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Given a curveX of the form yp D h.x/ over a number field, one can use descents
to obtain explicit bounds on the Mordell-Weil rank of the Jacobian or to prove
that the curve has no rational points. We show how, having performed such a
descent, one can easily obtain additional information which may rule out the
existence of rational divisors on X of degree prime to p. This can yield sharper
bounds on the Mordell-Weil rank by demonstrating the existence of nontrivial
elements in the Shafarevich-Tate group. As an example we compute the Mordell-
Weil rank of the Jacobian of a genus 4 curve over Q by determining that the
3-primary part of the Shafarevich-Tate group is isomorphic to Z=3�Z=3.

1. Introduction

Let k be a global field and J=k an abelian variety. Any separable isogeny ' WJ!J

gives rise to a short exact sequence of finite abelian groups,

0 // J.k/='.J.k// // Sel'.J=k/ // X.J=k/Œ'� // 0;

relating the finitely generated Mordell-Weil group J.k/ and the conjecturally finite
Shafarevich-Tate group X.J=k/. Computation of the middle term, the '-Selmer
group of J , is typically referred to as a '-descent on J . This produces an explicit
upper bound for the Mordell-Weil rank which will only be sharp when X.J=k/Œ'�

is trivial.
While descents on elliptic curves have a history stretching back as far as Fermat,

the first examples for abelian varieties of higher dimension appear to have been
computed in the 1990s by Gordon and Grant [10], though Cassels had suggested
a method using his so-called .x � T / map a decade earlier [6]. These first ex-
amples concerned Jacobians of genus 2 curves with rational Weierstrass points.
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Schaefer [16; 17] and Poonen and Schaefer [13] later developed a cohomological
interpretation of Cassels’ .x�T /map which allowed them to generalize the method
to Jacobians of all cyclic covers of the projective line. More recently Bruin and
Stoll [5] and Mourao [12] have used a similar .x � T / map to do a descent on
the cyclic cover itself. This computes a finite set of everywhere locally solvable
coverings of the curve which may be of use in determining its set of rational points.
In particular, when this set is empty there are no rational points on the curve.

We show how, having performed a descent on the Jacobian J of a cyclic cover X ,
one can easily obtain additional information which may rule out the existence of
k-rational divisors of degree 1 on X . When X is everywhere locally solvable
(for instance) the scheme Pic1.X/, whose k-rational points parametrize k-rational
divisor classes of degree 1 on X , represents an element of X.J=k/. So this can
be used to show that X.J=k/ is nontrivial, and consequently to deduce sharper
bounds for the Mordell-Weil rank. We show that this new information can be
interpreted as a set parametrizing certain everywhere locally solvable coverings
of Pic1.X/, so one might refer to the method as a descent on Pic1.X/. This
interpretation allows us to relate the set in question to the divisibility properties of
Pic1.X/ in X.J=k/ (see Theorem 4.5 and Corollary 4.6). Well known properties
of the Cassels-Tate pairing then allow us to deduce a better lower bound for the
size of X.J=k/ (unconditionally). We give several examples. In one we compute
the Mordell-Weil rank of the Jacobian of a genus 4 curve over Q by determining
that the 3-primary part of the Shafarevich-Tate group is isomorphic to Z=3�Z=3.
We also present empirical data suggesting better bounds are thus obtained rather
frequently for hyperelliptic curves.

While one gets additional information on k-rational divisors of degree 1, this
is unlikely to be of much additional use for determining the set of rational points
on X when the genus is at least 2. When X.k/ ¤ ∅, the descent on Pic1.X/
yields no new information on the Mordell-Weil rank since Pic1.X/ ' J . The
obstruction to the existence of rational points on X provided by the descent on
Pic1.X/ is weaker than that given by the descent on X , and only provides any
new information when the descent on X actually gives an obstruction. That being
said, descents on Pic1.X/ could be useful for computing large generators of the
Mordell-Weil group or for finding a k-rational embedding of X into the Jacobian
(see [4, Section 3.2] for some examples with genus 2 curves), both of which are
relevant for tools such as the Mordell-Weil sieve or Chabauty’s method. However,
such benefits can only be reaped by constructing explicit models for the coverings
parametrized by the descent, which is a topic which we will not address here.

1A. Notation. Throughout the paper p will be a prime number and k a field of
characteristic different from p containing the p-th roots of unity. We use k to
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denote a separable closure of k and gk to denote the absolute Galois group of k.
When k is a global field we denote its completion at a prime v by kv.

If G is a group, a principal homogeneous space forG is a setH on which G acts
simply transitively. We make the convention that ∅ is a principal homogeneous
space for any group. Suppose H and H 0 are principal homogeneous spaces for
groups G and G0, respectively, and that i0 WG!G0 is a homomorphism of groups.
Then a map i WH!H 0 is said to be affine (with respect to i0) if i.g �h/D i0.g/�i.h/
for all h 2H and g 2G. An affine isomorphism is an affine bijection with respect
to an isomorphism of groups. When G is an abelian group and n is an integer, we
use GŒn� and G.n/ to denote the n-torsion subgroup and the subgroup of elements
killed by some power of n, respectively.

If L is a k-algebra we use L to denote L˝k k. If V is a projective variety over k
and L is a commutative k-algebra we use VL or V ˝k L to denote the extension
of scalars, V �Spec.k/ Spec.L/. The group of k-rational divisors on V is denoted
Div.V /. The function field of V is denoted �.V /. A divisor is called principal if
it is the divisor of a function f 2 �.V /; the group of all such divisors is denoted
Princ.V /. The quotient of Div.V / by Princ.V / is denoted Pic.V /. When V is a
curve Div.V / is the free abelian group on the set of closed points of V , and there
is a well defined notion of degree in Div.V /. For a point P 2 V.k/ we use ŒP �
to denote the corresponding element in Div.V

k
/. The degree of a principal divisor

is 0, so there is also a well defined notion of degree for classes in Pic.V /. We
denote the subset consisting of classes of degree i by Pici .V /.

Let A be an abelian variety defined over k. A k-torsor under A is a variety T
over k, together with an algebraic group action of A on T defined over k such that
the induced map A�T 3 .a; t/ 7! .aC t; t /2 T �T is an isomorphism. This means
that geometrically A acts simply transitively on T . The k-isomorphism classes of
k-torsors under A are parametrized by the torsion abelian group H 1.k; A/. The
trivial class is represented by A acting on itself by translations, and a k-torsor
under A is trivial if and only if it possesses a k-rational point. Thus when k is a
global field with completions kv, the Shafarevich-Tate group

X.A=k/ WD ker
�
H 1.k; A/!

