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Let p be a prime. Given a polynomial in Fpm Œx� of degree d over the finite field
Fpm , one can view it as a map from Fpm to Fpm , and examine the image of this
map, also known as the value set of the polynomial. In this paper, we present the
first nontrivial algorithm and the first complexity result on explicitly computing
the cardinality of this value set. We show an elementary connection between
this cardinality and the number of points on a family of varieties in affine space.
We then apply Lauder and Wan’s p-adic point-counting algorithm to count these
points, resulting in a nontrivial algorithm for calculating the cardinality of the
value set. The running time of our algorithm is .pmd/O.d/. In particular, this is
a polynomial-time algorithm for fixed d if p is reasonably small. We also show
that the problem is #P-hard when the polynomial is given in a sparse represen-
tation, p D 2, and m is allowed to vary, or when the polynomial is given as a
straight-line program, mD 1 and p is allowed to vary. Additionally, we prove
that it is NP-hard to decide whether a polynomial represented by a straight-line
program has a root in a prime-order finite field, thus resolving an open problem
proposed by Kaltofen and Koiran.

1. Introduction

Let f 2 FqŒx� be a polynomial of degree d with coefficients in a finite field having
q D pm elements, where p is prime. Denote the image set of this polynomial by

Vf D
˚
f .˛/ j ˛ 2 Fq

	
and denote the cardinality of this set by # .Vf /.

There are a few trivial bounds on # .Vf / that can be immediately established.
There are only q elements in the field, so # .Vf /� q. Additionally, any polynomial
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of degree d can have at most d roots, thus for all a 2 Vf , f .x/D a is satisfied at
most d times. This is true for every element in Vf , so # .Vf /d � q, whencel

q

d

m
� # .Vf /� q;

where d � e is the ceiling function.
Both of these bounds can be achieved: If # .Vf /D q, then f is called a permu-

tation polynomial, and if # .Vf /D dq=de, then f is said to have a minimal value
set.

The problem of computing # .Vf / has been studied in various forms for at least
the last 115 years, but exact formulas for # .Vf / are known only for polynomials
of very specific forms. Results that apply to general polynomials are asymptotic
in nature, or provide estimates whose errors have reasonable bounds only on aver-
age [14].

The fundamental problem of determining the value set cardinality # .Vf / can
be thought of as a much more general version of the problem of determining
whether a particular polynomial is a permutation polynomial. Shparlinski [17]
provides a baby-step giant-step type test that determines if a given polynomial
is a permutation polynomial by extending the ideas in [20] to an algorithm that
runs in time QO..dq/6=7/. This is still fully exponential in log q. Ma and von zur
Gathen [13] provide a ZPP (zero-error probabilistic polynomial-time) algorithm
for testing if a given polynomial is a permutation polynomial. According to [10],
the first deterministic polynomial-time algorithm for testing permutation polyno-
mials was obtained by Lenstra using the classification of exceptional polynomials,
which in turn depends on the classification of finite simple groups. Subsequently,
an elementary approach based on the Gao-Kaltofen-Lauder factorization algorithm
was given by Kayal [10].

Essentially nothing is known about the complexity of the more general prob-
lem of exactly computing # .Vf /, and no nontrivial algorithms for this problem
are known. For instance, no baby-step giant-step type algorithm for computing
# .Vf / is known, and no probabilistic polynomial-time algorithm for this problem
is known. Finding a nontrivial algorithm and proving a nontrivial complexity result
for the value counting problem were raised as open problems in [13], where a
probabilistic approximation algorithm is given. In this paper, we provide the first
nontrivial algorithm and the first nontrivial complexity result for the exact counting
of the value set problem.

1A. Our results. Perhaps the most obvious method to calculate # .Vf / is to eval-
uate the polynomial at each point in Fq and count how many distinct images result.
This algorithm has a time and space complexity .dq/O.1/. One can also approach
this problem by operating on points in the codomain. One has f .x/D a for some
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x 2 Fq if and only if fa.X/D f .X/� a has a zero in Fq; this algorithm again has
a time complexity .dq/O.1/, but the space complexity is improved considerably to
.d log q/O.1/.

