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We explain how to compute the equations of the abelian coverings of any curve
defined over a finite field. Then we describe an algorithm which computes curves
with many rational points with respect to their genus. The implementation of the
algorithm provides seven new records over F2.

1. Introduction

The motivation for finding curves defined over a finite field Fq with many rational
points compared to their genus comes from the theory of error-correcting codes.
Let C be a .n; k; d/-code, that is, a subvector space of Fnq of dimension k in which
every nonzero vector has at least d nonzero coordinates in a fixed basis. For given
parameters n and k, one wishes to find codes with the largest possible correction
capacity .d � 1/=2.

In a 1977 paper, Goppa [7] proposed a method for constructing codes which
is based on algebraic geometry. Let X be a (nonsingular projective irreducible)
curve X defined over Fq . Let D1 D P1 C � � � C Pn and D2 be two divisors
over X with disjoint support such that the points Pi are rational and such that
2g�2 < degD2 < n. Let �X .D1�D2/ be the space of differentials ! on X such
that div.!/�D2�D1, and for every differential ! let resPi

.!/ denote the residue
of ! at Pi . The Goppa code C.X;D1;D2/ associated to this data is the image of
the Fq-linear map �X .D1�D2/! Fnq defined by ! 7! .resP1

.!/; : : : ; resPn
.!//.

For these codes, the Riemann-Roch theorem shows that k D g� 1C n� degD2
and that

k

n
C
d

n
� 1C

1

n
�
g

n
:

By construction, n is bounded by the number of rational points N.X/ of X , and
from the above inequality, for given n and k, the smaller the genus, the more
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efficient the code. So one would like to find, for every n, the smallest genus g such
that there exists a curve X=Fq with at least n rational points. The moral of all this
is that one must look for curves with many rational points compared to their genus,
for every genus.

The idea of using class field theory to construct abelian coverings with many
rational points over a finite field comes from Serre (see [22]). His Harvard course
notes [23] remain a very useful reference with a lot of material. Niederreiter and
Xing continued the search for good curves and devoted many papers to finding and
exploiting new techniques; in particular, they make use of the explicit description
of ray class fields provided by the theory of Drinfel’d modules. Their book [18]
includes all their work on the subject and much more. In a series of paper in the
late 90s, Lauter [12; 13; 14] extended Serre’s method and obtained new records
by studying the degrees of certain abelian extensions of the rational function field
ramified at a single rational place and totally split at the others. She also interpreted
several known families of curves as particular class field theoretical constructions.
Auer (see his Ph.D. thesis [1] or the ANTS paper [2] for a summary of the results)
extended Lauter’s work and described an algorithm to compute the degree of the
maximal abelian extension of any function field ramified at most one place and with
prescribed splitting behavior. This allowed him to find many new curves improving
the known records. We conclude this historical survey by noting that only in a few
cases can one deduce the equation of the curve from its theoretical construction;
in particular, the so-called “explicit” description via Drinfel’d modules is very dif-
ficult to use.

In the present article, we use explicit class field theory to compute the equations
of the abelian coverings of a curve defined over a finite field, and we apply this
method to the problem of finding curves with the maximum possible number of
rational points compared to their genus. The paper is divided as follows. In the
first section we explain the link between ray class groups and abelian coverings.
Then we describe how to use explicit class field theory to compute the equation
of an abelian covering of a curve from knowledge of the corresponding ray class
group. In Section 4 we present an algorithm to find good curves, and we give an
overview of our results in Section 5.

2. Ray class groups

We first recall the main aspects of class field theory in the classical language of ray
class groups. The reader is referred to [10], [15], or [25] for the proofs.

Let K be a global function field defined over a finite field Fq; K should be
thought of as the function field of a curve X defined over Fq . The set of places
of K is denoted by PlK . Let m be a modulus on K, that is, an effective divisor
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over K. Let Divm be the group of divisors of K whose support is disjoint from
that of m, and let Pm;1 be the subgroup of divisors of functions “congruent to 1
modulo m”:

Pm;1 D fdiv.f / W f 2K� and vP .f � 1/� vP .m/ for all P 2 Supp.m/g:

A subgroup H of Divm of finite index is called a congruence subgroup modulo m

if H contains Pm;1.
By the Artin reciprocity law, for every finite abelian extension L of K there

exist a modulus m and a congruence subgroup Hm.L/ modulo m such that the
Artin map provides an isomorphism of groups

Gal.L=K/Š Divm =Hm.L/:

Such a m is called an admissible modulus for L=K; it is not unique (whereas for a
given m, Hm.L/ is), but there exists an admissible modulus fL=K for L=K, called
the conductor of L=K, which is smaller than the others in the sense that every
admissible modulus m for L=K satisfies fL=K � m (as divisors). An important
property of the conductor of an abelian extension is that its support consists of
exactly those places that are ramified.

