
THE OPEN BOOK SERIES 1

ANTS X
Proceedings of the Tenth
Algorithmic Number Theory Symposium

msp

Computing the unit group, class group, and compact
representations in algebraic function fields

Kirsten Eisenträger and Sean Hallgren

THE OPEN BOOK SERIES 1 (2013)

Tenth Algorithmic Number Theory Symposium
dx.doi.org/10.2140/obs.2013.1.335

msp

Computing the unit group, class group, and
compact representations in algebraic function fields

Kirsten Eisenträger and Sean Hallgren

Number fields and global function fields have many similar properties. Both
have many applications to cryptography and coding theory, and the main com-
putational problems for number fields, such as computing the ring of integers
and computing the class group and the unit group, have analogues over function
fields. The complexity of the number field problems has been studied exten-
sively, and quantum computation has provided exponential speedups for some
of these problems. In this paper we study the analogous problems in function
fields. We show that there are efficient quantum algorithms for computing the
unit group, for computing the class group, and for solving the principal ideal
problem in function fields of arbitrary degree. We show that compact represen-
tations exist, which allows us to show that the principal ideal problem is in NP.
We are also able to show that these compact representations can be computed
efficiently, in contrast with the number field case.

1. Introduction

Algebraic number theory is concerned with the study of number fields — that is,
finite extensions L of Q — and of the rings of algebraic integers OL of such L .
Similarly, we can consider finite algebraic extensions K of Fq(t), where Fq(t) is
the quotient field of the polynomial ring Fq [t]. These fields are called function fields
over finite fields or global function fields. It was noticed early on that the integers
have many properties in common with Fq [t], and similarly, that number fields and
global function fields have many similar properties. Often, a problem that is posed
for number fields admits an analogous problem for global function fields, and the
other way around. For example, the Riemann hypothesis for the classical Riemann

MSC2010: primary 11Y16; secondary 11R27, 11R29.
Keywords: function fields, compact representations, infrastructure, unit group, principal ideal

problem.

335

336 KIRSTEN EISENTRÄGER AND SEAN HALLGREN

zeta function ζ(s) is still open, while the function-field analogue of this conjecture
was proved by Weil.

The main computational problems for number fields include computing the ring
of integers, the class group, and the unit group, and solving the principal ideal prob-
lem. These problems have been studied extensively, and there are a large number
of classical algorithms for computing with number fields. Applications include
the number field sieve, which is the fastest classical algorithm for factoring [29],
and the Buchmann-Williams key-exchange system, whose security depends on the
hardness of the principal ideal problem [7]. The recent push to make lattice-based
cryptography more efficient has relied upon special lattices that come from num-
ber fields [33; 30]. Error-correcting codes have also been constructed using such
lattices [23]. Quantum algorithms have been the source of exponential speedups
for many of these computational problems for number fields. There are efficient
quantum algorithms for computing the unit group and class group, and for solving
the principal ideal problem in constant degree number fields [25; 38]. Some field
extensions have also been computed using quantum algorithms [16]. In this paper
we study the analogous computational problems over function fields.

Function fields also have many applications in cryptography and coding theory.
There are many cryptographic applications that use elliptic curves or Jacobians
of curves of small genus defined over finite fields [13]. Most of these rely on
the assumption that the discrete log problem is difficult to solve in the underlying
group associated with these curves. Another way to state this is that the discrete
log problem is assumed to be hard in the divisor class group of the function field of
the curve. Error correcting codes have also been based on function fields [22]. In
a recent paper, Guruswami [24] constructed codes where everything was efficient
except computing the basis for the Riemann-Roch space of a certain divisor.

For number fields the problems listed above have been studied extensively, and
they appear to be computationally hard. For example, computing the ring of inte-
gers requires squarefree factorization of integers. The best known classical algo-
rithms for computing the unit group, for computing the class group, and for solving
the principal ideal problem are exponentially slower than factoring. On the other
hand, computing the class group and unit group is in NP∩coNP for arbitrary degree
number fields [42], while the quantum algorithms are only efficient for constant
degree number fields. One apparent obstacle is that the only way known to compute
with ideals of number fields requires a shortest vector problem in ideal lattices to
be solved during computations, in order to keep representation sizes small.

In this paper we examine these computational problems over function fields of
arbitrary degree. For function fields, computing the ring of integers is computa-
tionally equivalent to factoring polynomials over a finite field, which can be done
in (classical) polynomial time, so one might hope that much more can be done.

THE UNIT GROUP, THE CLASS GROUP, AND COMPACT REPRESENTATIONS 337

In fact, even the analogue of the shortest vector problem has an efficient classical
algorithm. But problems such as computing the divisor class group should be
hard classically since they include as a special case the discrete log problem on
an elliptic curve (a curve of genus one whose function field has degree two). For
certain special classes of function fields (where the degree is two and the genus is
large) there are subexponential algorithms for computing the class group, which
make them less secure for cryptographic purposes: In [4] the authors give a subex-
ponential algorithm for computing the class group of a hyperelliptic curve of large
genus, and [31] gives a subexponential probabilistic algorithm for computing the
class group of a real quadratic congruence function field of large genus. In [37] it
is shown that various decision problems for quadratic congruence function fields
of large genus are in NP ∩ coNP. There are also some exponential algorithms
known for more general function fields. Another important computational prob-
lem that only exists in the function field case is that of computing Riemann-Roch
spaces.