In this paper we present several results on determining the cardinality of value
sets. On the algorithmic side, we show an elementary connection between this
cardinality and the number of points on a family of varieties in affine space. We
then apply Lauder and Wan’s p-adic point-counting algorithm [12], resulting in
a nontrivial algorithm for calculating the image set cardinality in the case that p
is sufficiently small (that is, p D O..d log q/C / for some positive constant C ).
Precisely, we have the following.

Theorem 5.2. There exists an explicit deterministic algorithm and an explicit poly-
nomial R such that for any f 2 FqŒx� of degree d , where q D pm (p prime), the
algorithm computes # .Vf /, the cardinality of the image set, in a number of bit
operations bounded by R.mdddpd /.

The running time of this algorithm is polynomial in both p and m, but is expo-
nential in d . In particular, this is a polynomial-time algorithm for fixed d if the
characteristic p is small: q D pm can be large, but p DO..d log q/C /.

On the complexity side, we have several hardness results on the value set prob-
lem. We frame these results using some standard classes in complexity theory,
which we outline here. NP is the complexity class of decision problem whose
positive solutions can be verified in polynomial time. NP-hard is the computa-
tional class of decision problems that all NP problems can be reduced to using a
polynomial-time reduction. NP-complete is the complexity class of all NP-hard
problems whose solution can be verified in polynomial time (that is, NP-complete
is the intersection of NP-hard and NP). Co-NP-complete is the complexity class
of problems where answering the logical complement of the decision problem is
NP-complete.

The corresponding counting complexity theory classes that we use are as follows.
#P (read “sharp-P”) is the set of counting problems whose corresponding decision
problem is in NP. #P-hard is the computational class of counting problems that
all #P problems can be reduced to using a polynomial-time counting reduction.
#P-complete is the intersection of #P-hard and #P.

With a field of characteristic 2, we have the following.

Theorem 4.3. The problem of counting the value set of a sparse polynomial over
a finite field of characteristic 2 is #P-hard.

The central approach in our proof of this theorem is to reduce the problem of
counting satisfying assignments for a 3SAT formula to the problem of value set
counting.

Over a prime-order finite field, we have the following.
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Theorem 4.6. Over a prime-order finite field Fp , the problem of counting the value
set is #P-hard under RP-reduction (randomized polynomial-time reduction) if the
polynomial is given as a straight-line program.

Additionally, we prove that it is NP-hard to decide whether a polynomial in
ZŒx� represented by a straight-line program has a root in a prime-order finite field,
thus resolving an open problem proposed in [7; 8]. We accomplish the complexity
results over prime-order finite fields by reducing the prime-order finite field subset
sum problem (PFFSSP) to these problems.

In the PFFSSP, given a prime p, an integer b, and a set of integers S D
fa1; a2; : : : ; atg, we want to decide the solvability of the equation

a1x1C a2x2C � � �C atxt � b .mod p/

with xi 2 f0; 1g for 1 � i � t . The main idea comes from the observation that if
t < logp=3, there is a sparse polynomial ˛.x/ 2 FpŒx� such that as x runs over Fp ,
the vector �

˛.x/; ˛.xC 1/; : : : ; ˛.xC t � 1/
�

runs over all the elements in f0; 1gt . In fact, a lightly modified version of the
quadratic character ˛.x/D .x.p�1/=2C xp�1/=2 suffices. So the PFFSSP can be
reduced to deciding whether the sparse shift polynomial

Pt�1
iD0 aiC1˛.xCi/�bD0

has a solution in Fp.

2. Background

2A. The subset sum problem. To prove the complexity results, we use the subset
sum problem (SSP) extensively. The SSP is a well-known problem in computer
science; we describe three versions of it. Let an integer b and a set of positive
integers S D fa1; a2; : : : ; atg be given.

