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We study several methods for the numerical computation of Petersson scalar
products, and in particular we prove a generalization of Haberland’s formula to
any subgroup of finite index G of � D PSL2.Z/, which gives a fast method
to compute these scalar products when a Hecke eigenbasis is not necessarily
available.

1. Introduction

Let G be a subgroup of � D SL2.Z/ of finite index r D Œ� WG�. Recall that � acts
on the upper half-plane H via linear fractional transformations and that we have
an invariant measure d� D dx dy=y2. We will denote by D.G/ a “reasonable”
fundamental domain for the action of G on H; see Definition 4.1 below.

Given two modular forms f1 and f2 having the same weight k and the same
multiplier system v on G, we recall that one defines the Petersson scalar product
hf1; f2iG (abbreviated PSP), when it exists, by the formula

hf1; f2iG D
1

Œ� WG�

Z
GnH

f1.�/f2.�/y
k dx dy

y2
D
1

r

Z
D.G/

f1.�/f2.�/y
k d�:

This is a fundamental quantity which enters almost everywhere in the theory of
modular forms, and the aim of the present paper is to study how to compute it
numerically in practice. The normalizing factor 1=r is included so that the result
does not depend on which group is taken with respect to which both f1 and f2 are
modular.

The absolute convergence of the above integral is assured if either f1 or f2 is a
cusp form, or if we are in weight 1=2. Note however that it can also converge in
other cases. We will always consider the case where one of f1 and f2 is a cusp
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form and we will assume that k � 2 and that k is integral. It is an interesting and
nontrivial question to ask what can be done when k D 1.

When the space Sk.G; v/ of cusp forms of weight k and multiplier system v is
known explicitly, and in particular when the decomposition into Hecke eigenforms
is known (when G D �0.N / or �1.N / for instance), there are specific methods
for computing the PSP if the decomposition of f1 and f2 on the eigenbasis can be
easily computed; we will mention these methods below. But we are more interested
in the general context where one does not need to know either Sk.G; v/ or the
eigenbasis decompositions, but where we assume that for any � 2H one can rapidly
compute f1.�/ and f2.�/ to reasonably high accuracy.

In the sequel we will let .j /1�j�r be a system of representatives of right cosets
of Gn� , so that � D

F
1�j�r Gj . In particular, if F is a fundamental domain for

the full modular group � (for instance the standard one), then
S
1�j�r j .F/ is a

fundamental domain for G, where the union is essentially disjoint, with the only
possible intersections being on the boundaries.

Recall that if  D
�
a b
c d

�
2 � we write f j

k
 to mean

f jk .�/D .c� C d/
�kf

�
a�Cb

c�Cd

�
;

so that f is an element of Mk.G; v/ if and only if f j
k
 D v./f for all  2 G

and f is holomorphic on H and at the cusps; also, f lies in Sk.G; v/ if in addition
f vanishes at the cusps.

It is clear that f j
k
gj D v.g/f j

k
j , so up to the factor v.g/ the function

fj D f jk j is independent of the chosen representative of the right coset Gj . In
addition, for any ˛ 2 � we have by definition j˛ D gj a.j / for some gj 2G, the
map j 7! a.j / being a permutation of Œ1; r�, so up to the factors v.gj /, the family
of fj jk˛ is simply a permutation of the fj .

2. Some standard methods

Before coming to the more original part of the paper, where we explain how to
compute PSP’s in a quite general setting, we recall with some detail some well-
known methods.

Throughout the paper we will use three test examples, even though they are not
completely general:

f1 D f2 D�.�/D �.�/
24
2 S12.�/;

f1 D f2 D�5.�/D
�
�.�/�.5�/

�4
2 S4.�0.5//;

and
f1 D f2 D�11.�/D

�
�.�/�.11�/

�2
2 S2.�0.11//;
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the last of these being the cusp form associated to the elliptic curve X0.11/. To
47 decimals, we have

h�;�i� D 0:00000103536205680432092234781681222516459322491 : : : ;

h�5; �5i�0.5/
D 0:00014513335082978187614092680220909259631066600 : : : ;

h�11; �11i�0.11/
D 0:00390834565612459898524738548138211386179054941 : : : :

In most cases, we assume for simplicity that G D � , but we will of course state
the necessary modifications for a general subgroup of finite index G.

2A. Computing from the definition. A first method for computing PSP’s is to use
the definition directly: Assuming for instance that G D � , we have

hf1; f2i D

Z
F
f1.�/f2.�/y

k�2 dx dy

D

Z 1
2

�
1
2

�Z 1
p
1�x2

f1.xC iy/f2.xC iy/y
k�2 dy

�
dx:

Since the functions fi are holomorphic, to compute the integrals numerically one
can use the doubly exponential integration method (see for instance [2, §9.3]). This
little-known but remarkable method is especially efficient for holomorphic func-
tions, and it can be shown that to obtain an accuracy of N decimals the method
requires O.N logN/ evaluations of the function to be integrated.

However, we have here a double integral, so the method requires O.N 2 log2N/
evaluations of the functions, which can be rather expensive. Of course this can be
generalized to any subgroup G by using a natural choice of fundamental domain
D.G/D

S
1�j�r j .F/ and making the obvious changes of variable. Table 1 gives

a selection of timings to compute hf; f iG to a given number N of decimals using
this method. The timings are in seconds, and those not given (as indicated by a
dash) are greater than 30 minutes. The present timings have been made on a single
processor of a standard 1.8 GHz Intel core i7 CPU, but they are highly dependent
on the implementation, so this table is only indicative.

f N D 19 38 57 96 250 500

� 11 16 87 143 — —
�5 154 219 1185 — — —
�11 327 468 — — — —

Table 1. Timings (in seconds, on one processor of a 1.8 GHz Intel core i7 CPU)
to compute hf; f iG to N decimal places using the definition of the pairing. Tim-
ings greater than 30 minutes are indicated with a dash.
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To summarize: The advantages of this method are its complete generality and
simplicity, while its main disadvantage is that it is quite slow, especially at high
accuracy and/or for a subgroup of large index.