The existence theorem of class field theory guarantees, for every modulus m

and every congruence subgroup Hm modulo m, the existence of a unique global
function field Lm.Hm/, possibly defined over a constant field extension, that is
a finite abelian extension of K such that Gal.Lm.Hm/=K/ Š Divm =Hm. The
field Lm.Hm/ is called the class field of Hm. Note that by definition of the con-
ductor, we have fLm.Hm/=K �m.

Instead of working with congruence subgroups modulo a certain m, it is some-
times more convenient to consider subgroups of the ray class group modulo m,
which is the quotient group Picm D Divm =Pm;1. To each congruence subgroup H
modulo m, one can associate the subgroup H D H=Pm;1 of Picm of finite in-
dex. This correspondence is one-to-one, and furthermore we have an isomorphism
Picm =H Š Divm =H . We can thus restate what has been said above as follows:

Theorem 1 (Main theorem of class field theory). Let m be a modulus. There is
a one-to-one inclusion reversing correspondence between subgroups H of Picm

of finite index and finite abelian extensions L of K with conductor less than m.
Furthermore, the Artin map provides an isomorphism Picm =H Š Gal.L=K/.

3. Computing the equation of an abelian covering

Throughout this section, K is a function field defined over a finite field Fq . We
fix a modulus m and a congruence subgroup H modulo m, and we explain how
to compute the class field L of H . The similar approach for number fields has
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been introduced by the second author in [6], where one will find more algorithmic
details; the computations of groups of units and ray class groups are explained
in [8].

3.1. Reduction to the cyclic case. First, we show that we can reduce the prob-
lem to the case of a cyclic extension of prime power degree. For this, we use
the fundamental theorem of abelian groups to decompose H D Divm =H as a
finite product of cyclic groups H D

Qd
iD1H i , where each H i is of the form

Divm =Hi for a subgroup H � Hi � Divm such that H i Š Z=p
mi

i Z for some
prime number pi and some positive integer mi . For every i , let Li be the class
field of Hi , so Gal.Li=K/ŠH i , and let L0 be the composite field L1L2 � � �Ld .
By general Galois theory, Gal.L0=K/ is isomorphic to the subgroup of elements
of
Qd
iD1 Gal.Li=K/ which agree on L1 \ � � � \ Ld . The functoriality of the

Artin map implies that the previous condition is always true, so Gal.L0=K/ ŠQd
iD1 Gal.Li=K/. Thus Gal.L=K/ and Gal.L0=K/ are equal, and by the unique-

ness property of the class field, we conclude that LD
Qd
iD1Li . Also, note that

if we have equations for two abelian extensions L1=K and L2=K, then there are
algorithms based on the theory of resultants to compute an equation of L1L2=K.

3.2. Cyclic case: l ¤ p. Now suppose that H is cyclic of prime power degree
n D lm for a prime l different from p and an integer m � 1. As in the proof of
the existence theorem (see [10, Chapter XI, §2]), the idea consists of reducing to
the case when K contains the n-th roots of unity, and then to use explicit Kummer
theory. So let K 0 DK.�n/ and set L0 D LK 0: We will “translate” the problem to
the extension L0=K 0. (Note that the extension K 0=K is a constant field extension,
hence it is unramified.)

We will refer to Figure 1; the solid lines in the figure connect fields that are actu-
ally constructed during the execution of the algorithm, while dotted lines connect
fields that are only implicitly used.

SinceL=K is cyclic of degree n, the fieldL0 WDL.�n/DK 0L is a Kummer exten-
sion ofK 0, and hence there exists a nonzero element ˛ 2K 0 such thatL0DK 0. n

p
˛/.

Since L0=K has to be unramified outside places in the modulus m of L=K, there
exists a set S of places of K 0, depending only on m and K 0, such that ˛ can be
chosen as an element of the S-units US , that is, as an element that has no poles
outside S ; in particular, L0=K 0 is unramified1 outside S . Let m0 be an admissible
modulus for L0=K 0, and assume without loss of generality that m0 is supported
on S . By the Dirichlet unit theorem, we have US D h�1; : : : ; �si for independent
elements �i (1 � i � s � 1) and a torsion unit �s . Set M WD K 0. n

p
US /, so that

Gal.M=K 0/D .Z=nZ/s . For any place P ofK 0 unramified inM=K 0, the Frobenius

1This is a general property of Kummer extensions, which follows from Hensel’s lemma; see for
example [17, Lemma V.3.3].
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M DK0. n
p
US /

K0. n
p
�1/ L0 D LK0 DK0. n

p
˛/ K0. n

p
�s/

L

K0 DK.�n/

K

Figure 1. Fields used implicitly in the discussion.

