinant �. Let X be a 5-dimensional column vector with integral entries
and ˇ be a coset representative of the coset of tX Co.Q/X modulo �. Let

z WD
tX Co.Q/X �ˇ

�

and

Q6 D

�
Q X
tX z

�
:
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The signature of Q6 is determined by the signs of ˇ and detQ as follows:

signature of Q6 D

�
.r; sC 1/ if ˇ detQ> 0I

.r C 1; s/ if ˇ detQ< 0:

Moreover we have ˇ D�detQ6.

Proof. As seen in Section 2A, the formula (2) gives us the determinant of the
form Q6:

detQ6 D z detQ� tX Co.Q/X:

We also have defined the quantities: ˇ D tX Co.Q/X and ˇ a coset representative
of the coset of ˇ modulo � which is also equal to ˇ� z�D�detQ6. Since the
link between Q and Q6 is the addition of a row and a column, if we consider the
restriction of Q to the subspace generated by the first 5 vectors of the basis, we get
back exactly the form Q. Thus if we add a row and a column, we do not change its
signature on this subspace. It follows that we can deduce the signature of Q6 from
the signature of Q by simply considering the sign of their determinant. Indeed,
we know that sgn.detQ/ D .�1/s . If detQ > 0, we have s � 0 .mod 2/. We
take ˇ > 0 and have detQ6 < 0. We have changed the sign of the determinant, so
the signature of Q6 is .r; sC 1/. The others cases are done in the same way, and
combining them gives the formula for the signature given in the lemma. �

In order to be able to compute a solution, we need the signature .u; v/ of Q6

to satisfy u � 2 and v � 2. The following algorithm will choose the value of ˇ
so that this is satisfied. The algorithm for completing the form and controlling the
signature is the following.

Algorithm 2.18 (Completion).

Input: Q: an indefinite, nondegenerate dimension 5 integral quadratic form;
k � 1 an integer.

Output: Q6: an indefinite, nondegenerate dimension 6 integral quadratic form
with signature .r; s/ such that r � 2 and s � 2, of the form:

h
Q X
tX z

i
,

and such that jdetQ6j< kjdetQj.

1. Compute the signature .r; s/ of Q.

2. Choose an integer vector X whose coordinates are nonnegative integers less
than jdetQj5.

3. Set ˇ WD tX Co.Q/X and ˇ WD ˇ .mod detQ/ with 0� ˇ < jdetQj.

4. If r D 1 and detQ> 0, set ˇ WD ˇ� jdetQj.

5. If s D 1, set ˇ WD ˇ� detQ.

6. Set z WD
ˇ�ˇ

detQ
.
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7. Add a random multiple of jdetQj to ˇ so that jdetQ6j < k jdetQj while re-
specting the signature condition, and update the value of z.

8. Return Q6 D

h
Q X
tX z

i
.

Remark. The bounds on X in step 2 are chosen in this way since everything is then
reduced modulo detQ. Changing the bounds would not change the complexity of
the whole algorithm.

Remark. At the end of the algorithm, the determinant of Q6 is always equal to ˇ.
This is a consequence of the choice of the value of z.

Remark. We will use this algorithm until we obtain a ˇ of the form 2�p with p
an odd prime number. This choice will be explained in Section 2E.

2E. Computing a solution. The complete algorithm for finding a nonzero isotro-
pic vector for a quadratic form dimension 5 without factoring the determinant is
as follows.

Algorithm 2.19 (Solving).

Input: Q, an integral indefinite, nondegenerate quadratic form of dimension 5.

Output: X , a nonzero integral isotropic vector for Q.

1. Apply the minimization Algorithm 2.12 to Q.

2. Apply Algorithms 2.14 and 2.16 to the result of step 1.

3. Apply the completion Algorithm 2.18 to the result of step 2 until the determinant
of the returned form Q6 is equal to ˙2p where p is an odd prime number.

4. Solve the equation tXQ6X D 0.

5. Write Q6 DH ˚Q4 where H is a hyperbolic plane.

6. Solve the equation tXQ4X D 0.

7. Write Q4 DH
0˚Q2 where H 0 is a hyperbolic plane.

8. Deduce from the previous steps a solution S to the equation tXQX D 0.

9. Return S.

Theorem 2.20. Let Q be an integral indefinite, nondegenerate quadratic form of
dimension 5. Then Algorithm 2.19, applied to Q, outputs a nonzero integral vec-
tor S that is a solution to the equation tXQX D 0 without factorizing any integer.