In this paper we show that the principal ideal problem over function fields of
arbitrary degree is in NP. To do this we show that compact multiplicative represen-
tations exist for elements in function fields. This answers a question of Smart [40]
and generalizes [36], which showed the existence of compact representations for
real quadratic congruence function fields (which have degree two). Our work
adapts work of Thiel, who used compact representations in number fields and
showed that the principal ideal problem, the computation of class numbers, and
the computation of compact representations of units are in NP∩ coNP for number
fields [42]. We also show that, unlike the situation for number fields, compact
representations can be computed in (classical) polynomial time for arbitrary degree
function fields. The standard representation of an element, for example a unit, may
take exponentially many bits to represent. Compact representations give a certain
factored form of the element which only requires polynomial representation size.

Given this setup, we also show that there are efficient quantum algorithms for
computing the unit group and the class group, and for solving the principal ideal
problem in arbitrary degree function fields. This is in contrast to the number field
case, where currently only the constant degree case has quantum algorithms. These
problems are solved by setting up abelian hidden subgroup problems.

One open question related to our work is whether the function field analogues
of the problems treated by Thiel are also in NP∩ coNP. Compact representations
played a key role in the number field case. One issue in the function field case
is that it is not known how to deterministically compute generators for the class
group efficiently.

Another open question is finding an efficient quantum algorithm for computing
class field towers of function fields. Certain towers of function fields — namely,

338 KIRSTEN EISENTRÄGER AND SEAN HALLGREN

Hilbert class field towers — have applications to coding theory. When the tower is
infinite one can construct asymptotically good sequences of codes from the fields
in such towers [20, p. 212]. Infinite towers are known to exist [39], but for applica-
tions of such codes in practice, an explicit construction of the fields in the tower is
required. Class groups of certain subrings of the function fields in the tower appear
as the Galois groups of the field extensions in the tower. Therefore, computing the
class groups (and compact representations), as we do in this paper, is required to
compute such towers, as it is in the number field case [16].

In order to set up our algorithms we need efficient algorithms for doing compu-
tations in the infrastructure of a function field. Fontein recently provided these and
we prove that his algorithms in [19; 17] are polynomial-time. To compute with
the infrastructure it is necessary to efficiently compute the Riemann-Roch space
of a divisor D. For this we use Hess’s algorithm [26], which is a relatively simple,
self-contained algorithm. In the appendix we include a complexity analysis of
his algorithm. For other references that analyze Hess’s algorithm see [19] (which
makes some additional assumptions) and [14]. The algorithms above have been
implemented, for example in Magma. The focus of this paper, however, is on
the complexity analysis. Analyzing the Riemann-Roch algorithm addresses the
missing piece for the codes in [24] to be efficient.

One technical challenge in our work is adapting Thiel’s algorithm for computing
compact representations [42] from the number field case to the function field case.
To do this, and to end up with a polynomial-time algorithm, we must show that
we can compute compact representations without searching for minima in a region
of exponential size, something that is necessary in the number field case. We
also analyze the Riemann-Roch space computation. This involves showing that
we can efficiently compute certain prime ideals of the ring O∞ (see Section 2 for
notation) that we use to compute the Riemann-Roch space L(D) from a given
representation of the divisor D. We carry out this computation by factoring and
computing radicals of certain ideals; further details, and the complexity analysis,
can be found in Appendix B. Our algorithm generalizes the ideal factorization
algorithm for number fields [16].

There have been other approaches to the study of some of these problems over
function fields. In [27] Huang and Ierardi gave a construction of the Riemann-Roch
space that is polynomial-time, assuming that all the singular points of the plane
curve defining the function field are ordinary and defined over the base field. For
another construction, which uses the Brill-Noether method, see Volcheck [43]. Re-
cently, the authors learned that the (unpublished) Habilitation thesis by Diem [14]
also studied Hess’s algorithm. Kedlaya [28] showed how to compute zeta functions
of curves with a quantum algorithm. His method requires computing the size of the
divisor class group Pic0(K), and he showed how to compute in the group efficiently.

THE UNIT GROUP, THE CLASS GROUP, AND COMPACT REPRESENTATIONS 339

Our work, by contrast, requires the different representation using the infrastructure
of Fontein [17] in order to compute in the unit group and the class group, rather
than only in the divisor class group Pic0(K). The infrastructure also allows us to
show the existence of compact representations.

Infrastructures have also been studied in [35; 18], which give quantum algo-
rithms for computing one-dimensional infrastructures and the period lattice of in-
frastructures of fixed dimension.

2. Background on algebraic function fields and divisors

Algebraic function fields over finite fields. Let k be a finite field with q = pm

elements for some prime p and integer m > 0. An algebraic function field K/k
is an extension field K ⊇ k such that K is a finite algebraic extension of k(x)
for some x ∈ K which is transcendental over k. After replacing k with a finite
extension, if necessary, we may assume that k is the constant field of K , that is,
that k is algebraically closed in K . By [41, p. 144] such an algebraic function field
is separably generated; that is, there exist x, y ∈ K such that K = k(x, y). The
function field K is then specified by the finite field k, the indeterminate x and the
minimal polynomial f ∈ k(x)[T] of y over k(x). Throughout the paper, we assume
that K is given to us as K = k(x, y) with x, y as above, and we let d := [K : k(x)].