Divm0

. � ;M=K0/ //

NK0=K

��

Gal.M=K0/

 

zz
Divm =H

Figure 2. Definition of  .

.P;M=K 0/ at P is defined by its operation on the n
p
�i . Since M=K 0 is unramified

outside S , we see that we get a map Divm0! .Z=nZ/s defined by P 7! .ni /, where
n
p
�i 7! �

ni
n

n
p
�i and n

p
�i
N
� �

ni
n

n
p
�i mod P , where N is the cardinality of the

residue field FP of K 0 at P . In particular, N � 1 mod n because FP contains the
n-th roots of unity, and thus ni is defined by �dN=nei � �

ni
n mod P . To summarize:

The Artin map from Divm0 to .Z=nZ/s is explicit and can be computed in K 0

already!
To find L0 we need to find divisors D 2Divm0 such that .D;M=K 0/ fixes L0. By

the existence theorem, this is equivalent to D 2H 0, where H 0 is the congruence
subgroup modulo m0 whose class field is L0. By standard properties of the Artin
map, this reduces to NK0=K.D/ 2 H . We use this as summarized in Figure 2
to explicitly construct the map  : Computing .P;M=K 0/ on the one side and
NK0=K.P /CH 2 Divm =H on the other, we collect (small) places outside S until
the full group Gal.M=K 0/ can be generated. The field L0 is then obtained as the
field fixed by the kernel of  .

In order to find ˛ we apply a similar idea (see [6, §4] for details): L0=K is
abelian and the Galois group can be computed explicitly. Once the automorphisms
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of L0=K are known, we can easily establish again an explicit Artin map, now
from Divm to Gal.L0=K/, and find the subgroup fixing L as above. We note that the
conductor of L0 can be larger than the conductor of L=K, but since L0 is obtained
via a constant field extension, the ramified primes remain the same, hence the map
is well defined and surjective (but the kernel may not be a congruence subgroup
modulo m).

3.3. Cyclic case: l D p. Finally we turn to the case when L=K is cyclic of degree
n D pm, for an integer m � 1. To begin with, we recall some aspects of Artin-
Schreier-Witt theory.

Let k be an arbitrary field and let k be an algebraic closure of k. Let r be an
integer and let Wr.k/ and Wr.k/ be the rings of Witt vectors of length r with
coefficients in k and k, respectively. Then any Ę in Wr.k/ can be used to generate
an algebraic extension k. Ę/ of k in the following way: If Ę D .˛1; : : : ; ˛r/, then
we set k. Ę/D k.˛1; : : : ; ˛r/. This construction can be visualized as a tower:

kr D k. Ę/;

"

:::

"

k2 D k1.˛2/;

"

k1 D k0.˛1/;

"

k0 D k:

Suppose now that k has positive characteristic p. Let } be the Artin-Schreier-
Witt operator acting on Ę 2Wr.k/ by

}. Ę/D Ęp � Ę:

Then for Ě in Wr.k/ the equation }. Ę/ D Ě is algebraic over k, so as above
one can consider the extension k.}�1. Ě//. Actually, by explicit Artin-Schreier-
Witt theory (see [11, pp. 330–332]), every abelian extension of exponent pr of k
arises as k.}�1.�r// for some subgroup �r �Wr.k/ containing }.Wr.k//. In
particular, a cyclic extension of degree pr of k is of the form k.E/ for some E
in }�1.k/ � Wr.k/, with Galois group generated by the automorphism E 7!
E C .1; 0; : : : ; 0/ (see [21]).

So for our purposes we take r Dm, and we can assume that the cyclic extension
of degree pm of K is of the form LDK. Ey/ for some Ex 2Wm.K/ and Ey 2Wm.k/
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satisfying }. Ey/D Ex. Now we explain how to compute Ex. It is clear that the Artin-
Schreier-Witt extension does not change if one replaces Ex with ExC}.Ez/ for some Ez
in Wm.K/, so one will look for Ex as an element of Wm.K/=}.Wm.K//.

We first look at the case mD 1; hence we assume that L=K is a cyclic extension
of degree p, and write x for Ex.

Lemma 2. Let y 2 K be arbitrary. For every place P of K there exists an ele-
ment uP 2K such that either vP .yCu

p
P �uP / is negative and coprime to p, or

vP .yCu
p
P �uP /� 0.