Remark. The above algorithm is based on the fact that the method developed by
Simon in [11] is very efficient as soon as the factorization of the determinant of
the form is known. This theorem shows that there exists an efficient algorithm
even when the factorization is not known or when it is not possible to factor the
determinant in a reasonable amount of time.
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Proof. This proof follows the steps of the algorithm. We are going to divide the
proof in the same way as the algorithm is divided:

1: Minimizations

2: Reducing the even part

3: Choice of the signature and completion of Q while imposing the form of the
determinant

4: Computing a solution for Q6

5: Decomposition in a sum with a hyperbolic plane

6: Computing a solution for Q4

7: Decomposition in a sum with a hyperbolic plane

8: Computing a solution for Q

Step 1: We apply Algorithm 2.12 to Q. At the end of this step, we have a form
Q.2/ 2 Sym�.5;Z/ equivalent to Q, an invertible matrix G2, and a nonzero rational
number �.2/ such that Q.2/ D �.2/ tG2QG2.

Step 2: We successively apply Algorithms 2.14 and 2.16 to Q.2/ in order to
have a form with an odd determinant. At the end of this step, we obtain a form
Q.3/ 2 Sym�.5;Z/ equivalent to Q, an invertible matrix G3, and a nonzero rational
number �.3/ such that Q.3/ D �.3/ tG3Q

.2/G3 and the determinant � of Q.3/ is
odd.

Step 3: We apply Algorithm 2.18 and choose k D 106 (the value of k will
be detailed in a further paper) until the determinant of the returned form is equal
to ˙2p with p an odd prime number; the condition 2� p is necessary because
of some conditions on local solubility at 2. It is possible to show that a vector X
verifying these conditions can always be found efficiently by using an effective
version of the Cebotarev density theorem [6]. At the end of this step, we have a
form Q6 whose restriction to the subspace generated by the first 5 vectors of the
basis is equal to Q.3/, whose determinant is equal to ˙2p with p an odd prime
number, and whose signature .r; s/ is such that r � 2 and s � 2.

Step 4: We use the algorithm described in [11], and obtain a nonzero integral
vector T such that tTQ6T D 0. We divide T by the GCD of its coordinates in
order to have T primitive.

Step 5: This step consists in finding a hyperbolic plane containing the vector T .
The existence of such a plane is given by the result in [9, p.55, Proposition 3.]. We
first write the form Q6 in a unimodular basis whose first vector is the vector T (the
basis can be found by using the HNF of a primitive vector), we denote by G4 such
a change of basis. We then have Q.1/

6 D
tG4Q6G4 and the upper-left coefficient

is 0. Let RD
�
Q

.1/
6 Œ1; 2�;Q

.1/
6 Œ1; 3�;Q

.1/
6 Œ1; 4�;Q

.1/
6 Œ1; 5�;Q

.1/
6 Œ1; 6�

�
, and let G5
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be a unimodular matrix such that RG5 D .a; 0; 0; 0; 0/, where a is the GCD of the
coefficients of the vector R. Since a divides the first row and the first column of
the matrix Q.1/

6 we have a2 j detQ.1/
6 , but since detQ.1/

6 D˙2p with p prime, we
must therefore have aD 1. Such a G5 matrix is given by the HNF of the vector R.
We can now set G6 D

h
1 0
0 G5

i
, and we then have

Q
.2/
6 D

tG6Q
.1/
6 G6 D

266666664

0 1 0 0 0 0

1 b2 b3 b4 b5 b6

0 b3 � � � �

0 b4 � � � �

0 b5 � � � �

0 b6 � � � �

377777775
:

Now let G7 be the following matrix:

G7 D

266666664

1
�
�b2

2

�
�b3 �b4 �b5 �b6

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

377777775
:

We have detG7 D 1, and

Q
.3/
6 D

tG7Q
.2/
6 G7 D

266666664

0 1 0 0 0 0

1 ˛ 0 0 0 0

0 0

Q4
0 0

0 0

0 0

377777775
;

where Q4 2 Sym.4;Z/. We also have detQ4 D �detQ6. The coefficient in this
matrix is either 0 or 1 according to the parity of the coefficient b2, but it will not
change anything in the rest of the algorithm. We regroup all the changes of basis
and set G8DG4�G6�G7. We then have Q.3/

6 D
tG8Q6G8. This step ends with

the computation of the matrices Q.3/
6 and G8.