M
H 1.kv; A/

�
parametrizes isomorphism classes of everywhere locally solvable torsors.

We often refer to a variety as a k-torsor under A, taking the group action to
be implicit. If T is a k-torsor under A, then any point t0 2 T gives rise to an
isomorphism T ' A defined over k.t0/ sending a point t 2 T to the unique a 2 A
such that aC t0 D t . We say an isomorphism  W T ' A is compatible with the
torsor structure on T if it is of this type. The action of A on T can be recovered
from such an isomorphism by the rule aC t D  �1. .t/C a/.
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2. Coverings and divisibility in X

Definition 2.1. Let ' W A0! A be a separable isogeny of abelian varieties. Let T
be a k-torsor under A and fix a k-isomorphism  T W T ! A compatible with the
torsor structure. A '-covering of T is a k-variety S together with a morphism
S

�
�!T defined over k such that there exists a k-isomorphism  S W S ! A0 such

that ' ı  S D  T ı � . Two '-coverings of T are k-isomorphic if they are k-
isomorphic as T -schemes. We use Cov'.T=k/ to denote the set of isomorphism
classes of '-coverings of T . If k is a global field we define the '-Selmer set of T
to be the subset Sel'.T=k/� Cov'.T=k/ consisting of those '-coverings which
are everywhere locally solvable.

We will see below that this definition generalizes the usual definition of the '-
Selmer group of an abelian variety. The definition does not depend on the choice for
 T , and the isomorphism  S endows S with the structure of a k-torsor under A0.

Lemma 2.2. Let .S; �/ be a '-covering of T . Then its group of k-automorphisms
is isomorphic to A0Œ'� as a Galois module.

Proof. Suppose  W S! S is an isomorphism such that � D � ı and consider the
endomorphism � D  S ı ı 

�1
S � 1 2 End.A0/. Since � D ' ı S D ' ı S ı 

we have that ' ı � is identically 0. Then � is a continuous map from A0.k/, which
is irreducible, to A0Œ'�, which is discrete. Hence � is constant. It follows that  
is translation by a '-torsion point. Conversely it is clear that translation by any
'-torsion point gives an automorphism of .S; �/. �

By definition all '-coverings of T are twists of one another. So by the twisting
principle Cov'.T=k/ is a principal homogeneous space for the groupH 1.k; A0Œ'�/.
In the special case T DA (acting on itself by translations), the morphism ' WA0!A

gives A0 a canonical structure as a '-covering of A. This gives a canonical iden-
tification of H 1.k; A0Œ'�/ and Cov'.A=k/ and consequently endows Cov'.A=k/
with a group structure in which ' WA0!A represents the identity. Under this iden-
tification the isomorphism classes of '-coverings of A which possess k-rational
points correspond to the kernel in the Kummer sequence

0 // A.k/='.A0.k// // H 1.k; A0Œ'�/ // H 1.k; A0/Œ'� // 0: (2-1)

When k is a global field one can deduce from this that Sel'.A=k/ is identified with
the kernel of the natural map H 1.k; A0Œ'�/!

L
vH

1.kv; A/. In particular it is a
subgroup and it sits in an exact sequence

0 // A.k/='.A0.k// // Sel'.A=k/ // X.A0=k/Œ'� // 0: (2-2)
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Remark. The reader is cautioned that our notation is nonstandard. Our Sel'.A=k/
would typically be referred to as the '-Selmer group of A0 (with A0 present in the
notation).

More generally '-Selmer sets are related to divisibility in the Shafarevich-Tate
group as follows.

Proposition 2.3. Suppose ' W A0! A is a separable isogeny of abelian varieties
over k and that T is a k-torsor under A. Then Cov'.T=k/ ¤ ∅ if and only
if T 2 'H 1.k; A0/. If k is a global field, then Sel'.T=k/ ¤ ∅ if and only if
T 2 'X.A0=k/.

Proof. We will prove the second statement. The first can be proved using the same
argument. We may assume T 2X.A=k/, otherwise the statement is trivial. Sup-
pose T is killed by m and consider the following commutative and exact diagram:

Selmı'.A=k/

'�

��

// X.A0=k/Œm ı'� //

'

��

0

Selm.A=k/ // X.A=k/Œm� // 0:

The torsor T admits a lift to an m-covering T �
�!A in the m-Selmer group of A.

Each choice of lift gives a map

Sel'.T=k/ // Sel.mı'/.A=k/

.S; �/
� // .S; � ı �/:

The image of this map is exactly the fiber above .T; �/ under the map denoted '�
in the diagram above. From this one deduces the result from commutativity and
the fact that the horizontal maps are surjective. �

We record here the following well known lemma which relates the condition in
Proposition 2.3 to the Cassels-Tate pairing.

Lemma 2.4. Let ' W A0 ! A be a separable isogeny of abelian varieties over
a global field k with dual isogeny '_ W A_ ! A0_. An element of X.A=k/ is
divisible by ' if and only if it pairs trivially with every element of X.A_=k/Œ'_�

under the Cassels-Tate pairing.

Proof. The compatibility of the Cassels-Tate pairing with isogenies (see [11, Re-
mark I.6.10(a)]) shows that it induces a complex

'X.A0/ // X.A/ // Hom
�
X.A_/Œ'_�;Q=Z

�
:
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The statement is equivalent to claiming that this is exact. When ' is multiplication
by an integer this result appears in the paragraph following the proof of [11, Lemma
I.6.17]. The general statement can be deduced in exactly the same manner. �

3. Cyclic covers of P1

Let � W X ! P1 be a cyclic cover of degree p defined over k. By the Riemann-
Hurwitz formula, X has genus g D .d � 2/.p � 1/=2, where d is the number of
branch points of � . Provided P1.k/ has sufficiently many points we can make a
change of variables to ensure that � is not ramified above12 P1. As our present
interest lies in infinite fields, there is no harm in assuming this to be the case. The
pullback mD ��1 is an effective k-rational divisor of degree p on X . Let ��X
denote the set of ramification points of � . Then for any ! 2� the divisor pŒ!� is
linearly equivalent to m, and .2g� 2/Œ!� is a canonical divisor.