2B. Using Kloosterman sums. Thanks to the computation of the Fourier expan-
sion of Poincaré series for � , it is easy to show that

1

h�;�i
D
.4�/11

10Š�.n/

�
ın;1C 2� �n

11=2
X
c�1

K.n; 1I c/

c
J11

�
4�n1=2

c

��
;

and similar formulas exist in higher weight and for congruence subgroups.
The convergence of this type of series is essentially of the order of O.1=ck�2/

(here with k D 12). This shows that, although useful, the above formula has severe
limitations. First, even in the case of �, the convergence in O.1=c10/ and the
necessity of computing Kloosterman sums and Bessel functions implies that one
can reasonably compute perhaps 106 terms if one is patient, giving an accuracy of
60 decimals. A more important limitation occurs for subgroups of � , for which
there exist forms of lower weight than 12. For instance, in weight 2 the absolute
convergence is not even clear, and in weight 4 the convergence is in O.1=c2/,
which is too slow to obtain any reasonable accuracy.

Table 2 presents some timings for this method, but limited to � since the con-
vergence for �5 would be too slow.

To summarize: The advantage of this method is its speed for high weight and
reasonably low accuracy such as 19 or 38 decimals, but the method is essentially
useless in all other cases. In addition, its use is restricted to congruence subgroups.

2C. Using symmetric square L-functions. Once again for simplicity we restrict
to G D � , but there is no difficulty in generalizing.

Since there exists an explicit orthogonal basis of eigenfunctions in Mk.�/, com-
puting Petersson scalar products of two arbitrary forms can easily be reduced to
the computation of hf; f i for f a normalized eigenform. If

L.f;s/D
X
n�1

a.n/

ns
D

Y
p

1

1� a.p/p�sCpk�1�2s
D

Y
p

1

.1� p̨p�s/.1� p̌p�s/

f N D 19 38 57 96 250 500

� 0:01 3 900 — — —

Table 2. Timings (in seconds) to compute hf; f iG to N decimal places using
Kloosterman sums.
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with p̨C p̌ D a.p/ and p̨ p̌ Dp
k�1, recall that we define the symmetric square

L-function L.Sym2.f /; s/ for <.s/ > k by the formula

L.Sym2.f /; s/D
Y
p

1

.1�˛2pp
�s/.1� p̨ p̌p�s/.1�ˇ2pp

�s/
:

The main properties of this function are summarized in the following result.

Theorem 2.1. Let f D
P
n�1 a.n/q

n 2 Sk.�/ be a normalized Hecke eigenform.

(1) (Fourier expansion.) If we set

A.n/D
X
mjn

.�1/�.m/mk�1a.n=m/2;

where �.m/ is the number of prime divisors of m, counted with multiplicity,
then

L.Sym2.f /; s/D
X
n�1

A.n/

ns
:

(2) (Functional equation.) The function L.Sym2.f /; s/ can be extended holo-
morphically to the whole of C, and the completed L-function

ƒ
�
Sym2.f /; s

�
D ��3s=2�.s=2/�

�
.sC 1/=2

�
�
�
.s� k/=2C 1

�
L
�
Sym2.f /; s

�
satisfies the functional equation

ƒ
�
Sym2.f /; 2k� 1� s

�
Dƒ

�
Sym2.f /; s

�
:

(3) (Special value.) We have

L
�
Sym2.f /; k

�
D
�

2

.4�/k

.k�1/Š
hf; f i:

Proof. The meromorphic continuation, functional equation, and special value are
very classical and immediate consequences of the Rankin-Selberg method. The
holomorphy is more difficult, and was proved independently by Shimura and Zagier
in 1975. �

Note that similar results are of course valid for subgroups.
The last statement of the theorem allows us to reduce the computation of hf; f i

to that of L.Sym2.f /; k/. For this, the direct use of the definition is of little help,
since it is not even clear that the series or product defining this L-function converge,
and even if they do, the convergence will be extremely slow. However, the crucial
point is the following: Any Dirichlet series satisfying a functional equation of
standard type can be evaluated numerically very efficiently using exponentially
convergent series, see for instance [1, §10.3]. Specializing to our case, it is easy to
show the following theorem.
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Theorem 2.2. Let f D
P
n�1 a.n/q

n2Sk.�/ be a Hecke eigenform. SetC D2��
3
2

and .s/D C�s�.s/�
�
.s � k/=2C 1

�
, and as usual let Hn denote the harmonic

number
P
1�j�n 1=j and let  denote Euler’s constant. Let

F1;k.s; x/D
X

1�m�.k�2/=2

.�1/k=2�m�1
.2m� 1/Š

.k=2�m� 1/Š

.Cx/�2m

s� 2m
;

F2;k.s; x/D
X
m�0

.�1/k=2�m�1
22mCk.mC k=2/Š

.2mC 1/Š.2mC k/Š

.Cx/2mC1

sC 2mC 1
; and

F3;k.s; x/D
X
m�0

.�1/k=2�m�1
1

.2m/Š.mC k=2� 1/Š

.Cx/2m

2mC s
Gm.s; x/;

where

Gm.s; x/D 2H2mCHmCk=2�1� 3 � 2 log.Cx/C 2

2mCs
;

and set

Fk.s; x/D .s/� x
s
�
2F1;k.s; x/C�

1=2F2;k.s; x/CF3;k.s; x/
�
:

Then for every s 2 C with <.s/ > k� 2 and every t0 > 0, we have

.s/L
�
Sym2.f /; s

�
D

X
n�1

A.n/

ns
Fk.s; nt0/C

X
n�1

A.n/

n2k�1�s
Fk.2k� 1� s; n=t0/

where the A.n/ are the coefficients given in part (1) of Theorem 2.1. In particular,

hf; f i D 21�k�k=2�1
�X
n�1

A.n/

nk

�
Fk.k; n/CnFk.k� 1; n/

��
:

Note that even though there is cancellation for large x, the series for Fk.s; x/ are
sufficient for practical computation. One can also compute asymptotic expansions
for large x, if desired, showing in particular that Fk.s; x/ tends to 0 exponentially.