Step 6: We now work on the quadratic form Q4 defined above. Its determinant
is �detQ6, which is still equal to �2p with p a prime number. We are going to
show that the equation tXQ4X D 0 has a nontrivial solution: We know that Q4

is indefinite; indeed, the form Q.3/ has been completed in order to have r � 2
and s � 2. We have decomposed this form into the sum of a hyperbolic plane
and a dimension 4 quadratic form Q4, but the signature of a quadratic form on a
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hyperbolic plane is .1; 1/, and Q.3/
6 has the same signature as Q6, so the signa-

ture Q4 is .r � 1; s � 1/ and we have r � 1 � 1, s � 1 � 1, showing that Q4 is
indefinite hence that there exists real solutions. We now need to show the existence
of a solution over Q` for every prime number `. If ` is an odd prime number not
dividing detQ4, the consideration of Hilbert symbols shows that solutions always
exist. Two cases remain: `D 2 and ` j detQ4. We know that detQ4D˙2p is not a
square neither in Q2 nor in Qp since the valuations are odd and p¤ 2, so there exist
local solutions, and using the local-global principle allows us to conclude. Since
solutions exist, we can now use Simon’s algorithm to compute such a solution, and
since the determinant is equal to ˙2p with p prime, we do not need to use any
factorization. We denote by R a primitive solution.

Step 7: This step is the same as the step 5, but the work is done over the
form Q

.1/
4 . Let B be the corresponding change of basis.

Step 8: We have to recall the changes of basis done on the matrix Q4. We set

G9 D

266666664

1 0 0 0 0 0

0 1 0 0 0 0

0 0

B
0 0

0 0

0 0

377777775
and

P DG8 �G9:

We thus have a matrix P such that

tPQ6P D

266666664

0 1
0 0

1 ˛

0
0 1

0
1 ˇ

0 0 Q2

377777775
with ˛; ˇD 0 or 1. We note that the first and the third columns of P are solutions of
the equation tXQ6X D 0. But they also are orthogonal vectors for Q6. It follows
that every linear combination of these vectors still is a solution for Q6. We now
consider a combination such that the last coordinate is 0, denote it by J . We then
have

J D

2664U
0

3775 with U 2 Z5:
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We know that tJQ6J D 0, but we give the computation in detail:

tJQ6J D
�

tU 0
�
26664 Q.3/ X

tX z

37775
2664U
0

3775
D tUQ.3/U

D 0:

ThusU is a nonzero solution to the equation tXQ.3/XD0. We then set SDG2G3U ,
and we have tSQS D 0. We are finally done. �

Remark. The condition of having the determinant equal to ˙2�p with p an odd
prime is necessary due to the condition of local solubility over Q2. The 2 can be
replaced by 22kC1 with k 2 N, but the analysis is much more complicated in this
case and it practically does not affect the running time of the algorithm.

Remark. The complexity of the algorithm is not done here, but the number of
vectors X that we need to try in step 3 until we have a determinant of the desired
shape is O.logjdetQj/.

2F. Generalization to higher dimensions. The algorithm given above is for qua-
dratic forms of dimension 5. It is easy to generalize it to higher dimensions: Indeed,
since the algorithm needs a form of dimension 5 as an input, if the given form has a
larger dimension, we simply need to restrict the form to a subspace of dimension 5.
The only condition required is that the restriction of the form must have a signature
.r; s/ that verifies r � 1 and s � 1 so that the decomposition as the sum of two
hyperbolic planes is possible. When a solution to the restriction is found, we simply
lift the solution to the original space by setting the remaining coordinates to 0.

3. Overview of performance

This algorithm has been implemented in the PARI/GP language, see [7]. Since
the proof of the complexity of this algorithm requires a considerable amount of
additional work it will not be detailed here, but will be explained in a further
work. However, we give an overview of the global performances of the algorithm
with the two following figures. The comparisons are made with the method given
by Simon in [11] and [10]. These algorithms have also been implemented in
the PARI/GP language and can downloaded from the author’s webpage (http://
www.math.unicaen.fr/~simon).

http://www.math.unicaen.fr/~simon
http://www.math.unicaen.fr/~simon
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These values have been computed by averaging over 100 random forms for each
point. The forms are the same for each algorithm. We can clearly observe the fact
that the factorization of the determinant makes Simon’s algorithm very slow for
determinants with size larger than 50 digits. The graph below shows the same
comparison, but this time, the method used for building the forms is made in such
a way that the algorithm often needs to do minimizations. We still can see the
“wall” due to the factorization of the determinant in Simon’s method.
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