3A. The isogeny �. Since k contains the p-th roots of unity, the group of deck
transformations of � may be identified with �p.k/. The action of �p.k/ on X
extends linearly to give a Galois-equivariant action of the group ring ZŒ�p� on
Div.X

k
/. For any divisor D, the element t D

P
�2�p

� 2 ZŒ�p� sends D to a
divisor linearly equivalent to .degD/m. Hence t sends Div0.X

k
/ to Princ.X

k
/, so

the induced actions of ZŒ�p� on J and Pic0.X/ factor through ZŒ�p�=t , which is
isomorphic to the cyclotomic subring of k generated by �p . Fix a generator � 2�p
and set � D 1� �. Then � W J ! J is an isogeny of degree pd�2. We note that
the ratio of �p�1 and p is a unit in End.J /.

3B. The model yp D ch.x/. By Kummer theory, X has a (possibly singular)
affine model of the form yp D ch.x/, where c 2 k� and h.x/ 2 kŒx� is a p-th-
power-free polynomial with leading coefficient 1. In this model � is given by the
x-coordinate and � 2 �p.k/ acts via .x; y/ 7! .x; �y/. Our assumption that1 is
not a branch point implies that the branch points are the roots of h.x/ and so we
may assume p divides the degree of h.x/.

3C. The torsor X. In what follows we consider the reduced scheme XD Pic1.X/
classifying linear equivalence classes of divisors of degree 1 on X . This scheme is
defined over k and its set of k-points is X.k/D Pic1.X

k
/. The obvious injection

Pic1.X/! Pic1.X
k
/gk D X.k/ is not always surjective. The obstruction to a k-

rational divisor class being represented by a k-rational divisor can be interpreted
as an element of the Brauer group; one has a well known exact sequence (see, for
example, [2, Section 9.1])

0 // Pic1.X/ // X.k/
�X // Br.k/: (3-1)
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The obstruction �X vanishes identically when Pic1.X/ is nonempty. When k
is a global field, the local-global principle for Br.k/ can be used to show that
Pic1.X/D X.k/ if Pic1.Xkv

/D∅ for at most one prime. Similarly if X.kv/D∅
for at most one prime v, then Pic0.X/D Pic0.X

k
/gk , which is equal to J.k/.

There is a k-isomorphism X' J , sending a point P 2 X corresponding to the
divisor class of D to the class of the divisor D � Œ!0� in Pic0.X

k
/D J.k/. This

endows X with the structure of a k-torsor under J (which does not depend on the
choice for !0). The class of X in H 1.k; J / is given by the class of the 1-cocycle
sending � 2 gk to the class of Œ!0�� Œ!�0 � in Pic0.X

k
/D J.k/. As the difference

of any two ramification points gives a �-torsion point on J , we see that the class
of X in H 1.k; J / is killed by �. In particular, this class has order p if and only if
X.k/D∅. This is the case if and only if every k-rational divisor class on X has
degree divisible by p.

4. The algebraic Selmer set

4A. The .x�T; y/map. LetH.x; z/ be the binary form of degree nD deg.h.x//
such that H.x; 1/D h.x/. Then X is birational to the curve yp D cH.x; z/ in the
weighted projective plane P2.x W y W z/ with weights 1; n=p; 1. Writing H.x; z/ as
H.x; z/DH1.x; z/

n1 � � �He.x; z/
ne with distinct irreducible factors Hi .x; z/, the

radical of H.x; z/ is Hrad.x; z/DH1.x; z/ � � �He.x; z/. Let LDMapk.�; k/'
kŒx�=Hrad.x; 1/. This is the étale k-algebra associated to the finite gk-set �. It
splits as a product L'K1� � � ��Ke of finite extensions of k corresponding to the
irreducible factors hi .x/ of h.x/. We have a weighted norm map

N W L'K1 � � � � �Ke! k; .˛1; : : : ; ˛e/ 7!
eQ
iD1

NKi=k.˛i /
ni : (4-1)

Let
�0 D

˚
pŒ!� W ! 2�

	
[

n P
!2�

n! Œ!�
o
� Div.X

k
/:

The first set appearing in the union above is isomorphic to� as a gk-set. The divisorP
!2� n! Œ!� is the zero divisor of the function y=zn=p 2 �.X/�. In particular it

is invariant under the action of gk . Thus �0 is a disjoint union of gk-sets, and the
étale k-algebra corresponding to �0 splits as Mapk.�

0; k/DM ' L� k. Since
the action of gk on �0 is induced from the action on �, we have an induced norm
map

@ WLDMapk.�; k/!Mapk.�
0; k/DM; ˛ 7!

�
!0D

P
c! Œ!� 7!

Q
˛.!/c!

�
:

Concretely, this is the map

˛ 7! .˛p; N.˛// 2 L� k; (4-2)
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where N is the weighted norm map defined in (4-1). We can embed k in M via
the map � W k ! M ' L � k sending a to .a; an=p/. The choice is such that
@.a/D �.ap/.

Let f 2Mapk.�
0; �.X

k
/�/ be the map

!0 7�!

�
.x� x.!/z/=z if !0 D pŒ!�,

y=zn=p if !0 D
P
!2� n! Œ!�.

Then f is a Galois-equivariant family of functions f! parametrized by �0, whose
divisors are supported on the union of � and the support of m. Moreover, if
Œw� 2 Mapk.�;Div.X

k
// denotes the map .! 7! Œ!�/ and we interpret �.m/ as

the element

!0 7�!

�
m if !0 D pŒ!�,

.n=p/m if !0 D
P
!2� n! Œ!�

of Mapk.�
0;Div.X

k
//, then the family of divisors corresponding to f is

div.f /D @Œw�� �.m/ 2Mapk
�
�0;Div.X

k
/
�
:

Following the terminology in [13] we will say a divisor is good if its support is
disjoint from � and m. For any good divisor, DD

P
P nP ŒP � 2Div.X

k
/, we may

define
f .D/D

Q
P

f .P /nP 2M�:

Note that if D 2 Div.X/, then f .D/ 2M�. Every k-rational divisor is linearly
equivalent to a good k-rational divisor. Using this and applying Weil reciprocity
one can prove the following proposition. For details we refer the reader to [7,
Proposition 3.1], [13, Section 5] or [21, Section 4].