A valuation ring of the function field K/k is a ring Õ⊆ K such that k $ Õ $ K
and such that for every z ∈ K we have z ∈ Õ or z−1

∈ Õ. A valuation ring is a local
ring; that is, it has a unique maximal ideal [41, p. 2]. A place of a function field
K/k is defined to be the maximal ideal of some valuation ring of K/k. To each
place p of K , there is an associated discrete valuation vp : K ∗→ Z, and there is a
one-to-one correspondence between places of K/k and discrete valuations of K/k
[41, pp. 5–6]. Denote by PK the set of all places of K . If p is a place of K with
corresponding valuation ring Op, we define the degree of p to be the degree of the
field extension of Op/p over k; that is, deg p= [Op/p : k]. If F/K is an extension
of algebraic function fields we say that a place P ∈ PF lies above a place p ∈ PK

if p⊆P.
For the rational function field k(x), the places are completely understood: The

places of k(x) correspond to the irreducible polynomials of k[x], together with a
“place at infinity”, denoted∞.

Let v∞ be the discrete valuation corresponding to the infinite place∞ of the
rational function field k(x). Then v∞ is defined via v∞(f/g)= deg g− deg f , for
f, g ∈ k[x]. Let o∞ := {a ∈ k(x) : v∞(a) ≥ 0}. Then o∞ is the valuation ring
associated to v∞ and the unique maximal ideal of o∞ is generated by 1/x . Let S
denote the set of places of K above∞. Let

O∞ := {a ∈ K : vp(a)≥ 0 for all p ∈ S}.

340 KIRSTEN EISENTRÄGER AND SEAN HALLGREN

Then O∞ is the integral closure of o∞ in K , and O∞ is a free o∞-module of rank d .
The ring O∞ is a principal ideal domain whose prime ideals correspond to the
elements in S.

Divisors on algebraic function fields. A divisor on K is a formal sum

D =
∑
p∈PK

np p

such that np= 0 for all but finitely many p. Let Div(K) denote the group of divisors
on K . For a divisor D which is given as D =

∑
p∈PK

np p, we define the degree of
D to be deg D =

∑
p∈PK

np deg p. The divisors of degree zero form a subgroup of
Div(K), which we denote by Div0(K). For f ∈ K ∗, the divisor of f is defined to
be

div(f)=
∑
p∈PK

vp(f) p.

The set of all divisors of the form div(f) forms the group Prin(K) of principal
divisors on K . Note that if D is a principal divisor then deg D = 0. We define the
divisor class group Pic0(K) to be the quotient of the group of divisors of degree
zero by the group of principal divisors; that is, Pic0(K)= Div0(K)/Prin(K). The
divisor class group is a finite group.

A divisor D =
∑

p np p is effective if np ≥ 0 for all p; we write D1 ≥ D2

to mean that D1 − D2 is effective. Every divisor D can be written uniquely as
D = D+− D− with D+, D− effective divisors with disjoint support. We define
the height of a divisor D to be ht(D) := max{deg(D+), deg(D−)}. For a divisor
D ∈ Div(K) we define the Riemann-Roch space of D to be the set

L(D) := { f ∈ K : div(f)+ D ≥ 0} ∪ {0}.

The set L(D) is a vector space over k, and we denote its dimension by `(D).

Fractional ideals. Let O be the integral closure of k[x] in K . Then O is a free
k[x]-module of rank d. By [11, Theorem 1], a k[x]-basis for O can be computed
in time polynomial in d and log q . If S = {p1, . . . , pn+1} is the set of places above
the infinite place∞ of k(x), then we also have

O= {a ∈ K : vp(a)≥ 0 for all p /∈ S}.

Note that for any nonempty finite set S of places of K one can find an x ∈ K such
that S is the set of infinite places above x . Throughout the paper we assume that
deg pn+1 = 1. This can always be achieved by passing to a finite extension of the
constant field k.

A fractional ideal of O is a finitely generated O-submodule of K . Since O is a
Dedekind domain, the nonzero fractional ideals Id(O) of O form a (free) abelian

THE UNIT GROUP, THE CLASS GROUP, AND COMPACT REPRESENTATIONS 341

group under multiplication. There is a natural homomorphism φ : Div(K)→ Id(O)
defined by ∑

npp 7→
∏
p/∈S

(p∩O)−np .

This map has a right inverse, namely the map div : Id(O)→ Div(K) that sends a
fractional ideal B =

∏
p/∈S(p∩O)np to div(B) := −

∑
p/∈S npp. Hence each divisor

can be represented by a pair
(

A,
∑

tipi
)
, where A is a fractional ideal of O and

{p1, . . . , pn+1} are the places in S, that is, the primes above ∞. This is how we
will represent divisors throughout the paper.

The class group Cl(O) of O is defined to be the group of fractional ideals of
O modulo the principal fractional ideals of O. The class group is a finite abelian
group, and the map φ : Div(K)→ Id(O) extends to a homomorphism

φ : Pic0(K) // Cl(O)[∑
npp

] � //
[∏
p/∈S
(p∩O)−np

]
.