Proof. If vP .y/ � 0 or vP .y/ is coprime to p then uP WD 0 works, so we hence-
forth assume that vP .y/ < 0 and p j vP .y/. Let y WD .y��vP .y//.P / 2 FP ,
where FP is the residue class field of K at P and � is a uniformizing element
(that is, vP .�/ D 1). Since the p-power Frobenius is surjective, we can find a
u 2 FP such that up D�y. Now let u be a lift of u in K: There exists a 2K with
vP .a/ > vP .y/ such that yCup�vP .y/ D a. Then, since vP .y/ < vP .y/=p < 0,
we have vP .y C .u�vP .y/=p/p � u�vP .y/=p/ � minfvP .a/; vP .y/=pg > vP .y/
(note that vP .u/D 0), and we can recurse. �

We also make use of the fact that the ramified places P in L=K (which appear
in the support of m) are exactly those for which there exists a uP as above such that
�P WD �vP .yCu

p
P �uP / is positive and coprime to p; furthermore, the conduc-

tor fL=K verifies vP .fL=K/D �P C1 (use [24, Proposition 3.7.8] and Proposition 4
below), so �P does not depend on y. Thus, while Lemma 2 helps us understand
the ramification in L=K, if we want to explicitly compute L we need to find a
Riemann-Roch space containing the generator x. With this in mind, we combine
Lemma 2 with the strong approximation theorem to get a global result.

Lemma 3. Let y be an element of K. For every place P of K, let uP and �P
be as above. Let S be the set of places P of K such that �P > 0, and let S 0 WD
fP 2 PlK W vP .y/ < 0g, so that S � S 0. Fix an arbitrary place P0 62 S 0, and let n0
be a positive integer such that D WD n0P0�

P
P2S 0 2P is nonspecial. Then there

exists some u such that

� vP .yCu
p �u/D��P for P 2 S ,

� vP .yCu
p �u/� 0 for P 62 S [fP0g, and

� vP0
.yCup �u/� �pn0.

Proof. By the strong approximation theorem and its proof (see [24, Theorem 1.6.5]),
there exists an element u in K such that vP .u� uP /D 1 for P 2 S 0, vP .u/ � 0
for P 62 S 0[fP0g, and vP0

.u/� �n0. We have

v WD vP .yCu
p
�u/D vP .yCu

p
P �uP C .u�uP /

p
C .uP �u//

�minfvP .yCu
p
P �uP /; pvP .u�uP /; vP .uP �u/g;
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which shows that v D��P if P 2 S , and v � 0 if P 2 S 0 nS . In the same way,

v D vP .yCu
p
P �uP C .u

p
�u/� .u

p
P �uP //

�minfvP .yCu
p
P �uP /; vP .u

p
�u/; vP .u

p
P �uP /g;

so we also have that v � 0 if P 62 S 0[fP0g, and v � �pn0 if P D P0 (note that
uP D 0 when P 62 S 0). �

Thus we have that x WD yCup �u is an element of the Riemann-Roch space

L

�
pn0P0C

P
S

�PP

�
D

�
f 2K W div.f /� �pn0P0�

P
S

�PP

�
:

We now return to our hypothesis that L=K is a cyclic extension of degree pm

for some m � 1, with primitive element Ex. Following [21], we study the vector
�P WD �vP .Ex/ WD .�vP .x1/; : : : ;�vP .xm//. By adding elements of the form
}.0; : : : ;0;x;0; : : : ;0/we can assume that there exist sets Si �Supp.m/, placesP0; i
not in Si , and positive integers n0; i such that xi is in L.pn0; iP0; iC

P
Si
�P; iP /,

where �P; i WD �vP .xi / > 0 and gcd.�P; i ; p/D 1 for P 2 Si .
Setting MP WD maxfpm�i�P; i W 1 � i � mg, we obtain vP .fL=K/ DMP C 1

from [21, p. 163]. Given that we already know a modulus m such that fL=K �m,
we immediately get �P; i � .vP .m/� 1/pi�m. If mD

P
P nPP , then we set

Di WD pn0; iP0; i C
P
Si

.nP � 1/p
i�mP:

With these notations, we see that xi is an element of L.Di /.
By induction, we assume that the xi have been computed for 1� i �m� 1 and

explain how to find xm. Set Mm WD K.}
�1.x1; : : : ; xm�1// and D WD Dm; as

remarked above, we can identify xm as an element of the Fq-vector space

LK.D/D LK.D/=}.LK.D//:

Let d be the dimension of this space over Fp . We compute an Fp-basis of LK.D/

and lift it to a set of d elements ff1; : : : ; fd g of LK.D/. Hence xm is an element
of the subvector space of LK.D/ generated by the fi , and we have

xm D
dP
iD1

aifi

for some unknown elements ai of Fp. Next, we set

M WDK.}�1..x1; : : : ; xm�1;LK.D////DMm.}
�1.0; : : : ; 0;LK.D///;

so that we have a tower K � Mm � L � M . Note that as in the Kummer
case, neither M nor Mm is actually ever constructed. We will use the explicit
action of the Frobenius automorphisms on Witt vectors of length m, so we identify
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.x1; : : : ;xm�1/with .x1; : : : ;xm�1;0/2Wm.K/ and fi with .0; : : : ;0;fi /2Wm.K/.
Let P be an unramified place of K; then the Frobenius automorphism .P;L=K/

acts on Ey via the formula

.P;L=K/. Ey/D EyC

�
Ex

P

�
(see [21]), where the last term is in Wm.Fp/Š Zp mod pm and satisfies�

Ex

P

�
D TrFq=Fp

�
ExC ExqC � � �C Ex

N.P /
q mod P

�
:

We now compute Gal.M=Mm/. We have canonical isomorphisms

Gal.M=Mm/Š

dY
iD1

Gal.Mm.0; : : : ; 0; }
�1.fi //=Mm/Š .Z=pZ/d ;

and this is made explicit via the Frobenius: Every Gal.Mm.0; : : : ;0;}
�1.fi //=Mm/

is generated by the isomorphisms .Q;Mm.0; : : : ; 0; }
�1.fi //=Mm/, where Q is

a place of Mm. Because of the canonical isomorphism

Gal.Mm.0; : : : ; 0; }
�1.fi //=Mm/Š Gal.K.}�1.fi //=K/;

the generating isomorphisms are of the form

yi 7! yi C

�
fi

P

�
;

where yi is a primitive element ofK.}�1.fi //=K and P is the place ofK belowQ.
Since the symbol f � g is additive (see [21]), we have

Gal.K.}�1.fi //=K/Š
��
fi

P

��
;

and so the isomorphism Gal.M=Mm/Š .Z=pZ/d is made explicit via the map

.Q;M=Mm/ 7!

��
f1

P

�
; : : : ;

�
fd

P

��
:

We lift the terms in f � g from Wm.Fp/ to Zp, and if we can find enough places Pi
such that the Zp-vectors ��

f1

Pi

�
; : : : ;

�
fd

Pi

��
i

form a matrix of rank d over Zp, then we are done, because by class field theory
every element of Gal.M=Mm/ is a Frobenius automorphism for some place Q.
The generator is now obtained in exactly the same way as in the previous section
for Kummer extensions — for which all that is necessary is an explicit Artin map.
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4. An algorithm to find curves with many points

We now turn to the explicit applications of the theory described in the preceding
sections, and switch between the language of curves and function fields when
necessary. Our aim here is to find curves of low genus (g � 50) defined over a
small finite field (q � 100) such that the number of rational points is the maximum
possible; the current records can be found at www.manypoints.org. So we will only
be interested in the abelian extensions L=K defined over the same finite field Fq

such that the number of rational places of the field L is greater than or equal to
the corresponding entry in the table2 (as it was in June 2011). Furthermore, with
the aid of the theory of Section 3, we will be able to find the equations of such
extensions.

Proposition 4. Let L=K be a cyclic extension of prime degree l of function fields
defined over a finite field Fq . Then the genus of L satisfies

gL D 1C l.gK � 1/C
1
2
.l � 1/ deg fL=K :

Proof. By the Riemann-Hurwitz genus formula, this comes down to showing that
the degree of the different DL=K of L=K is .l � 1/ deg fL=K . Let Q be a place
of L and let P be the place of K below Q. The extension being Galois, the inertia
degree of P relatively to Q is independent of Q, so we denote it fP . Let

ND NL=K W Div.L/! Div.K/

be the norm map defined by linearizing the formula N.Q/ D fPP . From the
general relation degQDfP degP , we note that deg N.DL=K/Ddeg DL=K . By the
conductor-discriminant formula, N.D.LK// is equal to fl�1

L=K
, so by taking degrees

we obtain the proposition. �

From Proposition 4, the genus of a cyclic extension of global function fieldsL=K
of prime degree is exactly determined by its conductor fL=K , or even simply by
its degree. On the other hand, fL=K identifies L as the only field such that the
Galois group of L=K is a quotient of the ray class group modulo fL=K by a certain
subgroup of finite index. So, starting from a prime number l and a modulus m

defined over a global function field K with field of constants Fq , one can enumerate
all the cyclic extensions L of K of degree l and of conductor fL=K less than m by
computing all the subgroups of index l of Picm. We also know in advance that the
genus of these extensions will be less than

1C l.gK � 1/C
1
2
.l � 1/ deg m:

2Note that L will be defined over Fq if at least one rational place of K splits totally in L, which
will be the case when we are looking for L with many rational places.
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Since l is a prime, all places which ramify have the same ramification type:
Either they are all wildly ramified, or they are all tamely ramified. The following
proposition thus describes what kind of m one should test for a given l .