Proposition 4.1. The function f induces a unique homomorphism

f W Pic.X/!M�=�.k�/@.L�/

with the property that the image of the class of any good divisor D 2 Div.X/ is
given by f .D/ as defined above.

Remark. The .x�T; y/ map of Stoll and van Luijk defined in [21] differs from
ours slightly. The second factor of their map is defined using the function 
y=zn=p

where 
 is some p-th root of c. Hence their map and ours agree in degree 0 only.
The projection pr1 WM 'L�k!L induces a mapM�=�.k�/@.L�/!L�=k�L�p .
Composing this with either f or the .x�T; y/ map defined in [21] one recovers
the .x � T / map defined in [13]. The main advantage of our definition over the
others is that it defines a homomorphism on all of Pic.X/ and not just the degree
divisible by p part. The map used in [5; 12] to do a descent on X is the restriction
of pr1 ıf to X.k/� Pic1.X/.
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Recall that c 2 k� is the leading coefficient of the polynomial defining X . For
r 2 Z define

H r
k D

f.˛; s/ 2 L� � k� W cr �N.˛/D spg

f.
˛p; 
n=pN.˛// 2 L� � k� W ˛ 2 L�; 
 2 k�g
�M�=�.k�/@.L�/:

Lemma 4.2. For r 2 Z,

H r
k D

�
f .D/@.L�/

�gk
ı
�.k�/@.L�/;

where D 2 Picr.X
k
/ is any divisor class of degree r . In particular,

H 0
k D

�
@.L�/

�gk
ı
�.k�/@.L�/:

Proof. First we claim that

@.L�/D
˚
.˛; s/ 2 L� � k� WN.˛/D sp

	
:

By definition @.L�/D f.˛p; N.˛// W ˛ 2 L�g, so clearly

@.L�/�
˚
.˛; s/ 2 L� � k� WN.˛/D sp

	
:

For the other inclusion, suppose .a; s/ 2 L� � k� is such that N.˛/D sp. Then
for any p-th root ˇ 2 L� of ˛ we have N.ˇ/p D sp. Hence N.ˇ/ D �s for
some � 2 �p.k/. Since h.x/ is p-th-power-free, the weighted norm map N W
�p.L/!�p.k/ is surjective. Hence there must exist �02�p.L/ such that �0ˇ2L�

satisfies @ˇ D ..�0ˇ/p; N.�0ˇ//D .˛; s/. This establishes the claim.
For i D 1; 2, let pri denote the projection of M 'L�k onto the i -th factor. For

every point P D .x0; y0/ 2X we have

cN.pr1 ıf .P //D c
Y
!2�

.x0� x.!//
n! D ch.x0/D y

p
0 D pr2.f .P //

p;

where n! denotes the multiplicity of ! as a root of h.x/. So for any good divisor D
of degree r we have crN.pr1 ıf .D// D pr2.f .D//

p, and, in light of the claim
above, we have

f .D/@.L�/D
˚
.˛; s/ 2 L� � k� W cr �N.˛/D sp

	
:

In particular, the coset f .D/@.L�/ depends only on the degree of D. The same is
then true of its Galois-invariant subset. The lemma now follows easily. �

Corollary 4.3. If H 1
k
D∅, then Pic1.X/D∅.

Proof. The image of f W Picr.X/!M�=�.k�/@.L�/ is contained in H r
k

. �
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4B. The algebraic Selmer set. Over a global field one can combine the informa-
tion from the various local versions of the map f to obtain a finite subset of H r

k

which contains the image of Picr.X/.

Definition 4.4. For a global field k with completions kv , define algebraic �-Selmer
sets:

Sel�alg.J=k/D
˚
ı 2H 0

k W for all primes v, resv.ı/ 2 f .Pic0.Xkv
//
	
;

Sel�alg.X=k/D
˚
ı 2H 1

k W for all primes v, resv.ı/ 2 f .X.kv//
	
;

Sel�alg.X=k/D
˚
ı 2H 1

k W for all primes v, resv.ı/ 2 f .Pic1.Xkv
//
	
:

Recall that the projection pr1 WM ' L� k! L induces a map

pr1 WM
�=�.k�/@.L�/! L�=k�L�p:

The fake �-Selmer group considered in [13] is equal to pr1.Sel�alg.J=k//. The
unfaked �-Selmer group considered in [21] is equal to Sel�alg.J=k/. From [21,
Theorem 5.1] we see that if X has divisors of degree 1 everywhere locally, then we
can identify Sel�alg.J=k/ with the �-Selmer group of J . In particular, Sel�alg.J=k/

is finite. If the set Sel�alg.X=k/ is nonempty, it is a coset of Sel�alg.J=k/ inside
M�=�.k�/@.L�/. This implies that Sel�alg.X=k/ is also finite. If, in addition,
ı 2 Sel�alg.X=k/ ¤ ∅, then Sel�alg.X=k/ D ı � Sel�alg.J=k/, and, in particular,
Sel�alg.X=k/�Sel�alg.X=k/. The set pr1

�
Sel�alg.X=k/

�
is equal to the fake �-Selmer

set considered in [5; 12] where it is shown to be a quotient of the �-Selmer set of X
(see Definition 5.1). As we shall see in Corollary 5.5, Sel�alg.X=k/ is in one-to-one
correspondence with �-Selmer set of X .

One motivation for considering this set is that it can explain the failure of the
Hasse principle for X . Similarly, one can easily deduce the implication�

Sel�alg.X=k/D∅
�
H)

�
Pic1.X/D∅

�
:

When X has points everywhere locally we can say even more.

Theorem 4.5. Suppose k is a global field and X is everywhere locally solvable.
Then Sel�alg.X=k/ is nonempty if and only if the torsor X is divisible by � in X.J=k/.

In light of Proposition 2.3, to prove the theorem it will suffice to show that
when X is everywhere locally solvable Sel�.X=k/ and Sel�alg.X=k/ are in one-to-
one correspondence. This will be accomplished with Proposition 6.2 below.