When deg pn+1 = 1 this map fits into an exact sequence

0 // Ker // Pic0(K)
φ // Cl(O) // 1.

Here Ker is the subgroup of Pic0(K) that is generated by all degree-zero divisors
with support in S, so the map Ker→ Pic0(K) is just the inclusion map. Since k is
a finite field, Ker is finite by [34, Proposition 14.2, p. 243].

3. Computing efficiently in the unit group

In this section we show how to efficiently compute classically in the unit group of
O. Recall that S = {p1, . . . , pn+1} are the places of K above∞ and that

O= {a ∈ K : vp(a)≥ 0 for all p /∈ S}.

Also, we assume that pn+1 is a place of degree 1.
To compute in the unit group, consider the map val∞ : K ∗ → Zn given by

val∞(a) = (−vp1(a), . . . ,−vpn (a)). The image of O∗ under val∞ is a lattice 3
in Zn . By an analogue of Dirichlet’s Unit Theorem for function fields, the unit
rank — that is, the rank of 3 — is equal to n = #S − 1. Since units can have
exponentially many bits in the standard representation, computing the unit group
means to compute a basis of that lattice, or to compute compact representations
for a fundamental set of units as in Definition 4.3. In Lemma 4.7 we show that the
compact representation of an element can be computed from its valuation vector,
so it follows that these two problems are polynomial time equivalent in function
fields.

342 KIRSTEN EISENTRÄGER AND SEAN HALLGREN

Fontein [17] showed that it is possible to compute in a finite abelian group which
he denotes Rep f ∗(O) and which is isomorphic to Zn/3. We discuss his approach
in the next section. We then show that these computations are efficient. From the
group structure of Zn/3 we can obtain the basis for the lattice 3.

3A. Minima and reduced ideals in function fields. We now give the definitions
of minima and reduced ideals and define Rep f ∗(O) (see [17]). In the following, by
an ideal of O we will always mean a fractional ideal of O.

For each place pi ∈ S, with its associated discrete valuation vpi , there is a corre-
sponding absolute value |α|i , defined by

|α|i := q−vpi (α) deg pi .

For an ideal A and integers t1, . . . , tn+1 ∈ Z we define

B(A, (t1, . . . , tn+1)) := {α ∈ A : |α|i ≤ q ti deg pi for i = 1, . . . , n+ 1}.

This is a Riemann-Roch space; we have

B(A, (t1, . . . , tn+1))= L
(

div(A)+
n+1∑
i=1

tipi

)
.

For an ideal A and α ∈ K ∗, let B(A, α) := B(A, (−vp1(α), . . . ,−vpn+1(α))).

Definition 3.1 (Minima and reduced ideals).

(1) Let A be an ideal of O and let µ be a nonzero element of A. The element µ
is a minimum of A if for every nonzero α ∈ B(A, µ) we have |α|i = |µ|i for
i = 1, . . . , n+ 1.

(2) An ideal A is reduced if 1 is a minimum of A.

Denote by Red(A) the set of reduced ideals of O which are in the same ideal
class as A in Cl(O). There is a close connection between the set of minima of an
ideal A and the set of reduced ideals equivalent to A. First, if µ is a minimum of
A and ε ∈ O∗, then εµ is also a minimum of A. This action of O∗ on the set of
minima gives rise to a bijection

{minima of A}/O∗ // Red(A)

µO∗ � // (1/µ)A.

So every element of Red(A) is of the form (1/µ)A with µ a minimum of A. Next
define a map from the set of reduced ideals equivalent to A to Zn/3 by defining

d : Red(A) // Zn/3

(1/µ)A � // val∞(µ)+3

THE UNIT GROUP, THE CLASS GROUP, AND COMPACT REPRESENTATIONS 343

This map is well-defined since deg pn+1 = 1 (see [17, Corollary 5.3]), and it is
also injective [17, Proposition 5.5]. Now we can define Fontein’s group Rep f ∗(O),
which is isomorphic to Zn/3.

Definition 3.2. Let A be an ideal of O. An f ∗-representation is a tuple

(I, (t1, . . . , tn)) ∈ Red(A)×Zn

such that B(I, (t1, . . . , tn, 0)) = k. Denote the set of all f ∗-representations in
Red(A)×Zn by Rep f ∗(A).

When A and B are two ideals that are in the same ideal class in Cl(O), then
clearly Rep f ∗(A)= Rep f ∗(B). Let

8A : Rep f ∗(A)→ Zn/3

be defined by
8A ((1/µ)A, t)= val∞(µ)+ t +3.

Here t = (t1, . . . , tn) ∈ Zn . In [17, Theorem 6.8] it is proved that this map is
a bijection. In particular, Rep f ∗(O) is isomorphic to Zn/3. So to each element
(I, t) of Rep f ∗(A), there is an associated point in Zn/3, and if I = (1/µ)A, we
say that (I, t) represents the element val∞(µ)+ t +3 of Zn/3. Let [A] be the
set of ideals equivalent to A in the class group. It is possible to extend 8A to
a well-defined (but no longer injective) map 8A : [A] × Zn

→ Zn/3 by letting
8A ((1/α)A, f)= val∞(α)+ f +3.