(1) Decision version: The goal is to decide whether there exists a subset T � S
such that the sum of all the integers in T equals b.

(2) Search version: The goal is to find a subset T � S such that the sum of all
the integers in T equals b.

(3) Counting version: The goal is to count the number of subsets T � S such that
the sum of all the integers in T equals b.

The decision version of the SSP is a classical NP-complete problem. The counting
version of the SSP is #P-complete, which can be easily derived from proofs of the
NP-completeness of the decision version, for example [5, Theorem 34.15].

One can view the SSP as a problem of solving the linear equation

a1x1C a2x2C � � �C atxt D b
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with xi 2 f0; 1g for 1� i � t . The prime-order finite field subset sum problem is a
similar problem where in addition to b and S , one is given a prime p, and the goal
is to decide the solvability of the equation

a1x1C a2x2C � � �C atxt � b .mod p/

with xi 2 f0; 1g for 1� i � t .

Proposition 2.1. The prime-order finite field subset sum problem is NP-hard under
RP-reduction.

Proof. To reduce the subset sum problem to the prime-order finite field subset
sum problem, one finds a prime p >

Pt
iD1 ai , which can be done in randomized

polynomial time. �

Remark. To make the reduction deterministic, one needs to derandomize the prob-
lem of finding a large prime, which appears to be difficult [18].

2B. Polynomial representations. There are different ways to represent a polyno-
mial over a field F. The dense representation lists all the coefficients of a poly-
nomial, including the zero coefficients. The sparse representation lists only the
nonzero coefficients, along with the degrees of the corresponding terms. If most
of the coefficients of a polynomial are zero, then the sparse representation is much
shorter than the dense representation. A sparse shift representation of a polynomial
in FŒx� is a list of n triples .ai ; bi ; ei /2 F�F�Z�0 which represents the polynomialX

1�i�n

ai .xC bi /
ei :

More generally, a straight-line program for a univariate polynomial in ZŒx� or
FpŒx� is a sequence of assignments, starting from x1 D 1 and x2 D x. After that,
the i -th assignment has the form

xi D xj ˇ xk

where 0 � j; k < i and ˇ is one of the three operations C, �, �. We first let
˛ be an element in Fpm such that Fpm D FpŒ˛�. A straight-line program for a
univariate polynomial in Fpm Œx� can be defined similarly, except that the sequence
starts from x1D˛ and x2Dx. One can verify that a straight-line program computes
a univariate polynomial, and that sparse polynomials and sparse shift polynomials
have short straight-line programs. A polynomial produced by a short straight-line
program may have very high degree, and most of its coefficients may be nonzero,
so it may be costly to write it in either a dense form or a sparse form.
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3. Hardness of solving straight-line polynomials

It is known that deciding whether there is a root in a finite field for a sparse polyno-
mial is NP-hard [11]. In a related work, it was shown that deciding whether there
is a p-adic rational root for a sparse polynomial is NP-hard [1]. However, the
complexity of deciding the solvability of a straight-line polynomial in ZŒx� within
a prime-order finite field was not known. This open problem was proposed in [7]
and [8]. We resolve this problem within this section, and this same idea will be
used later on to prove the hardness result of the value set counting problem.

Let p be an odd prime. Let � be the quadratic character modulo p; that is, �.x/
equals 1, �1, or 0, depending on whether x is a quadratic residue, a quadratic
nonresidue, or is congruent to 0 modulo p. For x 2 Fp , we have �.x/D x.p�1/=2.
Consider the list

�.1/; �.2/; : : : ; �.p� 1/: (1)

It is a sequence in f1;�1gp�1. The following bound is a standard consequence of
the celebrated Weil bound for character sums; see [16] for a detailed proof.