Corollary 4.6. Suppose k is a global field and X is everywhere locally solvable. If
Sel�alg.X=k/ is empty, then dimFp

X.J=k/Œ���2. If in addition dimFp
X.J=k/Œ���2,

then X.J=k/.p/' Z=p�Z=p.
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Proof. Under the assumptions the theorem implies that X represents a nontrivial
class in the finite abelian groupGDX.J=k/Œ��

ı
�X.J=k/Œ�2�. Under the canon-

ical identification of J with its dual, � is self dual (up to a unit). It then follows
from Lemma 2.4 and [14, Corollary 12] that the Cassels-Tate pairing induces a
nondegenerate alternating pairing on G. Hence the order of G is a positive even
power of p. This establishes the first statement. For the second, note that the
assumptions imply that �X.J=k/Œ�2�D 0, and use that �p�1 D p up to a unit.

�

Remark. To showG has square order it is enough to assume that p is odd or thatX
has a kv-rational divisor of degree 1 for each prime v. We use the assumption thatX
is everywhere locally solvable to ensure that X represents a nontrivial element
of G. Indeed this assumption is used in our proof of Theorem 4.5 when we apply
Lemma 6.1 in the proof of Proposition 6.2. While it may be possible to relax this
hypothesis, some assumption on the existence of kv-rational divisors of degree 1
is required. For the curve X W y2 D 3x6C 3, one can show that Pic1.XQ2

/D ∅,
while X.Q/¤∅. So the algebraic Selmer set is empty, but X 2 2X.J=Q/.

Remark. It is not generally true that X.J=k/Œ�� has square order. Well known
examples with p D 2 are given in [13] and are necessarily explained by the fact
that X fails to have a kv-rational divisor of degree 1 at an odd number of primes.
An example with p D 3 where X has a rational point is given in [8].

4C. Computing the algebraic Selmer set. Before carrying on with the proof of
Theorem 4.5 we briefly discuss how Sel�alg.X=k/ can be computed in practice. For
an extension K=k set L.K/ D .L ˝k K/

�=K�.L ˝k K/
�p, and use resK to

denote the canonical map L.k/! L.K/. The weighted norm N W L! k induces
a map N W L.k/! k�=k�p. If k is a local field, an element of L.k/ is said to
be unramified if its image under resku is trivial, where ku denotes the maximal
unramified extension of k. If k is a global field, an element ı 2 L.k/ is said to be
unramified at a prime v of k if reskv

.ı/ is unramified.
Now suppose k is a global field and let S denote the set of primes of k consisting

of all primes of bad reduction, all nonarchimedean primes dividing cp and all
archimedean primes.1 Let L.k/S denote the subgroup of L.k/ consisting of ele-
ments which are unramified at all primes outside of S . This is a finite group which
can be computed from the S -unit group and class group of each of the constituent
fields of L (see Propositions 12.5 and 12.6, Corollary 12.7, and Proposition 12.8
of [13]). For an element a 2 k�, let L.k/S;a denote the subset of L.k/S consisting
of elements ˛ such that aN.˛/ 2 k�p.

1 Actually, one can get away with using a smaller set of primes. Compare with [20, Corollary 4.7
and Proposition 5.12], [5, Lemma 4.3], and [12, Lemma 2.6].
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Computable descriptions of pr1.Sel�alg.J=k// and pr1.Sel�alg.X=k// are given in
[13, Theorem 13.2], [5, Section 6] and [12, Corollary 3.12]. They are the subsets
of L.k/S;1 and L.k/S; c cut out by certain local conditions. The former is the
subgroup of elements which restrict into pr1 ıf .Pic0.Xkv

// for all v 2 S while the
latter is the subset which restricts into pr1 ıf .X.kv// for all primes with norm up
to some explicit bound. For explicit descriptions of how to compute these local
images, see [5; 12; 20].

Proposition 4.7. Suppose that Dv 2X.kv/ for each v 2 S . Then

pr1
�
Sel�alg.X=k/

�
D
˚
ı 2 L.k/S; c W reskv

.ı/ 2 pr1.f .Dv// � pr1
�
f .Pic0.Xkv

//
�

for all v 2 S
	
:

Proof. This follows from the descriptions of pr1.Sel�alg.J=k// and pr1.Sel�alg.X=k//

above and the fact that pr1 ıf is a homomorphism. �
Remark. This shows that while doing a �-descent on J — that is, computing
pr1.Sel�alg.J=k//— one can determine whether Sel�alg.X=k/ is empty or not with
virtually no extra effort.

5. �-coverings of X

Our proof of Theorem 4.5 will involve relating Sel�alg.X=k/ and Sel�.X=k/. To do
this we first relate Sel�alg.X=k/ to a certain set of coverings of X which we now
define.

Definition 5.1. A �-covering of X is a covering Y ! X which arises as the
pullback of some �-covering Y! X along the canonical map X ! X sending
a point P to the class of the divisor ŒP �. We use Cov�.X=k/ to denote the set of
k-isomorphism classes of �-coverings of X . If k is a global field, the �-Selmer
set of X is defined to be the subset Sel�.X=k/� Cov�.X=k/ consisting of those
coverings that are everywhere locally solvable.

It follows that any �-covering of X is an X-torsor under J Œ�� and that all �-
coverings of X are twists of one another. Hence Cov�.X=k/ is also a principal
homogeneous space for H 1.k; J Œ��/. The action of twisting is compatible with
base change, so the obvious map Cov�.X=k/! Cov�.X=k/ is an affine isomor-
phism.

Our next goal is to relate H 1
k

with a certain subset of Cov�.X=k/ and use
this to show that Sel�alg.X=k/ and Sel�.X=k/ are in one-to-one correspondence.
While we work with Sel�alg.X=k/ rather than its image under pr1, this result was
essentially established in [5; 12]. The only new ingredient here is to clarify the
affine structure of these sets. This interpretation is, however, crucial to our proof
of Theorem 4.5.
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We have an exact sequence

1 // �p // JmŒ��
q // J Œ�� // 0; (5-1)

where Jm is the generalized Jacobian associated to the modulus m 2 Div.X/ (see
[13, Section 2] or [19, Chapter 5]). Applying Galois cohomology gives an exact
sequence

H 1.k; �p/ // H 1.k; JmŒ��/
// H 1.k; J Œ��/

‡ // H 2.k; �p/: (5-2)

The description of JmŒ�� in [13, Section 6] identifies JmŒ�� with the kernel of
@ W L�!M�. This allows us to interpret the cocycle in the following proposition
as taking values in J Œ��.