In [17, Proposition 8.1] the following is shown:

Proposition 3.3. Let (A, (t1, . . . , tn)) be an element of Rep f ∗(B) for some ideal B.
Then div(A)≥ 0 and ti ≥ 0 for 1≤ i ≤ n. Moreover,

0≤ deg div(A)+
n∑

i=1

ti deg pi ≤ g.

Here g denotes the genus of the function field.

We want to compute a basis for the n-dimensional lattice 3. Since Zn/3 is
isomorphic to Rep f ∗(O), it is enough to obtain generators and relations for the
finite group Rep f ∗(O).

3B. Reduction and obtaining generators for Rep f ∗(O). Let

8 :=8O : Rep f ∗(O)→ Zn/3

and its extension to [O] × Zn
→ Zn/3 be the maps defined above. The group

Zn/3 is generated by the standard basis vectors ei (1≤ i ≤ n), so in order to find

344 KIRSTEN EISENTRÄGER AND SEAN HALLGREN

generators for Rep f ∗(O) we need to find elements ((1/µi)O, fi) such that

8((1/µi)O, fi)= ei +3.

To obtain such elements we consider the elements (O, ei), for i = 1, . . . , n. These
elements are not in Rep f ∗(O), but they do have the property that 8(O, ei)= ei +3.
So to obtain the right elements in Rep f ∗(O) we reduce the elements (O, ei) to
elements ((1/µ)O, fi) ∈ Rep f ∗(O) with Algorithm 3.4 below, and use the fact that
under 8, the element (O, ei) and its reduction have the same image (see Remark 3.6
below).

The general reduction algorithm that we are describing next works for Rep f ∗(I)
for any ideal I of O.

Algorithm 3.4 (Reduce).

Input: An ideal A and a vector t = (t1, . . . , tn) ∈ Zn .

Output: A minimum µ of A, the reduced ideal (1/µ)A, and a vector t − val∞(µ)
such that ((1/µ)A, t − val∞(µ)) ∈ Rep f ∗(A).

1. Find the minimum ` in the interval[
− deg div(A)−

n∑
i=1

ti deg pi , g− deg div(A)−
n∑

i=1

ti deg pi

]
such that dim B(A, (t1, . . . , tn, `)) > 0.

2. Set u1, . . . , un = 0. For each 1≤ i ≤ n, increase ui to find the largest value ui

with dim B(A, (t1− u1, . . . , tn − un, `)) > 0.

3. Let µ be a nonzero element of B(A, (t1− u1, . . . , tn − un, `)).
Output (µ, (1/µ)A, (u1, . . . , un)).

Proposition 3.5. Algorithm 3.4 is correct and returns (µ, (1/µ)A, (u1, . . . , un))

in time polynomial in d, log q , ht(div(A)) and ‖t‖∞.

Proof. Let ` be minimal such that dim B(A, (t1, . . . , tn, `)) > 0. By [19, Theo-
rem 4.4.3], we have

` ∈
[
− deg div(A)−

n∑
i=1

ti deg pi , g− deg div(A)−
n∑

i=1

ti deg pi

]
,

so the first step of the algorithm requires at most g Riemann-Roch computations.
By Theorem B.9, each of these computations

B(A, (t1, . . . , tn, `))= L
(

div(A)+
n∑

i=1

ti · pi + ` · pn+1

)
can be performed in time polynomial in d , log q , ht(div(A)), and ‖t‖∞, because `
is at most a polynomial in g, div(A), and ‖t‖∞, and g is a polynomial in d .

THE UNIT GROUP, THE CLASS GROUP, AND COMPACT REPRESENTATIONS 345

The second step computes the valuation that µ has in the third step. For coor-
dinate i , there are at most ti Riemann-Roch computations, so in total there are at
most n max |ti |, which is polynomial in d and ‖t‖∞ since n ≤ d. The correctness
of steps 2 and 3 follows from the correctness proof of Algorithm 5.4.2 in [19]. �

Remark 3.6. Let A be an ideal of O and let t=(t1,..., tn)∈Zn . Then (A,(t1,..., tn))
represents the same point in Zn/3 as its reduction

((1/µ)A, t − val∞(µ)) ∈ Rep f ∗(A),

because

8A(A, t)= t +3

= val∞(µ)+ (t − val∞(µ))+3

=8A((1/µ)A, t − val∞(µ)).

Denote by Reduce(A, e) the element of Rep f ∗(A) computed by Algorithm 3.4.
By the above discussion we have 8A(Reduce(A, e))= e+3, and if e′= e+v with
v ∈3, then 8A(Reduce(A, e′))= e′+3= e+3. Since 8A : Rep f ∗(A)→ Zn/3

is injective this implies that Reduce(A,e)= Reduce(A,e′) whenever e− e′ ∈3.

Definition 3.7. When α ∈ K , the norm of α can be expressed uniquely as N (α)=
f/h, where f and h are coprime elements of k[x] and h is monic. We define
dg(N (α)) to be dg(N (α))=max{deg f, deg h}.

Remark 3.8. When A = αO then being polynomial in ht(div(A)) is the same as
being polynomial in dg N (α) (see [17, p. 28]).

3C. Composition and computing inverses in Rep f ∗(O) and bounding the repre-
sentation size of elements. By [17, Proposition 8.2], elements in Rep f ∗(O) can be
represented by O(d2g log q) bits. Here g denotes the genus of the function field,
which is of size polynomial in d .