Proposition 5. Let L=K be an abelian extension of function fields. Let P be a
place of K. Then P is wildly ramified in L=K if and only if P appears in the
conductor of L=K with multiplicity greater than 2, that is,

P is wildly ramified if and only if fL=K � 2P:

Proof. From [16, Corollary 7.59], we see that a place P is tamely ramified if
and only if the first ramification group in upper numbering is trivial, and from the
local-global property of the conductor, this amounts to saying that P has weight
one in fLK

. So a place with weight at least two must be wildly ramified. �

We see that if l is prime to the characteristic p of K, then m must be of the form

mD

nX
iD1

Pi ;

whereas if l equals p, then m must be of the form

mD

nX
iD1

miPi ;

where mi � 2.
Because we want the greatest possible number of rational places for the field L,

and because of the formula
N.L/D l jS jC r

(where S is the set of rational places of K which split in L and r is the number of
rational places in the support of fL=K), it seems reasonable to start from a field K
which itself has many rational points compared to its genus. In this way, we will
find curves with many points and their equations recursively: We start from the
projective line or a maximal3 elliptic curve, compute all of its “best” coverings
reaching or improving a lower bound in www.manypoints.org, start the process
again on these coverings, and so on. We summarize the process in Algorithm 1.
Note that a reasonable restriction, especially when the size of the constant field
increases, could be to take only conductors with places of degree 1 in their support.

3We call a curve of genus g defined over Fq maximal if no genus g curve defined over Fq has
more rational points. This number of points is denoted Nq.g/.
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Algorithm 1 (Good abelian coverings).

Input: A function field K=Fq , a prime l , an integer G.
Output: The equations of all cyclic extensions of K of degree l and genus less

than G whose number of Fq-rational points improves the best known records.

1: Compute all the moduli of degree less than BD .2G�2�l.2g.K/�2//=.l�1/
using Proposition 5.

2: for each such modulus m do
3: Compute the ray class group Picm modulo m.
4: Compute the set S of subgroups of Picm of index l and conductor m.
5: for every s in S do
6: Compute the genus g and the number of rational places n of the class

field L of s.
7: if n is greater or equal to the known record for a genus g curve defined

over Fq then
8: Update n as the new lower bound on Nq.g/.
9: Compute and output the equation of L.
10: end if
11: end for
12: end for

The complexity of the algorithm is linear in the number of fields (or pairs of
divisors and subgroups) we need to consider. The total number of divisors of
degree bounded by B is roughly O.qB/ since this is the estimate for the number
of irreducible polynomials of degree bounded by B . The number of subgroups
to consider depends on the structure of the ray class group. For tamely ramified
extensions, the group is the extension of the divisor class group by the product
of the multiplicative groups of the divisors (modulo constants), so the number of
cyclic factors depends on the number of places such that l j qdegP �1. For wild ex-
tensions, the number of ramified places provides the same information. In the wild
case, the number is bounded by B=2, so the total number of fields to investigate is
roughly O.qB �qB=2/. For each pair we have to compute the genus and the number
of rational places. The computation of the genus can be seen to run in time quartic
in the number of (potentially) ramified places: For each place we need to check if
it divides the conductor. This test is done by some Z-HNF computation of a matrix
whose dimension depends again on the total number of places. The computation
of the number of rational places requires the computation of discrete logarithms in
the divisor class group for every rational place of the base field. Assuming a small
degree, this depends linearly on the number of ramified places.
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Name f

D1 y2CyCx3Cx

D2 y2C.x3CxC1/yCx5Cx4Cx3Cx

D3 y3Cx2y2C.x3C1/yCx2Cx

D4 y4C.xC1/y2C.x3Cx/yCx7Cx3

D5 y4C.x2CxC1/y2C.x2Cx/yCx7Cx6Cx5Cx4

D6 y4C.x6Cx5Cx4C1/y2C.x7Cx4Cx3Cx2/yCx11Cx10Cx3Cx2

D7 y4C.x7Cx6Cx4Cx2C1/y2C.x8Cx6Cx5Cx4/yCx10Cx8Cx6Cx4

D01 y2CxyCx3Cx

D02 y2CyCx5Cx

D03 y4C.x2CxC1/y2C.x2Cx/yCx6Cx5

D04 y4Cxy2C.xC1/yCx5Cx4Cx3Cx2

D05 y4C.x3C1/y2C.x4Cx2/yCx9Cx5

D06 y4C.x3CxC1/y2C.x3Cx/yCx9Cx8Cx5Cx4

D07 y4Cx7y2C.x7C1/yCx5Cx

Table 1. Equations f D 0 for the base curves over F2 used in our calculations.
The curves Dg have genus g and are maximal; the curves D0g have genus g and
satisfy jD0g .F2/j DN2.g/�1.