Proposition 3.1. Let .b1; b2; : : : ; bt / be a sequence in f1;�1gt . Then the number
of x 2 Fp such that

�.x/D b1; �.xC 1/D b2; : : : ; �.xC t � 1/D bt

lies between p=2t � t .3C
p
p/ and p=2t C t .3C

p
p/.

The proposition implies that if t < .logp/=3, then every possible sequence in
f�1; 1gt occurs as a consecutive subsequence in expression (1). In many situations
it is more convenient to use binary 0=1 sequences, which suggests instead using
the polynomial .x.p�1/=2C 1/=2, but this results in a small problem at x D 0. We
instead use the sparse polynomial

˛.x/D .x.p�1/=2
C xp�1/=2: (2)

The polynomial ˛.x/ takes values in f0; 1g if x 2 Fp, and ˛.x/D 1 if and only if
�.x/D 1.

Corollary 3.2. If t < .logp/=3, then for any binary sequence .b1; b2; : : : ; bt / 2

f0; 1gt there exists an x 2 Fp such that

˛.x/D b1; ˛.xC 1/D b2; : : : ; ˛.xC t � 1/D bt :

In other words, if t < .logp/=3, the map

x 7!
�
˛.x/; ˛.xC 1/; : : : ; ˛.xC t � 1/

�
is a surjective map from Fp to f0; 1gt ; one can view this map as sending an algebraic
object to a combinatorial object.
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Given a straight-line polynomial f .x/ 2 ZŒx� and a prime p, how hard is it
to decide whether the polynomial has a solution in Fp? We now prove that this
problem is NP-hard.

Theorem 3.3. Given a sparse shift polynomial f .x/ 2 ZŒx� and a large prime p,
it is NP-hard to decide whether f .x/ has a root in Fp under RP-reduction.

Proof. We reduce the (decision version of the) subset sum problem to this problem.
Given b 2 Z�0 and S D fa1; a2; : : : ; atg � Z�0, one can find a prime p such that
p >max.23t ;

Pt
iD1 ai / and construct a sparse shift polynomial

ˇ.x/D

t�1X
iD0

ai˛.xC i/� b: (3)

If the polynomial has a solution modulo p, then the answer to the subset sum
problem is “yes”, since for every x 2 Fp we have ˛.xC i/ 2 f0; 1g.

In the other direction, if the answer to the subset sum problem is “yes”, then
according to Corollary 3.2, the polynomial has a solution in Fp. Note that the
reduction can be computed in randomized polynomial time. �

4. Complexity of the value set counting problem

In this section, we prove several results about the complexity of the value set count-
ing problem.

4A. Finite fields of characteristic 2. We will use a problem about NC0
5 circuits to

prove that counting the value set of a sparse polynomial in a field of characteristic
2 is #P-hard. A Boolean circuit is in NC0

5 if every output bit of the circuit depends
only on at most 5 input bits. We can view a circuit with n input bits and m output
bits as a map from f0; 1gn to f0; 1gm and call the image of the map the value set
of the circuit. The following proposition is implied in [6]; we provide a sketch of
the proof.

Proposition 4.1. Given a 3SAT formula with n variables and m clauses, one can
construct in polynomial time an NC 0

5 circuit with nCm input bits and nCm outputs
bits, such that if there are M satisfying assignments for the 3SAT formula, then
the cardinality of the value set of the NC 0

5 circuit is 2nCm� 2m�1M . In particular,
if the 3SAT formula can not be satisfied, then the circuit computes a permutation
from f0; 1gnCm to f0; 1gnCm.