Table 3 presents a few timings; for simplicity of implementation, we again limit
the table to the case f D�.

The advantages of this method are that it is general and fast; its main disadvan-
tage is that its implementation requires great care in writing the correct formulas,

f N D 19 38 57 96 250 500

� 0:03 0:09 0:2 0:8 11 97

Table 3. Timings (in seconds) to compute hf; f iG to N decimal places using
symmetric-square L-functions.
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especially for subgroups, and in dealing with cancellation and accuracy problems.
But once these hurdles have been overcome, it is the best method that we have seen
up to now, and most experts in the field would agree that it is the best available.
However, as already mentioned, it assumes that the eigenfunction decomposition
of f is known, and this is not always easy or possible. This lead us now to a
different method, which is completely general.

3. Basic lemmas

The main computational difficulty related to Petersson products is that they are truly
double integrals. In the first naïve approach, we have explained that nonetheless
these integrals can be computed, somewhat slowly, by using doubly exponential
integration techniques. A remarkable fact however, discovered by Haberland [4]
(see also [7]) some time ago, is that PSP’s can be reduced to the computation of
a reasonably small finite number of simple integrals, which can now be evaluated
very rapidly using doubly exponential integration.

Haberland’s result was given for general weights k but only for the full modular
group. In a slightly different form it was generalized long ago to �0.N / but only
in weight k D 2 and trivial character, first by Cremona [3] and Zagier [10] in the
context of computing the degree of modular parametrizations of elliptic curves
(see the more recent paper of Watkins [9] on this subject), and much more recently
by Merel [5] in connection with Manin symbols. It was realized that a complete
generalization should not be difficult to obtain, and it is one of the purposes of
this paper to give it. Note that in [6] the authors also give such a generalization,
in a slightly different form, and also for noncuspforms. In what follows, we will
assume that f1 and f2 are both cuspforms; if one of the fi is not a cuspform we
can either find its decomposition into its Eisenstein and cuspidal part, which can
usually be done with ease, or use the generalization due to [6].

Our goal in this section, which is the main step toward Haberland’s formulas,
is to show that PSP’s are related to other double integrals, which are not “true”
double integrals in the sense that they can easily be expressed in terms of simple
integrals. For this, we need some preliminary definitions and results. We assume
G, .j /1�j�r , k, v, f1, and f2 as above, and we will set f1;j D f1 jk j and
f2;j D f2 jk j for 1� j � r . As mentioned above, for simplicity we assume that
f1 and f2 are both cuspforms.

3A. The differentials " and ı.

Definition 3.1. We set

".f1; f2/.�1; �2/D f1.�1/f2.�2/.�1� �2/
k�2 d�1 d�2
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and

ı.f1; f2/D
X
1�j�r

".f1;j ; f2;j /:

Lemma 3.2. Let ˛ 2 � .

(1) We have

".f1; f2/.˛�1; ˛�2/D "
�
f1 jk˛; f2 jk˛

�
.�1; �2/:

(2) The expression ".f1;j ; f2;j / does not depend on the choice of the right coset
representative j .

(3) If j˛ D gj a.j / with gj 2G we have

".f1;j ; f2;j /.˛�1; ˛�2/D ".f1;a.j /; f2;a.j //:

(4) We have ı.f1; f2/.˛�1; ˛�2/D ı.f1; f2/; in other words, ı.f1; f2/ is invari-
ant under � .

Proof. Writing ˛ D
�
a b
c d

�
, we have

".f1; f2/.˛�1; ˛�2/

D f1 jk˛.�1/ f2 jk˛.�2/ � .c�1C d/
k.c�2C d/

k
.˛�1�˛�2/

k�2 d˛�1 d˛�2

D f1 jk˛.�1/ f2 jk˛.�2/.�1� �2/
k�2 d�1 d�2

D "
�
f1 jk˛; f2 jk˛

�
.�1; �2/;

using the immediate but fundamental identity

.c�1C d/
k.c�2C d/

k
.˛�1�˛�2/

k�2 d˛�1 d˛�2 D .�1� �2/
k�2 d�1 d�2:

Statement (1) follows.
If g 2 G we have f1 jkgj D v.g/f1;j , and similarly for f2, so statement (2)

follows from v.g/v.g/D 1.
By definition we have

f1;j jk˛ D f1 jk j˛ D f1 jkgj a.j / D v.gj /f1;a.j /

since f1 2Mk.G; v/, and similarly for f2;j . Again using v.gj /v.gj /D 1, we ob-
tain statement (3). Statement (4) follows by summing on j since the map j 7! a.j /

is a permutation. �
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3B. The simple integral F2;j .

Definition 3.3. Let Z 2H be fixed, and set

F2;j .ZI �/D F2;j .�/D

Z �

Z

f2;j .�2/.� � �2/
k�2 d�2:

Remarks. (1) We could also define F1;j in a similar manner, but we will only
need F2;j since we temporarily treat f1 and f2 in a nonsymmetric manner.