To summarize: The total complexity is essentially exponential in the genus
bound, and is thus limited in scope.

Remark. It is possible to extend the algorithm to coverings of nonprime degrees,
to include Artin-Schreier-Witt extensions for example, and this is what we have
implemented in Magma. The genus and the conductor can then be computed using
techniques from [8]. Note however that the computations then are much longer.
This is the reason why we presented the algorithm only for cyclic extensions of
prime degree: Since their arithmetic is simpler, the algorithm works best for them
and can thus be used more efficiently over finite fields of size greater than 2 or 3.

5. Results

In this section we present the explicit results we obtained by implementing our
algorithm. All of our computations were carried out in Magma [4], using a class
field theory library implemented by the second author.

We restrict our attention here to the case where the base field is F2.
In Table 1 we give the equations for the base curves to which we applied our

algorithm. The curves Dg have genus g and are maximal; the curves D0g have
genus g and satisfy jD0g.F2/j DNq.g/� 1. Note that Rigato [19] has shown that
the maximal curves of genus 1, 2, 3, 4, and 5 over F2 are unique.
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Oesterlé Base Galois
g N bound curve Conductor f group G jS j jT j jRj

14 16 16 D4 2P7 Z=2Z 16 0 0

17 18 18 D2 4P1C 6P1 Z=2Z˚Z=2Z 16 2 0

24 23 23 D04 2P1C 4P1C 2P2 Z=2Z˚Z=2Z 20 1 2

29 26 27 D4 4P1C 8P1 Z=2Z˚Z=2Z 24 2 0

41 34 35 D03 4P1C 4P1 Z=2Z˚Z=4Z 32 2 0

45 34 37 D2 4P1C 8P1 Z=2Z˚Z=4Z 32 2 0

46 35 38 D3 3P1C 8P1 Z=2Z˚Z=4Z 32 1 2

Table 2. New results over F2. For each genus g in the leftmost column, we give
the largest number N for which we have constructed a genus-g curve over F2
having N rational points. The other columns are explained in the text.

Table 2 presents data on the curves we constructed that improved the previous
records for the number of points on a genus-g curve over F2. The first two columns
in the table give the genus g and the number of rational points N on the abelian
coverings we construct. The third column gives the Oesterlé bound on the number
of rational points of a genus-g curve defined over F2; in the cases we consider
this is the best upper bound known. The fourth column gives the name (from
Table 1) of the base curve used in the construction. The fifth column gives the
conductor of the covering; a summand of the form niPi means that there is a place
of degree i occurring in the conductor with weight ni . The final four columns
give the Galois group G of the covering, the number jS j of totally split places,
the number jT j of totally ramified places, and the number jRj of partially ramified
places. In some cases we obtained the same values of g and N by applying our
algorithm to different base curves; in these cases, we only make one entry in our
table, corresponding to the construction using the base curve with the smallest
genus. Finally, we mention that the average bound on the degree of the possible
conductors we have tested was 14.

For each row of Table 2, let Cg denote the covering curve of genus g correspond-
ing to that row. We present explicit equations for each Cg next; these are equations
for the Cg as coverings of their base curves, so the equations for the base curves
(given in Table 1) are left unstated here. We have attempted to present the equations
so that the structure of each cover as a tower of Artin-Schreier covers is clear.

C14 W

(
0D .x7C x3C 1/.z2C z/

Cy3C .x4C x/y2C .x4C x2C 1/yC .x8C x6C x5C x4/

C17 W

8̂<̂
:
0D z2C x2z

C x.xC 1/.x3C x2C 1/yC x2.xC 1/2.x4C x3C x2C xC 1/

0Dw2C xwC x.xC 1/.x2C xC 1/yC x2.xC 1/
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C24 W

8̂̂̂̂
<̂̂
ˆ̂̂̂:

0D z2C x2.xC 1/z

C x.x3C x2C 1/y3C x3.xC 1/4y2C x2.x4C x3C 1/y

C x.xC 1/.x7C x6C x3C x2C 1/

0Dw2C x2wC x.xC 1/y3

C x3.xC 1/2y2C x2.xC 1/2yC x.xC 1/.x2C xC 1/

C29 W

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

0D z2Cx2.xC1/4z

C.xC1/.x6Cx5Cx4Cx3C1/y3

Cx.xC1/3.x5Cx4Cx3Cx2C1/y2C.xC1/2.x6Cx2C1/y

Cx2.xC1/3.x5Cx4Cx3Cx2C1/

0Dw2Cx2.xC1/5w

C.xC1/.x9Cx8Cx5Cx4C1/y3

Cx.xC1/3.x9Cx8Cx6Cx5Cx4Cx2C1/y2

C.xC1/2.x9Cx8Cx3Cx2C1/y

Cx2.xC1/3.x11Cx9Cx8Cx6Cx5Cx4Cx3Cx2C1/

C41 W

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

0D z2C
�
x6.x2C xC 1/y3C x7.x4C x3C x2C xC 1/y2

C x6.xC 1/.x2C xC 1/yC x10.xC 1/4
�
z

C x.xC 1/7.x13C x12C x11C x9C x6C x4C 1/y3

C x2.xC 1/3.x17C x15C x12C x11C x9C x3C 1/y2

C x.xC 1/6.x17C x15C x14C x13C x4C x2C 1/y

C x5.xC 1/4.x17C x16C x12C x11C x6C x3C 1/

0D v2C x7vC xz

0Dw2C x2wC xy2C x2y

C45 W

8̂̂̂<̂
ˆ̂:
0D z2C .xC 1/2.xyC 1/zC x2.x13C x11C x9C xC 1/y

C x9.x8C x6C x4C x3C x2C xC 1/

0D v2C .xC 1/2vC x.xC 1/zC x7.x4C xC 1/

0Dw2C .xC 1/2wC .xC 1/.x5C x2C x/yC .xC 1/.x8C x5C x4/

C46 W

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

0D z2C
�
.xC 1/y2C .x3C x2C 1/yC .x4C x3C x2C xC 1/

�
z

C .xC 1/2.x11C x8C x6C xC 1/y2C .xC 1/6.x9C x2C 1/y

C x7.xC 1/2.x7C x5C x4C x3C 1/

0D v2C vC x.xC 1/zC x5.xC 1/

0Dw2CwC xy2C x2.x3C x2C 1/y

Remark. After this article was written, a preprint of Karl Rökaeus appeared in
which he undertakes similar computations over the finite fields of size 2, 3, 4, and 5
(see [20]). Over F2 he recovers our genus-17 record, and he improves our genus-45
bound to 36 points. (He obtains the record-setting genus-45 curve as an abelian
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cover of a genus-2 curve D with jD.F2/j DN2.2/� 2.) In private communication,
Rökaeus indicated that he also found a genus-46 curve over F2 with 36 points.

Remark. As mentioned above, we have restricted our search to curves over the
field F2. However, our code works over other fields as well, and while we were
testing it we found a curve of genus 11 over F3 with 21 rational points. This curve
is a degree-2 cover of the genus-4 maximal curve defined by

C W y4�y2C x6C x4C x2 D 0:

With notations as above, the conductor of the cover is of the form P1CP1CP1CP5,
and we have jS j D 9, jRj D 3, and jT j D 0. The resulting cover C 0 is given by the
equation

z2D�.x5Cx4Cx3�x2CxC2/�.yCx2Cx/�.y2C.�xC1/yCx3�x2�xC1/

�
�
.x7C x6C x5� x3� 1/y3C .�x8C x6C x5� x4� x3� x/y2

C .�x10� x9� x8C x5C x4C x3� x2C 1/y

� x12� x9� x8C x6C x4C x
�
:

Acknowledgments

The first author would like to thank his advisor David Kohel and Everett Howe for
their support during the preparation of the paper, as well as Jérémie Detrey and
Emmanuel Thomé for their help with Magma. Both authors thank the anonymous
referees for their useful comments about a first version of the article.

References

[1] Roland Auer, Ray class fields of global function with many rational places, Ph.D. thesis, Carl-
von-Ossietzky-Universität Oldenburg, 1999. http://oops.uni-oldenburg.de/volltexte/1999/457/

[2] , Curves over finite fields with many rational points obtained by ray class field exten-
sions, in Bosma [3], 2000, pp. 127–134. MR 2002h:11053

[3] Wieb Bosma (ed.), Algorithmic number theory: Proceedings of the 4th International Sympo-
sium (ANTS-IV) held at the Universiteit Leiden, Leiden, July 2–7, 2000, Lecture Notes in
Computer Science, no. 1838, Berlin, Springer, 2000. MR 2002d:11002

[4] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system, I: The user
language, J. Symbolic Comput. 24 (1997), no. 3–4, 235–265. MR 1484478

[5] Henri Cohen (ed.), Algorithmic number theory: Proceedings of the 2nd International Sympo-
sium (ANTS-II) held at the Université Bordeaux I, Talence, May 18–23, 1996, Lecture Notes in
Computer Science, no. 1122, Berlin, Springer, 1996. MR 97k:11001

[6] Claus Fieker, Computing class fields via the Artin map, Math. Comp. 70 (2001), no. 235, 1293–
1303. MR 2002e:11153

[7] V. D. Goppa, Codes that are associated with divisors, Problemy Peredači Informacii 13 (1977),
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