Composition of two elements (A, f), (A′, f ′) of Rep f ∗(O) is done by multi-
plying the ideals, adding the two vectors, and then applying Algorithm 3.4 to
(AA′, f + f ′). To compute the inverse of (A, f1, . . . , fn), compute the inverse
A−1, find ` minimal such that dim B(A−1, (− f1, . . . ,− fn, `)) > 0 and then re-
duce using Algorithm 3.4 [19, Proposition 4.3.4]. The ideal arithmetic in O is
polynomial in log q, d, and ht(div(A)), ht(div(A′)) [14, Proposition 2.66, and
Proposition 2.69(b)] and ht(div(A)) is of size polynomial in d and log q when
(A, f) ∈ Rep f ∗(O). Hence Proposition 3.5 implies that composition of two ele-
ments and computing inverses in Rep f ∗(O) are both polynomial in log q and d.

346 KIRSTEN EISENTRÄGER AND SEAN HALLGREN

4. Compact representations in global function fields

In this section we show how to efficiently compute compact representations of
elements α ∈ K classically. This allows us to show that the principal ideal problem
is in NP, and to compute compact representations of units. We adapt the definitions
and approach for number fields given in [42, p. 82] to the function field case. The
sizes are adapted to match the parameters that are appropriate for number fields
and that come from our algorithms. In the function field case we show that an
exponential search for minima is no longer necessary.

Definition 4.1. For α ∈ K and s ∈Qn we say that α is close to s if

‖val∞(α)− s‖1 ≤ n+ g,

where g is the genus of K .

Definition 4.2. A multiplicative representation of an element α ∈ K is a pair

M = ((β1, . . . , β`), (e1, . . . , e`)),

where βi ∈ K , ei ∈ Z, ` ∈ N, and such that α =
∏`

i=1 β
ei
i .

A binary multiplicative representation (BMR) of an element α ∈ K is a mul-
tiplicative representation such that for all i ≤ ` we have both that ei = 2`−i and
that ((β1, . . . , βi), (e1, . . . , ei)) is a minimum of O. Since the exponents ei are
determined, a BMR can be represented as (β1, . . . , βk).

Definition 4.3. A compact representation of α ∈ K is a pair B = (γ, (β1, . . . , β`)),
where (β1, . . . , β`) is a BMR for a minimum β of O with γ = αβ, and where

`≤ log(‖val∞(α)‖∞+ g),

size(γ)≤ poly(log q, d, dg N (α)), and

size(βi)≤ poly(log q, d).

Here size denotes the number of bits required to represent the element.

Remark 4.4. Definition 4.3 depends on certain implied constants hidden in expres-
sions like poly(log q, d). What is meant is that there exist specific polynomials that
can be used in the definition so that all subsequent statements in this paper hold.

The bound on ` is chosen to handle the length of the generator after reducing
αO, which is val∞(γ /α). The factor γ comes from ideal reduction, so γ has size
polynomial in d , log q , and dg N (α).

Claim 4.5. Given a BMR (β1, . . . , β`) of a minimum β of O, the ideal (1/β)O can
be efficiently computed.

THE UNIT GROUP, THE CLASS GROUP, AND COMPACT REPRESENTATIONS 347

Proof. At the first step, the ideal (1/β1)O, which is reduced by the definition of
a BMR, can be efficiently computed. In general, let β ′i =

∏i
j=1 β

2i− j

j . By the
definition of a BMR, β ′i is a minimum of O for all i . Given the reduced ideal
(1/β ′i)O, the reduced ideal (1/β ′i+1)O= (1/(βi+1β

′2
i))O can be efficiently computed

by squaring (1/β ′i)O and multiplying by 1/βi+1. �

Our next algorithm produces a compact representation of a generator of an ideal.
It calls Close (Algorithm 4.8), which calls Double (Algorithm 4.10); we will post-
pone the description of these algorithms, and the proofs of their correctness, until
after the proof that Algorithm 4.6 is correct.

Algorithm 4.6 (Compact representation).

Input: A vector v ∈ Zn and an ideal A such that v = val∞(α) and A = αO for
some α ∈ K .

Output: A compact representation of such an α.

1. Call Reduce(A, 0) to get a reduced ideal (1/γ)A and element γ ∈ K .

2. Let (β1, . . . , β`)= Close(O, val∞(γ /α)).

3. Output (γ, (β1, . . . , β`)).

Lemma 4.7. Algorithm 4.6 returns a compact representation of α ∈ K in time
polynomial in log q , d , dg N (α), and log(‖val∞(α)‖∞).

Proof. Proposition 3.5 and Remark 3.8 show that the element γ in Step 1 can be
computed with Algorithm 3.4 in time polynomial in d , log q , and dg N (α). There-
fore the size of γ is bounded by the same amount. Also, γ is a minimum of A= αO,
so β := γ /α is a minimum of O. By Corollary 4.13 below, Close(O, val∞(γ /α))
returns the BMR (β1, . . . , β`) of the minimum β = γ /α of O (and not just the
BMR of a minimum close to γ /α). Hence the algorithm computes the compact
representation (γ, (β1, . . . , β`)) of α = γ /β.