Proof. Denote the variables and the clauses of the 3SAT formula by x1; x2; : : : ; xn

and C1; C2; : : : ; Cm, respectively. Build a circuit with n C m input bits and
nCm output bits as follows. The input bits will be denoted by x1; x2; : : : ; xn
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and y1; y2; : : : ; ym, and the output bits will be denoted by z1; z2; : : : ; zn and
w1; w2; : : : ; wm. Set zi D xi for 1� i � n, and set

wi D
�
Ci ^ .yi ˚y.iC1 .mod m///

�
_ .:Ci ^yi /

for 1 � i � m. In other words, if Ci is evaluated to be TRUE, then output
yi ˚ y.iC1 .mod m// as wi , and otherwise output yi as wi . Note that Ci depends
only on 3 variables from fx1; x2; : : : ; xng, so we obtain an NC0

5 circuit. After
fixing an assignment to the xi , the zi are also fixed, and the transformation from
.y1; y2; : : : ; ym/ to .w1; w2; : : : ; wm/ is linear over F2. One can verify that the
linear transformation has rank m� 1 if the assignment satisfies all the clauses, and
it has rank m (that is, it has full rank) if some of the clauses are not satisfied. So
the cardinality of the value set of the circuit is

M2m�1
C .2n

�M/2m
D 2nCm

� 2m�1M: �

If we replace the Boolean gates in the NC0
5 circuit by algebraic gates over F2,

we obtain an algebraic circuit that computes a polynomial map from FnCm
2 to itself,

where each polynomial depends only on 5 variables and has degree equal to or less
than 5. There is an F2-basis for F2nCm , say !1; !2; : : : ; !nCm, which induces a
bijection from FnCm

2 to F2nCm given by

.x1; x2; : : : ; xnCm/ 7! x D

nCmX
iD1

xi!i I

the inverse of this map can be represented by sparse polynomials in F2nCm Œx�.
Using this fact, we can replace the input bits of the algebraic circuit by sparse
polynomials, and collect the output bits together using the base to form a single
element in F2nCm . We thus obtain a sparse univariate polynomial in F2nCm Œx� from
the NC0

5 circuit such that their value sets have the same cardinality. We thus have
the following theorem.

Theorem 4.2. Given a 3SAT formula with n variables and m clauses, one can
construct in polynomial time a sparse polynomial 
.x/ over F2nCm such that the
value set of 
.x/ has cardinality 2nCm � 2m�1M , where M is the number of
satisfying assignments of the 3SAT formula.

Since counting the number of satisfying assignments for a 3SAT formula is
known to be #P-complete, we have our main theorem.

Theorem 4.3. The problem of counting the value set of a sparse polynomial over
a finite field of characteristic 2 is #P-hard.

Corollary 4.4. The set of sparse permutation polynomials over finite fields of char-
acteristic 2 is co-NP-complete.
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4B. Prime-order finite fields. The construction in Theorem 4.2 relies on building
extensions over F2. The technique cannot be adopted easily to the prime-order
finite field case. We will prove that counting the value set of a straight-line poly-
nomial over a prime-order finite field is #P-hard. We reduce the counting version
of the subset sum problem to the value set counting problem.

Theorem 4.5. Given access to an oracle that solves the value set counting problem
for straight-line polynomials over prime-order finite fields, there is a randomized
polynomial-time algorithm solving the counting version of the SSP.

Proof. Suppose we are given an instance of the counting subset sum problem, say b
with the set S D fa1; a2; : : : ; ang. If b >

Pn
iD1 ai we answer 0, while if b D 0 we

answer 1. Otherwise, we find a prime p >max.23t ; 2
Pn

iD1 ai / and ask the oracle
to count the value set of the sparse shift polynomial

f .x/ WD
�
1�ˇ.x/p�1

��t�1X
iD0

˛.xC i/2i

�
over the prime-order field Fp, where ˛.x/ and ˇ.x/ are as defined in (2) and (3),
respectively. We output the answer # .Vf /� 1, which is easily seen to be exactly
the number of subsets of fa1; : : : ; ang that sum to b. �

Since the counting version of the SSP is #P-complete, this theorem yields the
following.

Theorem 4.6. Over a prime-order finite field Fp , the problem of counting the value
set is #P-hard under RP-reduction, if the polynomial is given as a straight-line
program.