Proposition 5.2. There is an isomorphism H 0
k
' ker‡ which sends the class of

@.˛/ 2 @.L�/gk to the class of the 1-cocycle � 7! q.�.˛/=˛/ in H 1.k; J Œ��/.

Proof. This can be found in [21] (see Proposition 3.1 and Remark 4.3). �

Definition 5.3. Define

Cov�0 .X=k/D
�
.Y; �/ 2 Cov�.X=k/ W �

�Œ!0� is linearly equivalent
to a k-rational divisor

�
:

The pullbacks of the ramification points are all linearly equivalent, so ��Œ!0�
represents a k-rational divisor class. If k is a global field and Y is everywhere
locally solvable, then every k-rational divisor class contains a k-rational divisor.
Thus we see that Sel�.X=k/� Cov�0 .X=k/.

Proposition 5.4. The action of H 1.k; J Œ��/ on Cov�.X=k/ restricts to a simply
transitive action of ker.‡/ ' H 0

k
on Cov�0 .X=k/. The function f induces an

affine isomorphism
f W Cov�0 .X=k/!H 1

k

with the property that for any .Y; �/ 2 Cov�0 .X=k/ and any extension K=k, we
have

f .�.Q//D f..Y; �// inH 1
K

for every point Q 2 Y.K/.

Corollary 5.5. Suppose k is a global field. Then f restricts to give a bijection
f W Sel�.X=k/! Sel�alg.X=k/.

Proof of Proposition 5.4. Let .Y; �/ 2 Cov�0 .X=k/. The complete linear system
associated to ��Œ!0� gives an embedding in PN (for some N ) with the property
that for ! 2�, the divisor ��Œ!� is a hyperplane section defined by the vanishing
of some linear form l! . Recall that Œw� is the map .! 7! Œ!�/2MapK.�;Div.X

k
//.



308 BRENDAN CREUTZ

These linear forms l! may be chosen so as to give a linear form l with coefficients
in L defining the gk-equivariant family of divisors�

��Œw� W ! 7! ��Œ!�
�
2MapK.�;Div.Y

k
//:

Since the divisor of f is @Œw�� �.m/ 2Mapk.�
0;Div.X

k
//, we see that there is

some � 2M� such that

��f D�
@.l/

�.z ı�/
2Mapk.�

0; �.Y
k
/�/:

Define f..Y; �// D �. A different choice of model for Y or a different choice
for the linear form l would serve to modify � by an element of �.k�/@.L�/. So
the class of � in H 1

k
is well defined. For any point Q 2 Y.K/ not lying above

a Weierstrass point or some point at above1 on X , the defining property stated
in the proposition is immediate. For the finitely many remaining points the result
follows by application of the moving lemma.

Given .ı; s/ 2 L� � k� representing an element of H 1
k

one can construct a
�-covering of X as follows. Let P� be the projective space with coordinates
parametrized by �. Define a curve Yı; s � P� �X by declaring that�

.u!/!2�; .x W y W z/
�
2 Yı; s

if and only if there exists some a 2 k� such that

ı.!/up! D a.x� x.!/z/ for all ! 2�; and s
Y
!

un!
! D a

dy: (5-3)

Recall that ı 2 L can be interpreted as a map ı W�! k and that n! denotes the
weight associated to ! in the weighted norm map N W L! k. Projection onto
the second factor gives Yı; s the structure of an X-torsor under J Œ��. It is easy
to see that the isomorphism class of Yı ! X depends only on the class of .ı; s/
in H 1

k
. Suppose .Y; �/ 2 Cov�0 .X=k/ and f.Y; �/D .�; t/. Then (with notation as

above) we can find a projective embedding Y ! PN and linear forms l! which cut
out the divisors ��Œ!�. The rational map PN ! P� given by .l!/!2� gives an
isomorphism (of X -schemes) Y ! Y�; t . This shows that the Yı; s are �-coverings.
It is evident from the construction that the pullback of any ramification point ! 2X
is the hyperplane section of Yı; s cut out by u! D 0. So this covering represents an
element of Cov�0 .X=k/. Moreover, it is clear that the image of .Yı ; �ı; s/ under f

is represented by .ı; s/. This shows that f is surjective.
Now we show that the map is affine with respect to the action of

H 0
k ' .@.L

�//gk=�.k�/@.L�/:
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For this suppose ˛ 2 L� with @˛ D .˛p; N.˛// 2 .@.L�//gk . Multiplication by ˛
induces a k-automorphism of P�. It is evident from (5-3) that this induces an
isomorphism of X-schemes ˛ W .Y˛pı;N.˛/s; �˛pı;N.˛/s/ �! .Yı; s; �ı; s/. The
cocycle � 2H 1.k; J Œ��/ corresponding to this twist sends � 2 gk to

˛� ı˛�1 2 Aut..Yı ; �ı; s//' J Œ��:

Under the isomorphism .@.L�//gk=k�@.L�/ ' ker.‡/ � H 1.k; JmŒ��/ from
Proposition 5.2, the class of @˛ corresponds to the class of the cocycle � that sends
� 2 gk to q.˛�=˛/2 J Œ��, where q W JmŒ��! J Œ�� is the quotient map in the exact
sequence (5-1). It is then clear that � and � give the same class in H 1.k; J Œ��/.
This proves that f is affine. �

6. A descent map for coverings of X

We consider the subset Cov�good.X=k/ � Cov�.X=k/ consisting of �-coverings
of X such that the corresponding �-covering of X lies in Cov�0 .X=k/, and we
define a map

F W Cov�good.X=k/! Cov�0 .X=k/
f
�!H 1

k :

Proposition 5.4 implies that F is an affine isomorphism.

Lemma 6.1. Suppose X.k/¤∅.

(1) If .Y; �/ 2 Cov�.X=k/ and Y.k/¤∅, then .Y; �/ 2 Cov�good.X=k/.

(2) If .Y; �/ 2 Cov�good.X=k/ and Q 2 Y.K/ for some extension K=k, then

f .�.Q//D F..Y; �// inH 1
K :

Proof. By assumption there is some point R 2 X.k/ ¤ ∅. Then there exists
.Y;�/2Cov�0 .X=k/ andR02Y.k/ such that�.R0/DR. Let .Y; z�/2Cov�good.X=k/

be the corresponding covering and iY W Y ! Y the base change of iX W X ! X.
Clearly iY .R0/ 2 Y.k/¤∅.