(2) Note that F2;j is in general not holomorphic, so must be considered as a
function of � and � .

(3) We have

F2;j .Z1I �/�F2;j .Z2I �/D

Z Z2

Z1

f2;j .�2/.� � �2/
k�2 d�2;

which is a polynomial (hence in particular a holomorphic function) in � .

Lemma 3.4. (1) We have

@F2;j

@�
D f2;j .�/.� � �/

k�2:

(2) For every ˛ 2 � we have

F2;j j2�k˛.�/D

Z �

˛�1.Z/

f2;j jk˛.�2/.� � �2/
k�2 d�2:

(3) In particular, if we write j˛ D gj a.j / with gj 2G, we have

F2;j j2�k˛.�/D v.gj /
�
F2;a.j /.�/�Pa.j /.˛I �/

�
;

where

Pa.j /.˛I �/D

Z ˛�1.Z/

Z

f2;a.j /.�2/.� � �2/
k�2 d�2

is a polynomial in � of degree less than or equal to k � 2 (recall once again
that we assume k � 2).

(4) We have�Z B

A

�

Z ˛.B/

˛.A/

� X
1�j�r

f1;j .�/F2;j .�/ d� D

Z B

A

X
1�j�r

f1;j .�/Pj .˛I �/ d�:

Proof. We have F2;j .�/D
R �
Z f2;j .�2/.� � �2/

k�2 d�2, so

@F2;j .�/

@�
D f2;j .�/.� � �/

k�2:

Conjugating this equality proves statement (1).
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Setting �2 D ˛z and writing ˛ D
�
a b
c d

�
, we have

F2;j j2�k˛.�/D .c� C d/
k�2

Z ˛�

Z

f2;j .�2/.˛� � �2/
k�2 d�2

D .c� C d/k�2
Z �

˛�1Z

.czC d/k�2f2;j jk˛.z/.˛� �˛z/
k�2 dz

D

Z �

˛�1Z

f2;j jk˛.z/.� � z/
k�2 dz;

since ˛u�˛v D .u� v/
ı�
.cuC d/.cvC d/

�
; this proves statement (2).

Since we have f2;j jk˛ D v.gj /f2;a.j /, it follows from statement (2) that

F2;j j2�k˛.�/D v.gj /

Z �

˛�1.Z/

f2;a.j /.�2/.� � �2/
k�2 d�2;

proving statement (3).
Setting � D ˛z with ˛ D

�
a b
c d

�
and as before j˛ D gj a.j /, we haveZ ˛.B/

˛.A/

f1;j .�/F2;j .�/ d� D

Z B

A

f1;j .˛z/F2;j .˛z/.czC d/
�2 dz

D

Z B

A

f1;j jk˛.z/F2;j j2�k˛.z/ dz

D v.gj /v.gj /

Z B

A

f1;a.j /.�/
�
F2;a.j /.�/�Pa.j /.˛I �/

�
d�;

and since j 7! a.j / is a bijection, we obtainZ ˛.B/

˛.A/

X
1�j�r

f1;j .�/F2;j .�/ d� D

Z B

A

X
1�j�r

f1;j .�/
�
F2;j .�/�Pj .˛I �/

�
d�;

proving statement (4). �

Corollary 3.5. Let f1 and f2 be in Mk.G; v/, one of them being a cusp form. For
every subgroup H of � of finite index s D Œ� WH� we have

.2i/k�1rshf1; f2iG D

Z
@.D.H//

X
1�j�r

f1;j .�/F2;j .�/ d�;

where @.D.H// denotes the boundary of a reasonable fundamental domain D.H/
of H .

Note that the subgroup H need not have anything to do with the subgroup G.
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Proof. By definition we have

.2i/k�1rhf1; f2iG D

Z
D.G/

f1.�/f2.�/.� � �/
k�2 d� d�

D

X
1�j�r

Z
j .D.�//

f1.�/f2.�/.� � �/
k�2 d� d�

D

Z
D.�/

X
1�j�r

f1;j .�/f2;j .�/.� � �/
k�2 d� d�

D

Z
D.�/

ı.f1; f2/.�; �/

D
1

s

Z
D.H/

ı.f1; f2/.�; �/;

after an evident change of variable, and since ı is invariant by � by Lemma 3.2.
Now since f1;j is holomorphic, we have @f1;j =@� D 0, so by Stokes’s theorem
and the above lemma we have

.2i/k�1rshf1; f2iG D

Z
D.H/

X
1�j�r

@.f1;jF2;j /

@�
d� d�

D

Z
@.D.H//

X
1�j�r

f1;j .�/F2;j .�/ d�;

as claimed. �

3C. The basic double integral J. We make the following definition.

Definition 3.6. Let f1 and f2 be modular forms. If A1, B1, A2, B2 are in H, we
set, when defined,

J.A1; B1IA2; B2/D

Z B1

A1

Z B2

A2

ı.f1; f2/

D

X
1�j�r

Z B1

A1

Z B2

A2

f1;j .�1/f2;j .�2/.�1� �2/
k�2 d�1 d�2;

where f1;j D f1 jk j and f2;j D f2 jk j .

When we need to emphasize the dependence in f1 and f2 we will of course
write J.f1; f2IA1; B1IA2; B2/ instead of J.A1; B1IA2; B2/. Also, as usual when
integrating on H it is understood that integrals having a cusp as an endpoint must
end with a hyperbolic circle. The following properties are immediate.

Lemma 3.7. (1) The above definition does not depend on the paths of integration,
as long as the conditions at the cusps are satisfied.
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(2) The above definition does not depend on the right coset representatives j .