We have already noted that Step 1 takes time polynomial in d , log q , and dg N (α).
In Step 2, Algorithm Close is called, which executes `= log(‖val∞(γ /α)‖∞)+ 1
calls of Algorithm Double. Therefore it suffices to show that Double takes time
polynomial in d , log q , and dg N (α).

Each call of Double calls Reduce once on input of the form (B, bue); here B is
the square of a reduced ideal, u is a vector in Qk for some k ≤ `, with ` as above,
and where bue denotes the nearest integer vector to u. The ideal B is the square of
a reduced ideal, and so is small. On the other hand, u is obtained from doubling a
vector t − val∞(µ) with ‖t − val∞(µ)‖1 ≤ n+ g, so ‖u‖1 ≤ 2n+ 2g. Rounding
u to bue adds at most k/2 to the 1-norm, and k ≤ n, so ‖bue‖1 ≤ 5n/2+ 2g. By
Proposition 3.5, we find that each call of Reduce takes time polynomial in d , log q ,
dg N (α), as we were to show. �

348 KIRSTEN EISENTRÄGER AND SEAN HALLGREN

Algorithm 4.8 (Close).

Input: A reduced ideal A and a vector s ∈Qn .

Output: A BMR (β1, . . . , β`) of a minimum β ∈ A which is close to s, where
`= log(‖s‖∞)+ 1.

1. Let β0 = 1, `= log(‖s‖∞)+ 1 and t = s/2`.

2. For k from 1 to `

(a) Let (β1, . . . , βk) := Double(A, t, (β0, β1, . . . , βk−1)).
(b) Let t := 2t .

3. Return (β1, . . . , β`).

Proposition 4.9. Algorithm 4.8 is correct.

Proof. This follows from Proposition 4.11, together with the fact that in Step 1 of
the algorithm β0 = 1 is a minimum of A which is close to t = s/2`. �

Algorithm 4.10 (Double).

Input: A reduced ideal A, a vector t ∈ Qn , and a BMR (β1, . . . , βk−1) of a
minimum β of A which is close to t .

Output: A BMR (β1, . . . , βk−1, βk) of a minimum of A which is close to 2t ,
where βk is a minimum of (1/β2)A that has size polynomial in d, log q,
ht(div A).

1. Let B := (1/β2)A and u := 2t − val∞(β2).

2. Reduce (B, bue) to get a minimum βk of B that is close to u. (Here bue denotes
the integer vector closest to u.)

3. Return (β1, . . . , βk−1, βk). (This is a BMR of β2
·βk .)

Proposition 4.11. Algorithm 4.10 is correct.

Proof. First we show that there exists a minimum βk of B such that

‖val∞(βk)− u‖1 ≤ n/2+ g.

When we reduce the pair (B, bue) we get a pair

((1/βk)B, bue− val∞(βk)) ∈ Rep f ∗(B).

Let t = (t1, . . . , tn)= bue− val∞(βk). By Proposition 3.3, we have

n∑
i=1

ti deg pi ≤ g,

THE UNIT GROUP, THE CLASS GROUP, AND COMPACT REPRESENTATIONS 349

where g is the genus of the function field K . The difference between the `1-norms
of u and bue is at most n/2, so val∞(βk)− u has `1-norm bounded by n/2+ g.
Thus there exists a minimum βk of B that is close to u = 2t − val∞(β2), and this
minimum is computed in Step 3 of Double. Moreover, by Proposition 3.5, the size
of the minimum βk is polynomial in d, log q, ht(div(B)), and ‖u‖∞. Then, since
βk is close to 2t − val∞(β2), we have that β2βk is close to 2t , because

‖2t − val∞(β2βk)‖1 = ‖(2t − (val∞(β2))− val∞(βk)‖1. �

In the next proposition we show that if there is a minimum of A whose valuation
vector equals 2t , then Double returns a BMR of this minimum.

Proposition 4.12. Let A be a reduced ideal. Suppose there is a minimum µ of A
such that val∞(µ) = 2t . Then Double(A, t, β = (β, . . . , βk−1)) returns the BMR
(β1, . . . , βk) of this minimum; that is, µ= β2βk .

Proof. In Step 3 of Double the algorithm reduces the pair ((1/β2)A, 2t−val∞(β2)),
where β is the given minimum of A which is close to t . Since 2t = val∞(µ), we see
that 2t has integer coordinates, so it is not necessary to round u = 2t − val∞(β2).

After reducing ((1/β2)A, 2t − v(β2)) we obtain an element

((1/(βkβ
2))A, 2t − val∞(β2)− val∞(βk))

of Rep f ∗(O), where βk is a minimum of (1/β2)A. Since reduction produces a
unique element in Rep f ∗(O) and elements of Rep f ∗(O) have unique representatives,
this implies that βk is uniquely determined (up to multiplication by an element of
F∗q). Since µ is a minimum of A, we have ((1/µ)A, 0) ∈ Rep f ∗(O). We also have
that ν := µ/(β2) is a minimum of (1/β2)A. Then(

(1/ν)(1/β2)A, 2t − val∞(β2)− val∞(ν)
)
= ((1/µ)A, 0) ∈ Rep f ∗(O).

Hence we must have βk = µ/β
2; that is, Double returns a BMR of µ= βkβ

2. �

Corollary 4.13. If the input in Close (Algorithm 4.8) is a reduced ideal A and a
vector s ∈Qn such that s = val∞(µ) for a minimum µ of A, then Close outputs a
BMR of µ.