5. The image set and point counting

Proposition 5.1. If f 2 FqŒx� is a polynomial of degree d > 0, then the cardinality
of its image set is

# .Vf /D

dX
iD1

.�1/i�1Ni�i

�
1;
1

2
; : : : ;

1

d

�
(4)

where Nk D # .f.x1; : : : ; xk/ 2 Fk
q j f .x1/D � � � D f .xk/g/ and �i denotes the i -th

elementary symmetric function on d elements.

Proof. For any y 2 Vf , define

QNk;y D
˚
.x1; : : : ; xk/ 2 Fk

q j f .x1/D � � � D f .xk/D y
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and denote the cardinalities of QNk;y by Nk;y . We then see that

Nk D

X
y2Vf

Nk;y : (5)

Let us refer to the right-hand side of (4) as �; plugging (5) into this expression
and rearranging, we get

�D
X

y2Vf

dX
iD1

.�1/i�1Ni;y �i

�
1;
1

2
; : : : ;

1

d

�
:

Let us call the inner sum !y ; that is,

!y D

dX
iD1

.�1/i�1Ni;y �i

�
1;
1

2
; : : : ;

1

d

�
:

If we can show that for all y 2 Vf we have !y D 1, then we clearly have �D # .Vf /.
Let y 2Vf be fixed. Let kD # .f �1.y//. It is clear that 1� k�d andNi;yDk

i

for 0� i � d . Substituting this in, our expression mercifully becomes somewhat
nicer:

!y D 1�

dX
iD0

.�1/iki�i

�
1;
1

2
; : : : ;

1

d

�
D 1�

dX
iD0

.�1/i�i

�
k;
k

2
; : : : ;

k

d

�
(6)

D 1�
h�
1� k

��
1�

k

2

�
� � �

�
1�

k

d

�i
(7)

D 1:

From step (6) to step (7), we are using the identity
nY

jD1

�
��Xj

�
D

nX
jD0

.�1/j �n�j�j .X1; : : : ; Xn/ :

Note that the bracketed term of (7) is 0, as k must be an integer such that 1� k � d ,
so one term in the product will be 0. Thus, we have �D # .Vf /, as desired. �

Proposition 5.1 gives us a way to express # .Vf / in terms of the numbers of
rational points on a sequence of curves over Fq . If we had a way of getting Nk for
1� k � d , then it would be easy to calculate # .Vf /.

We proceed by examining a family of related spaces,

QNk D
˚
.x1; : : : ; xk/ 2 Fk

q j f .x1/D � � � D f .xk/
	
:
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We immediately note that Nk D # . QNk/.
Spaces similar to our QNk have been used several times [19; 2] to establish various

asymptotic results for # .Vf /. The spaces used in these earlier papers require that
xi ¤ xj for i ¤ j . We will see that our work would have been dramatically harder
had we imposed these additional restrictions.

The spaces QNk are not of any nice form (in particular, we cannot assume they
are nonsingular projective, abelian varieties, and so on), so we proceed by using
the p-adic point counting method described in [12], which runs in polynomial time
for any variety over a field of small characteristic (that is, p DO..d log q/C / for
some positive constant C ).

Theorem 5.2. There exist an explicit deterministic algorithm and an explicit poly-
nomial R such that for any f 2 FqŒx� of degree d , where q D pm and p is prime,
the algorithm computes the cardinality of the image set # .Vf / in a number of bit
operations bounded by R.mdddpd /.