(3) The function J is transitive separately on .A1; B1/ and on .A2; B2/; in other
words,

J.A1; C1IA2; B2/CJ.C1; B1IA2; B2/D J.A1; B1IA2; B2/;

and similarly for .A2; B2/.

(4) We have

J.f1; f2IA2; B2IA1; B1/D .�1/
k�2J.f2; f1IA1; B1IA2; B2/:

(5) We have

J.A1; B1IA2; B2/

D

X
1�j�r

X
0�n�k�2

.�1/n
�
k�2
n

� Z B1

A1

�k�2�nf1;j .�/ d�

Z B2

A2

�nf2;j .�/ d�;

where we must assume that f1 and f2 are both cusp forms if at least one of
the Ai or Bi is a cusp.

In particular, this last statement shows that J is much easier to compute than a
PSP, and it is in this sense that we said above that it is not a “true” double integral.

Proposition 3.8. For any ˛ 2 � we have

J.˛A1; ˛B1I˛A2; ˛B2/D J.A1; B1IA2; B2/:

Proof. This follows immediately from the �-invariance of ı, proved in Lemma 3.2.
�

4. The main result

4A. Fundamental domains. Before stating and proving the main result, we must
discuss fundamental domains of subgroups of � . We first set the following defini-
tion.

Definition 4.1. Let G � � be a subgroup of finite index r . A subset D.G/ of H

is called a reasonable fundamental domain (or simply a fundamental domain) for
G if the following conditions are satisfied:

(1) D.G/ is a finite union of connected and simply connected open subsets of H.

(2) The boundary @.D.G//DD.G/ nD.G/ has measure 0.

(3) For any � 2 H there exists g 2 G such that g� 2 D.G/. In addition, if
g� 2D.G/ then g is unique, or equivalently, if g1 and g2 2G are such that
g1.�/ and g2.�/ are in D.G/, then gi .�/ 2 @.D.G//.
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If F is the standard fundamental domain for the full modular group � , it is clear
that D.G/D

S
j .F

ı/ is a reasonable fundamental domain. The following results
are well-known.

Proposition 4.2. The fundamental domain D.G/ can be chosen so that its bound-
ary @.D.G// is the union of an even number of oriented hyperbolic circles, say
ŒAi ; AiC1Œ with 1� i � 2n (where the indices are taken modulo 2n), such that
there exists a family .˛i /1�i�2n of elements of � and a permutation � of Œ1; 2n�
satisfying the following properties:

(1) � is an involution without fixed points (that is, �2 D 1 and �.i/¤ i for all i);
equivalently, � is a product of n disjoint transpositions .im; jm/1�m�n.

(2) ˛�.i/ D ˛�1i .

(3) ˛i .Ai / D A�.i/C1 and ˛i .AiC1/ D A�.i/, so that ˛i gives a bijection from
ŒAi ; AiC1Œ to ŒA�.i/C1; A�.i/Œ .

Corollary 4.3. If � is the product of the n disjoint transpositions .im; jm/1�m�n,
then ˛im gives a bijection from ŒAim ; AimC1Œ to the reverse of ŒAjm

; AjmC1Œ , and

@.D.H//D
G

1�m�n

�
ŒAim ; AimC1Œt ŒAjm

; AjmC1Œ
�
:

Proof. Clear. �

4B. Examples of fundamental domains. For simplicity, we will choose subgroups
G having a fundamental domain whose boundary has only 4 sides, and � will
always be the product .1; 2/.3; 4/ of the two transpositions exchanging 1 and 2,
and 3 and 4, so i1 D 1 and i2 D 3. The fundamental domain is thus a hyperbolic
quadrilateral given by its vertices A1, A2, A3, and A4, and ˛1 sends ŒA1; A2Œ bi-
jectively to the reverse of ŒA2; A3Œ, and ˛3 sends ŒA3; A4Œ bijectively to the reverse
of ŒA4; A1Œ .

We consider a number of different subgroups H of � , and give one or more
fundamental domains of the above type for each, where as usual �D e2i�=3:

(1) H D � , with A1 D � C 1, A2 D i1, A3 D �, A4 D i , ˛1 D T �1, and
˛3 D S , which corresponds to the standard fundamental domain F, where as
usual T D

�
1 1
0 1

�
and S D

�
0 �1
1 0

�
.

(2) H D � , with A1 D 0, A2 D i , A3 D i1, A4 D �, ˛1 D S , and ˛3 D ST .

(3) H D �2 the unique subgroup of index 2 in � , with A1 D �C 1, A2 D i1,
A3 D �, A4 D 0, ˛1 D T �1, and ˛3 D TST D ST �1S D

�
1 0
1 1

�
.

(4) H D�2 the unique subgroup of index 2 in � , withA1D0, A2D i1, A3D�1,
A4 D �, ˛1 D T �1 and ˛3 D T �1S D

�
�1 �1
1 0

�
.
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(5) H D �3 one of the subgroups of index 3 in � , with A1 D 1, A2 D i1,
A3 D�1, A4 D I , ˛1 D T �2, and ˛3 D S .

(6) H D �0.3/, which has index 4 in � , with A1 D .�C 2/=3, A2 D i1, A3 D
.�� 1/=3, A4 D 0, ˛1 D T �1, and ˛3 D ST �3S D

�
1 0
3 1

�
.

(7) H D �.2/ the principal congruence subgroup of level 2, which has index 6 in
� and is a free group, with A1 D 1, A2 D i1, A3 D�1, A4 D 0, ˛1 D T �2,
and ˛3 D ST �2S D

�
1 0
2 1

�
.

Proof. The domain (1) is of course completely classical, and the others, which
can all be found somewhere in the literature, can be usually deduced by splitting
the standard fundamental domain of (1) into a finite number of pieces and then
applying to those a suitable finite number of elements of � . One can also prove
the results directly in the same way as the classical proofs of (1). �

4C. The main result.