The set B of isomorphism classes of �-coverings of X which contain a k-rational
point is a principal homogeneous space for the image of J.k/ under the connecting
homomorphism in the Kummer sequence (2-2). This image is contained in ker.‡/,
so B � .Y; �/ � ker.‡/D Cov�good.X=k/. This proves statement (1).

For statement (2), consider the map d W Pic1.X/! Cov�.X=k/ sending a point
P 2 Pic1.X/D X.k/ to the unique covering to which P lifts. This map is affine,
since f W Pic0.X/ ! H 0

k
' ker.‡/ � H 1.k; J Œ��/ can be identified with the

connecting homomorphism in the Kummer sequence [21, Theorem 1.1]. Moreover
its image lands in Cov�good.X=k/ by statement (1).
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It suffices to prove the statement for K D k, which amounts to showing that
f .D/ D F.d.D// for every D 2 Pic1.X/. The point iY .R0/ 2 Y.k/ is a lift of
ŒR� 2 X.k/, so YD d.ŒR�/. From the definition of F and the defining property of f

we have
F..Y; z�//D f..Y; �//D f .Œ�.R0/�/D f .ŒR�/ 2H 1

k :

Hence f .ŒR�/D F.d.ŒR�//.
Now suppose D 2 Pic1.X/. Since d is affine, d.D/ is the twist of d.ŒR�/ by

the cocycle f .D� ŒR�/ 2H 0
k
' ker.‡/. Since F is affine, we have

F.d.D//D F.d ŒR�/ �f .D� ŒR�/D f .D/F.d ŒR�/=f .ŒR�/D f .D/:

This completes the proof. �

We have the following analogue of Corollary 5.5, which, with Proposition 2.3,
implies Theorem 4.5.

Proposition 6.2. Suppose k is a global field and X is everywhere locally solvable.
Then F restricts to an affine isomorphism Sel�.X=k/! Sel�alg.X=k/.

Proof. First off, let us show that Sel�.X=k/ � Cov�good.X=k/. Suppose that
.Y; �/ 2 Sel�.X=k/ and that X is everywhere locally solvable. Consider the cov-
ering z� W Y !X obtained by pulling back. We want to show that the pullback to Y
of some ramification point on X is linearly equivalent to a k-rational divisor. The
obstruction to a k-rational divisor class being represented by a k-rational divisor
is an element of the Brauer group of k. Since the Brauer group of a global field
satisfies the local-global principle it suffices to show that .Y; z�/ gives a class in
Cov�0 .X=kv/ for every prime v. This follows from Lemma 6.1(1) since we have
assumed both X and Y are everywhere locally solvable.

Now let us show that F maps the �-Selmer set to the algebraic �-Selmer set.
Let .Y; �/ 2 Sel�.X=k/ and set ı D F..Y; �//. For every completion kv of k,
X.kv/¤ ∅, so we may apply Lemma 6.1(2) over kv. This shows that resv.ı/ 2
f .Pic1.Xkv

// for every v. Consequently, ı lies in the algebraic �-Selmer set.
It now suffices to show that the map in the statement is surjective, as it is the

restriction of an affine isomorphism. For this let ı be an element in the algebraic �-
Selmer set. Then ı 2H 1

k
, so ı D F..Y; �// for some .Y; �/ 2 Cov�good.X=k/. We

need to show that Y is everywhere locally solvable. For each prime v we can find
Pv 2Pic1.Xkv

/�X.kv/ such that resv.ı/Df .Pv/. The point Pv lifts to a kv-point
on some �-covering .Yv; �v/ defined over kv . Moreover .Yv; �v/2Cov�good.X=kv/

by Lemma 6.1(1) and F..Yv; �v//D resv.ı/ by Lemma 6.1(2). Since F is injective
we have that Y˝ kv and Yv are isomorphic, for each prime v. This implies that Y

is everywhere locally solvable as required. �
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7. Examples

We have implemented the algorithm described in Section 4C in the computer al-
gebra system Magma [3] for degree p cyclic covers of P1 defined over the p-th
cyclotomic field. As a test of the algorithm (and the correctness of the imple-
mentation) we performed computations for a large sample of hyperelliptic curves.
When at all possible we checked our results for consistency with rank bounds
obtained by other means (for example, different implementations of descent on
elliptic curves and Jacobians of hyperelliptic curves, points of small height on the
Jacobian, information obtained assuming standard conjectures, and so on). Some
of the resulting data is presented at the end of this section. In addition to this we
offer the following examples.

Example 7.1. The two hyperelliptic curves

X1 W y
2
C .x3C xC 1/y D x6C 5x5C 12x4C 12x3C 6x2� 3x� 4;

X2 W y
2
C .x3C xC 1/y D�2x6C 7x5� 2x4� 19x3C 2x2C 18xC 7

over Q have Mordell-Weil rank 0, and the 2-primary parts of their Shafarevich-Tate
groups are isomorphic to Z=2�Z=2.

Proof. Let Ji denote the Jacobian of Xi and Xi denote Pic1.Xi /. The Xi are
everywhere locally solvable double covers of P1. Using Magma we computed that
Sel2.Ji=Q/ has F2-dimension 2 and that the 2-Selmer set of Pic1.Xi / is empty for
i D 1; 2. The result then follows from Theorem 4.5 and its corollary. �

Remark. These curves were taken from [9] (where they were labeled C125;B and
C133;A), where it is shown that the order of the 2-torsion subgroup of X is equal to
the order of X predicted by the Birch and Swinnerton-Dyer conjectural formula
for several modular Jacobian surfaces. In particular, it is proved in [9] that the
formula holds for those Jacobians considered if and only if 2XD 0. For the curves
considered one can determine the rank (unconditionally) by analytic means, so a
2-descent on the Jacobian determines XŒ2�, but it only determines X.2/ when
dimF2

XŒ2� � 1. Apart from the two curves above, all curves considered in [9]
had dimF2

XŒ2� � 1. So from the example above one can now conclude for the
curves considered in [9] that the conjectural formula holds if and only if X has no
elements of odd order.