Proof. We first note that

QNk D
˚
.x1; : : : ; xk/ 2 Fk

q j f .x1/D � � � D f .xk/
	

D

8̂̂̂<̂
ˆ̂:.x1; : : : ; xk/ 2 Fk

q

ˇ̌̌̌
ˇ̌̌̌
ˇ
f .x1/�f .x2/D 0

f .x1/�f .x3/D 0
:::

f .x1/�f .xk/D 0

9>>>=>>>; :
For reasons soon to become clear, we need to represent this as the solution set
of a single polynomial. Let us introduce additional variables z1 to zk�1, and set
x D .x1; : : : ; xk/ and z D .z1; : : : ; zk�1/. Now examine the auxiliary function

Fk.x; z/D z1

�
f .x1/�f .x2/

�
C � � �C zk�1

�
f .x1/�f .xk/

�
: (8)

Clearly, if 
 2 QNk , then Fk.
; z/ is the zero function. If 
 2 Fk
q n
QNk , then the

solutions of Fk.
; z/D 0 specify a .k� 2/-dimensional Fq-linear subspace of Fk�1
q .

Thus, if we denote the cardinality of the solution set to Fk.x; z/D 0 as # .Fk/, then
we see that

# .Fk/D q
k�1NkC q

k�2.qk
�Nk/

DNkq
k�2.q� 1/C q2k�2:

Solving for Nk , we find that

Nk D
# .Fk/� q

2k�2

qk�2 .q� 1/
: (9)

Thus we have an easy way to determine Nk , if we know the number of points on
the hypersurface defined by the single polynomial equation Fk D 0.
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The main theorem in [12] yields an algorithm for toric point counting in Fq`

that is polynomial time when the characteristic is small (that is, pDO..d log q/C /
for some positive constant C ) that works for general varieties. In [12, §6.4], this
theorem is adapted to be a generic point counting algorithm.

To apply this result to our problem, we note that Fk is a polynomial in 2k� 1
variables with total degree d C1, and that we only care about the case where `D 1.
Thus, the running time for this algorithm is QO.28kC1m6kC4k6kC2d6k�3p4kC2/

bit operations. In order to calculate # .Vf / using (4), we calculate Nk for 1� k � d ,
scaled by an elementary symmetric polynomial. All of the necessary elementary
symmetric polynomials can be evaluated using Newton’s identities (see [15]) in
O.d2 log d/ multiplications. Therefore, the entire calculation has a running time
of QO.28dC1m6dC4d12d�1p4dC2/ bit operations. For consistency with [12], we
can then note that as d > 1, we can write 28dC1 D d .logd 2/.8dC1/. Thus, there
is a polynomial R in one variable such that the running time of this algorithm is
bounded by R.mdddpd / bit operations. In the dense polynomial model, the poly-
nomial f has input size O .d log q/, so this algorithm does not have polynomial
running time with respect to the input length. This algorithm has running time that
is exponential in the degree d of the polynomial, and polynomial in m and p. �

Note that if we had adopted the spaces constructed in prior works [19; 2], we
would have then required xi ¤ xj for i ¤ j . The standard approach to represent-
ing such inequalities is the “Rabinovich trick”. To use this trick, we would have
introduced an additional variable, say y, and the additional equation

y
Y
i<j

.xj � xi /D 1:

This is a polynomial of degree
�
k
2

�
C 1, which would have led to an equation

corresponding to (8) of degree at least
�
k
2

�
C 2 with 2kC 1 variables; this would

have increased the work factor of the algorithm significantly.

6. Open problems

The algorithm we have presented relies on the result of Lauder and Wan, which
is intended to calculate the number of Fq-rational points on a general variety. We
use this algorithm on a polynomial of a very special form. As such, it may be
possible to get a considerably more efficient algorithm by exploiting symmetry in
the resulting Newton polytope.

Though value sets of polynomials appear to be closely related to zero sets,
they are not as well studied. There are many interesting open problems about
value sets. The most important one is to find a counting algorithm with running
time .d log q/O.1/, that is, a deterministic polynomial-time algorithm in the dense
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model. It is not clear if this is always possible. Our result affirmatively solves this
problem for fixed d if the characteristic p is reasonably small. We conjecture that
the same result is true for fixed d and all characteristic p.

For the complexity side, can one prove that the counting problem for sparse
polynomials in prime-order finite fields is hard? Can one prove that the counting
problem for the dense input model is hard for general degree d?
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