Proposition 4.4. Keep the above notation and let H be a subgroup of finite index s
in � . For every Z 2H we have

.2i/k�1rshf1; f2iG D
X

1�m�n

J
�
Aim ; AimC1IZ; ˛

�1
im
.Z/

�
:

Proof. By Corollary 3.5 and Lemma 3.4(4), we have

.2i/k�1rshf1; f2iG D
X

1�m�n

�Z AimC1

Aim

�

Z ˛im .AimC1/

˛im .Aim /

� X
1�j�r

f1;j .�/F2;j .�/ d�

D

X
1�m�n

Z AimC1

Aim

X
1�j�r

f1;j .�/Pj .˛im I �/ d�;

proving the proposition using the definition of Pj and J. �

Since we have seen that J is not a “true” double integral but an explicit finite lin-
ear combination of products of two simple integrals, we see that we have achieved
our goal of expressing PSP’s in terms of simple integrals. In the next section, we
will specialize this formula to the fundamental domains given above.

5. The main corollaries

5A. General formulas. From the above proposition, we can deduce infinitely many
expressions of PSP’s in terms of simple integrals. We give a few here.
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Theorem 5.1. Assume that f1 and f2 are in Mk.G; v/, one of them being a cusp
form. Then for all Z, we have

.2i/k�1rhf1; f2iG D J
�
�; i1IZ�1; Z

�
CJ

�
�; i I Z; �

1
Z

�
D J

�
i; i1I Z; � 1

Z

�
CJ

�
�; i1I�ZC1

Z
; Z

�
D

�
J
�
�; i1IZ�1; Z

�
CJ

�
�; i1I�ZC1

Z
; �

1
Z

��ı
2

D

�
J
�
0; i1I Z;ZC1

�
CJ

�
�1; �I Z;� 1

ZC1

��ı
2

D

�
J
�
0; i1I Z; Z

ZC1

�
CJ

�
�; i1I� 1

ZC1
; Z

��ı
2

D

�
J
�
0; i1IZ�1;ZC1

�
CJ

�
�1; i I Z; �

1
Z

��ı
3

D

�
J
�
�; 0I Z

ZC1
; Z
1�2Z

�
CJ

�
�; 1I Z�1

Z
; Z

ZC1

��ı
4

D

�
J
�
0; i1IZ�1;ZC1

�
CJ

�
�1; 0I Z; Z

1�2Z

��ı
6

D

�
J
�
0; i1IZ�1;ZC1

�
CJ

�
0; i1I�ZC1

Z
; Z�1

Z

��ı
6:

In particular, we have

.2i/k�1rhf1; f2iG D J. i; �I 0; i1/ D J. i; i1I �; �C 1/

D J.�; i1I i � 1; i/ D J.�; i1I �1; 0/=2

D J.�; i1I �� 1; �C 1/=2 D J.0; i1I �; �C 1/=2

D J.0; i1I �1; �/=2 D J.0; i1I �1; �C 1/=4

D J.0; i1I �1; i/=3 D J.0; i1I i � 1; i C 1/=3

D J.0; i1I �1; 1/=6

as well as

.2i/k�1rhf1; f2iG D
�
J.0; i1I�1; 0/�J.�1; 0I 0; i1/

�
=6:

Proof. The first collection of formulas follows from the different subgroups H and
corresponding fundamental domains given in the preceding section, together with
Proposition 3.8, which expresses the �-invariance of J. The formulas in the second
collection are obtained from those in the first by specializing to specific values of
Z and using Proposition 3.8 and transitivity of the function J. The details are left
to the reader. �

Note that even though the final formula in the theorem involves two evaluations
of the function J instead of one, and so takes longer to compute, we have included
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it because it is the only formula which is symmetrical in f1 and f2, and because
it leads directly to Haberland’s formulas, given below.

5B. Haberland’s formulas for subgroups. Even though the above theorem is suf-
ficient for computational needs, we now reach our goal of generalizing Haberland’s
formulas to general subgroups of finite index of � . Recall that for any cusp form f

we let rn.f /D
R i1
0 �nf .�/ d� denote the n-th period of f , and that T D

�
1 1
0 1

�
.

Theorem 5.2. If f1 and f2 are in Sk.G; v/, we have the formula

6r.�2i/k�1hf1; f2iG D
X

mCn�k�2

�
k�2
mCn

��
mCn
m

�
Mm;n.f1; f2/;

where

Mm;n.f1; f2/

D

X
1�j�r

�
.�1/mrm.f1;j /rn.f2;j jkT /� .�1/

nrm.f1;j jkT /rn.f2;j /
�
;

and where we recall that fi;j D fi jk j . In particular, we have

�6r.�2i/k�2hf; f iG

D

X
mCn�k�2

�
k�2
mCn

��
mCn
m

� X
1�j�r

.�1/m=
�
rm.f1;j /rn.f2;j jkT /

�
:

Proof. As already mentioned, by the binomial theorem we have

J.�1; 0I 0; i1/D
X
1�j�r

X
0�n�k�2

.�1/n
�
k�2
n

�
rn.f2;j /

Z 0

�1

�k�2�nf1;j .�/ d�:

Setting � D�1=.zC 1/D ST .z/D U.z/, we haveZ 0

�1

�k�2�nf1;j .�/ d� D .�1/
k�2�n

Z i1

0

.zC 1/nf1;j jkU.z/ dz

D .�1/k�2�n
X

0�m�n

�
n
m

�
rm.f1;j jkU/;

so using the trivial equality rk�2�n.f /D .�1/k�1�nrn.f jkS/, we obtain

J.�1; 0I 0; i1/

D .�1/k�2
X

0�m�n�k�2

�
k�2
n

��
n
m

� X
1�j�r

rm.f1;j jkU/rn.f2;j /

D

X
0�m�n�k�2

.�1/nC1
�
k�2
n

��
n
m

� X
1�j�r

rm.f1;j jkU/rk�2�n.f2;j jkS/:
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By Lemma 3.7(2), J does not depend on the chosen representatives of right cosets,
so replacing j by jS and then changing n into k� 2�n gives

J.�1; 0I 0; i1/

D

X
mCn�k�2

.�1/k�1�n
�
k�2
mCn

��
mCn
m

� X
1�j�r

rm.f1;j jkT / rn.f2;j /:

By symmetry, we have

J.0; i1I�1; 0/

D

X
mCn�k�2

.�1/k�1�m
�
k�2
mCn

��
mCn
m

� X
1�j�r

rm.f1;j / rn.f2;j jkT /;

so the last formula of Theorem 5.1 gives us the first formula of Theorem 5.2. The
second formula of Theorem 5.2 follows immediately. �

Even though we will not need the following proposition, note that it can be
proved in the same way.

Proposition 5.3. Under the same assumptions as above, we haveX
mCn�k�2

�
k�2
mCn

��
mCn
m

�
�

X
1�j�r

�
.�1/mrm.f1;j / rn.f2;j jkT /C .�1/

nrm.f1;j jkT / rn.f2;j /
�

D

X
1�j�r

X
mCnDk�2

.�1/m
�
k�2
m

�
rm.f1;j / rn.f2;j /:

Proof. Simply expand as above the identity

J.�1; 0I 0; i1/CJ.0; i1I�1; 0/D�J.0; i1I 0; i1/: �

Corollary 5.4 (Haberland). Assume that G D � , so that r D 1, v D 1, and k is
even. We have

3.�2i/k�1hf1; f2i D
X

mCn�k�2
mCn�1 .mod 2/

�
k�2
mCn

��
mCn
m

�
.�1/mrm.f1/ rn.f2/;

and X0

mCn�k�2
mCn�0 .mod 2/

�
k�2
mCn

��
mCn
m

�
.�1/mrm.f1/ rn.f2/D 0;

where
P0 means that the term mCnD k� 2 occurs with coefficient 1=2. �
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6. Using Theorem 5.1

We now consider methods for computing PSP’s based on the results obtained above.
First, let us consider one of the formulas of Theorem 5.1, for instance the formula

6r.2i/k�1hf1; f2iG D J.0; i1I�1; 1/:

Once again we will assume for simplicity that G D � but the reasoning is com-
pletely general. We have

J.0; i1I�1; 1/D
X

0�n�k�2

.�1/n
�
k�2
n

� Z i1

0

�k�2�nf1.�/ d�

Z 1

�1

�nf2.�/ d�;

so the problem boils down to the computation of k� 1 integrals involving f1 and
k� 1 integrals involving f2 (in the general case, this becomes r.k� 1/ integrals).

The computation of
R i1
0 �k�2�nf .�/ d� D rk�2�n.f / can be done in two

quite different ways. On the one hand, we can apply the above-mentioned theory
of double-exponential integration, which here works very well since it is only a
simple and not a double integral.

An important implementation remark must be noted here: Since f .�/ may be
costly to compute, it is preferable to use the integration method on the vector-valued
function .1;�;: : :;�k�2/f .�/ or on the polynomial-valued function .X��/k�2f .�/,
instead of on each component individually, since this only requires one evaluation
of f instead of k� 1.

On the other hand, we can use the elementary link between this integral and the
value of the ƒ-function attached to f : Indeed, we have trivially

rj .f /D i
jC1ƒ.f; j C 1/;

where ƒ.f; s/D .2�/�s�.s/L.f; s/ satisfies the functional equation

ƒ.f; k� s/D .�1/k=2ƒ.f; s/:

Thus, using the standard method explained above, but here in a much simpler con-
text because the inverse Mellin transform of .2�/�s�.s/ is simply e�2�x , we
obtain the formula

ƒ.f; s/D
X
n�1

a.n/

.2�n/s
�.s; 2�nt0/C .�1/

k=2
X
n�1

a.n/

.2�n/k�s
�.k� s; 2�n=t0/;

where

�.s; x/D

Z 1
x

e�t ts�1 dt

is the incomplete gamma function, which can be computed in many efficient ways.
The computation of

R 1
�1 �

nf .�/ d� poses slightly different problems. We can
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of course still use double-exponential integration. On the other hand, the link with
L-functions still exists but is slightly more subtle (unless G D �). Indeed, we first
write

R 1
�1 D

R 0
�1C

R 1
0 , and then set � D ST .z/D�1=.zC 1/ in the first integral

and � D z=.zC 1/ in the second integral. We obtainZ 1

�1

�nf .�/ d� D .�1/n
Z i1

0

.zC 1/k�2�nf
�
�1=.zC 1/

�
dz

C

Z i1

0

zn.zC 1/k�2�nf
�
z=.zC 1/

�
dz:

If GD� then the transforms of f are equal to f , so by using the binomial theorem
we reduce the computation to that of at most k� 1 periods of f . If desired we can
in fact directly use Haberland’s formula; see below.

If G ¤ � , a new difficulty appears: Since the transforms of f by � are not
in general equal to f , we have to compute their periods. The doubly exponential
integration method is of course always available, but the use of the L-function
explained above now requires the knowledge of the Fourier expansions at infinity
of the functions fj D f jk j , using the notation of the beginning of this section;
equivalently, given f 2Mk.G; v/ in some way, we need to compute the Fourier
expansion of f at the cusps of G, not only at infinity. This is still another compu-
tational problem which we do not consider here.