Example 7.2. Let X=Q be the genus 4 cyclic cover of P1 with affine equation

X W y3 D 3.x6C x4C 4x3C 2x2C 4xC 3/:

Then X is everywhere locally solvable, yet has no Q-rational divisors of any degree
prime to 3. Moreover, the Jacobian J of X has Mordell-Weil rank 1 and the 3-
primary part of its Shafarevich-Tate group is isomorphic to Z=3�Z=3.
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Proof. We first note that X is everywhere locally solvable. In order to apply the
results of this paper, we work over the field k D Q.�3/ obtained by adjoining a
primitive cube root of unity �3. To prove the result we do �-descents on Jk and
Pic1.Xk/, for � D 1� �3. Using Magma we computed that the �-Selmer group
of Jk has F3-dimension 3. From the exact sequence (2-2) it follows that

dimF3

J.k/

�J.k/
C dimF3

X.J=k/Œ��D 3:

We then computed Sel�alg.Pic1.Xk/=k/ and found it to be empty. Using Corollary 4.6
this lowers the upper bound for the dimension of J.k/=�J.k/ to 1.

The divisor on P1 defined by x3 � x2 C 4x C 4 D 0 lifts to a degree 3 Q-
rational divisor D on X . One can check that the image of the class of D �m

under f W Pic0.Xk/ ! H 0
k

is nontrivial. So we find that J.k/=�J.k/ has di-
mension 1. This gives an upper bound of 2 for the dimension of X.J=k/Œ��, so
by Corollary 4.6, X.J=k/.3/ 'X.J=k/Œ�� ' Z=3 � Z=3. On the other hand,
Pic1.X/ represents an element of X.J=Q/Œ3� which is not divisible by 3 (since it
is not divisible by 3 over k). On the other hand the dimension of X.J=Q/Œ3� is
even [14], so it is at least 2. Now the map X.J=Q/.3/!X.J=k/.3/ obtained
by extension of scalars is injective since Œk WQ�D 2 is prime to 3, so we must have
X.J=Q/.3/' Z=3�Z=3.

It remains to compute the rank. The Galois group acts on the ramification points
as the full symmetric group, from which it follows that there is no nontrivial k-
rational �-torsion in J.k/. By [17, Corollary 3.7 and Proposition 3.8] it follows
that

rank.J.k//D Œk WQ� �
�

dim
J.k/

�J.k/
� dimJ.k/Œ��

�
D 2; and

rank.J.Q//D
rank.J.k//
Œk WQ�

D 1:

In fact, D�m represents a point of infinite order in J.Q/. �

Remark. From a �-descent on J alone, one is only able to conclude that 1 �
dimF3

J.k/=�J.k/� 3, giving 1� rank.J.Q//� 3.

Example 7.3 (Data for hyperelliptic curves). For g 2 f2; 3; 4g we tested our algo-
rithm on various samples of hyperelliptic curves of genus g. For varying values
of N , we randomly chose 10,000 separable polynomials h.x/D

P2gC2
iD1 hix

i of
degree at least 2gC 1 and with integer coefficients hi bounded in absolute value
by N . For each of the genus g curves X defined by y2 D h.x/, we computed
Sel2alg.J=Q/ and Sel2alg.X=Q/, assuming the generalized Riemann hypothesis for
reasons of efficiency. If the latter set was empty, we noted whether or not this
was because Pic1.XQp

/ was empty for some prime p � 1. The resulting data
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g N Sel2.X=Q/D∅ Rank Rank� Improvement Improvement�

2 5 2146 7873 9819 29% 84%
981 848 977

2 10 3088 5315 9346 22% 73%
1778 1295 1752

2 20 3787 3411 8392 17% 59%
2420 1350 2317

2 50 4297 2156 6955 15% 46%
2916 1350 2637

3 5 2101 2540 7573 8% 32%
1228 645 1164

3 10 2801 1477 5840 8% 29%
1857 786 1619

4 5 1991 1717 6031 6% 22%
1278 484 1127

4 10 2687 1296 5145 8% 25%
1952 726 1644

Table 1. Data for hyperelliptic curves. For reasons of efficiency, all computa-
tions summarized in this table were made under the assumption of the gener-
alized Riemann hypothesis; furthermore, in the columns marked by asterisks,
we also assumed that Xdiv D 0. The first two columns indicate the genus g
and the coefficient height bound N of the examples considered in a given row.
The third column counts the number of curves (out of 10,000 randomly chosen
hyperelliptic curves of the given genus and coefficient height bound) for which
Sel2.X=Q/ D ∅; the bold figures give the number of times the explanation
was not simply that Pic1.XQp

/ is empty for some prime p � 1. The “Rank”
columns give the number of curves for which the rank could be computed (un-
der the assumptions indicated), with the numbers in bold giving the number of
curves for which information from our algorithm was needed to complete the
computation. The final two columns give the “improvement factor” in the rank
computations: of the sample curves whose ranks could not be determined by ear-
lier methods, the fraction whose ranks could be determined using our algorithm
(under the assumptions indicated).

is summarized in Table 1. The boldfaced entries correspond to curves where our
algorithm provided information that would not otherwise have been obtained.

It is also interesting to consider how often the combined information yields a
sharp upper bound for the Mordell-Weil rank. This will be the case if (i) X is either
trivial or not divisible by 2 in X.J=Q/; (ii) the number of primes where X fails
to have divisors of degree 1 locally is at most one (respectively, not even and posi-
tive when the genus is even); and (iii) X.J=Q/Œ2� contains at most two elements
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linearly independent from X. The assumptions (i) and (ii) imply, respectively, that
in order for X.Q/ to be empty it is necessary and sufficient that Sel2alg.X=Q/ be
empty, while (iii) guarantees that determining whether X.Q/ is empty is sufficient
to deduce a sharp bound.

With this in mind we used a point search to compute a lower bound for the
rank for each curve, both with and without assuming that the divisible subgroup
of X.J=Q/ is trivial (the assumption allows us to determine the parity of the
rank). When this matched the upper bound it means we computed the rank, and
in such cases we counted the number of curves where the additional information
provided by Sel2alg.X=Q/ was needed. We then computed the proportion of curves
for which the rank could be determined with the additional information provided by
our algorithm among those for which the rank could not be determined by descent
on the Jacobian alone.

For example, in the sample of genus 2 curves with N D 10 the method yielded
new information for about 17% of the curves, which (assuming XdivD 0) increased
our success rate from about 76% to about 93%, handling about 73% of the curves
left previously undecided by the descent on the Jacobian.
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