Table 4 presents some timings to compute hf; f iG to the given number N of
decimals using this method, without using at all the functional equation but only
double-exponential integration, so as to keep it as general as possible. Note that in
my implementation, the fastest among the formulas given by Theorem 5.1 for �,
�5, and �11 is the one given above involving J.0; i1I�1; 1/, but this may not
be the case for other implementations.

As an illustration of the power of double-exponential integration, note that for
instance to compute h�;�i to 500 decimal digits, we only need 500 sample points,
so only 1000 evaluations of � (which is of course efficiently computed using the
equality �.�/D �24.�/).

To summarize, in order to use Theorem 5.1 in the simplest possible manner,
I suggest using the doubly exponential integration methods, since here they only
apply to simple integrals.

f N D 19 38 57 96 250 500

� 0:06 0:06 0:14 0:19 2:02 11:3

�5 0:35 0:46 1:16 1:60 17:1 94:3

�11 0:67 0:89 2:24 3:11 33:7 188

Table 4. Timings (in seconds) to compute hf; f iG to N decimal places using Theorem 5.1.
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f N D 19 38 57 96 250 500

� 0:02 0:02 0:06 0:08 0:86 4:96

�5 0:23 0:29 0:72 1:00 10:5 58:4

�11 0:48 0:61 1:48 2:12 22:0 122:5

Table 5. Timings (in seconds) to compute hf; f iG to N decimal places using Theorem 5.2.

7. Using Theorem 5.2

As mentioned above, a variant is to directly use Theorem 5.2. This should be done
in the following way: Using either double-exponential integration or the L-function
method if available, we compute the .k � 1/r periods rm.f1;j /, as well as the
.k�1/r periods rn.f2;j / if f1¤f2 (as mentioned above, these should be computed
as r vectors with k� 1 components). It is not necessary to compute the periods of
f1;j jkT and f2;j jkT . Indeed, we can write jT D gj t.j /, where gj 2 G and
j 7! t .j / is a permutation of Œ1; r�. Thus, since f1 2Mk.G; v/, we have

rm.f1;j jkT /D rm.f1 jk jT /D v.gj /rm.f1;t.j //;

so no additional computation is necessary. Table 5 gives the corresponding timings.
Note that the main gain compared to the use of Theorem 5.1 comes from the

fact that since f2 D f1, the periods have to be computed only once.

8. Using rationality theorems

There is a more subtle way of using periods to compute Petersson scalar products,
but only in the special case of Hecke eigenforms: It is a well-known theorem
of Manin that in the case of G D � , if f is a normalized eigenform there exist
positive real numbers !C and !� such that the even (respectively, odd) periods
are algebraic multiples of !C (respectively, of !�), and that !C and !� can be
chosen such that hf; f i D !C!�. Since !C and !� are essentially periods, they
are thus very easy to compute as explained above, so this gives a very efficient way
of computing hf; f i. For instance, once one knows that

h�;�i D
225

2048i
r1.�/r2.�/;

without using any tricks and computing the periods using the doubly exponential
integration method, we obtain the result to 500 decimals in only 9 seconds, while
using the L-function method we obtain the result in 1 second, so there is no special
advantage in this case.
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However, in the case of congruence subgroups G of � , similar results hold, and
here we may use rationality to our advantage. I thank N. Skoruppa for the precise
statement of this theorem.

Theorem 8.1. Denote by

Cj D
�
aj bj

cj dj

�
a system of representatives of right cosets of Gn� . Set

�j D
�
�bj �aj

dj cj

�
D P�1jSP;

where P D
�
�1 0
0 1

�
, and for f 2Mk.G; v/ write f ˙j D f jk 

˙
j . Finally, let

R˙j .f /.X/D

Z i1

0

.X � �/k�2f ˙j d�;

and
P˙j .f /DR

C
j .f /˙R

�
j .f /:

Assume that f is a normalized eigenfunction of all Hecke operators, so that the
Fourier coefficients of f at infinity are algebraic, and denote by K D Q.f / the
number field generated by them. There exist complex numbers !˙ such that the
coefficients of the polynomials P˙j .f /.X/=!

˙ are in K. In addition, !˙ can be
chosen so that !C!� D hf; f i.

Remarks. (1) I do not know if this theorem is stated explicitly in the literature,
although it certainly is implicit.

(2) I thank an anonymous referee for pointing out that a similar theorem is valid
with �j D

�
aj �bj

�cj dj

�
D P�1jP instead.

For f D �, as mentioned above we choose for instance !C D r2.�/=i and
!� D r1.�/, and we have

h�;�i D .225=2048/!C!�:

For f D �5, we choose for instance !C D r0.�5/=i and !� D r1.�5/, and
we have

h�5; �5i D �.13=24/!
C!�:

For f D �11, we choose for instance !C D r0.�11/=i and !� D

<
�
r0
�
�11I

�
1 0
3 1

���
(which is one of the simplest choices), and we have

h�11; �11i D .5=12/!
C!�:

Table 6 gives the timings.
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f N D 19 38 57 96 250 500

� 0:013 0:017 0:043 0:063 0:75 4:41

�5 0:023 0:028 0:071 0:103 1:20 7:07

�11 0:06 0:09 0:20 0:28 3:08 17:58

Table 6. Timings (in seconds) to compute hf; f iG to N decimal places using
rationality theorems.

We see that this is by far the fastest method, especially when the index r D Œ� WG�
is large, since we only need to compute two periods. Its main disadvantages are
first that it is applicable only to Hecke eigenforms, and second that we need to
compute the rational (or algebraic) constants which occur for each form f , which
we do not know how to give in closed form, although such a formula may well
exist.
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