Proof. At the last step of the for loop in Step 2 of Close, we have a BMR of a
minimum β of A that is close to s/2, and the last call of Double produces a BMR
of a minimum β ′ of A that is close to s. By Proposition 4.12, Double outputs a
BMR of µ, so Algorithm Close returns a BMR of µ with s = val∞(µ). �

Corollary 4.14. The principal ideal problem is in NP.

Proof. Given a function field and an ideal I of O represented in Hermite normal
form (HNF), if the ideal is principal, then the proof is a compact representation

350 KIRSTEN EISENTRÄGER AND SEAN HALLGREN

B = (γ, (β1, . . . , β`)) for α, where I = αO. By Definition 4.3, the compact repre-
sentation B has size bounded by log(‖val∞(α)‖∞+g) and poly(log q, d, dg N (α)).
The field parameters are log q, d, and g. By Remark 3.8, being polynomial in
dg(N (α)) is the same as being polynomial in ht(div(A)), which is the size of the
ideal A = αO. Propositions 3.3 and 3.5 tell us that ‖log val∞(α)‖∞ is bounded.

The verifier must efficiently test whether A = (γ /β)O, where β =
∏
β2n−i

i . The
verifier can efficiently compute the ideal as follows. By Claim 4.5, (1/β)O can be
efficiently computed. Multiplication by γ is efficient. Finally, comparing the HNF
of A and (γ /β)O is efficient since the representation of an ideal is unique. �

5. Quantum algorithms for the unit group, the principal ideal problem, and
the class group

In this section we give efficient quantum algorithms for computing the unit group,
solving the principal ideal problem and computing the class group. Recall from
Section 3 that for the unit group and the principal ideal problem this means the
objects are computed in the val∞ embedding, and that compact representations
can then be computed.

The basic approach is to show that each of these problems reduces to an instance
of the abelian hidden subgroup problem (HSP), which is known to have an efficient
quantum algorithm [10]. The class group case is slightly more general since the
HSP instances will take values that are quantum states.

Theorem 5.1. There is a polynomial-time quantum algorithm for computing the
unit group of a function field.

Proof. A hidden subgroup problem for the unit group can be defined by the function
g : Zn

→ Rep f ∗(O) defined as g(e) = Reduce(O, e). Here Reduce(O, e) is the
element of Rep f ∗(O) that is computed by Algorithm 3.4; it is polynomial-time
computable by Proposition 3.5. By Remark 3.6,

Reduce(O, e)= Reduce(O, e+ v)

for every v ∈3, so the function g is constant on cosets. Therefore g is also defined
on Zn/3, and it gives a bijection between Zn/3 and Rep f ∗(O), so it is also distinct
on different cosets. Using the HSP instance g, a quantum algorithm can compute a
basis for 3 efficiently. Compact representations can then be computed if desired.

�

In the decision version of the principal ideal problem, an ideal I of O is given
in HNF and the problem is to decide if it is principal. If it is principal, then the
search version of the problem is to compute a generator; that is, to compute an
α such that I = αO. Since generators may take an exponential number of bits to

THE UNIT GROUP, THE CLASS GROUP, AND COMPACT REPRESENTATIONS 351

represent in general, we only require computing val∞(α). Knowing val∞(α) and
αO determines α up to multiplication by an element of k∗. So given an arbitrary
ideal I that is given to us in HNF, the strategy is to solve the search problem and
compute a candidate value for val∞(α), and then to test whether I = αO to see if
the ideal is principal or not. A compact representation of α can then be computed
from val∞(α) and I using Algorithm 4.6.

Theorem 5.2. There is a polynomial-time quantum algorithm for the principal
ideal problem in a function field.

Proof. Recall that for a vector v ∈ Zn , calling Algorithm 3.4 on (O, v) results in a
pair (Iv, fv) ∈ Rep f ∗(O). Here Iv is a reduced ideal and fv is a vector such that fv
has positive coordinates. If (1/µ)O= Iv then val∞(1/µ)+ fv = v by Remark 3.6.

To solve the principal ideal problem we do the following: Given any ideal I we
first call Algorithm 3.4 on (I, 0) to get a reduced ideal Iv . The reduction algorithm
also computes γ such that (1/γ)I = Iv. Hence it suffices to solve the principal
ideal problem for reduced ideals. If Iv = (1/µ)O is reduced, then Iv represents
the point v +3 ∈ Zn/3 with v = val∞(µ). By the above discussion, solving
the principal ideal problem means computing v. First, by Theorem 5.1, a basis B
of the unit group (under the embedding val∞) can be computed efficiently with a
quantum algorithm. A hidden subgroup problem can be set up as follows. By
abuse of notation we denote by Zn/B the quotient of Zn by the lattice gener-
ated by the elements in B. Let G = ZM × Zn/B, where M = |Zn/B|. Define
h : G→ Rep f ∗(K)=

⋃
A Rep f ∗(A) by the following algorithm: On input (a, b),

use the composition operation in Section 3C and repeated doubling to compute a
times the group element (this does reductions along the way, giving an element
in Rep f ∗(K)); then compose the result with (O,−b) and reduce. When the ideal
I is principal, we have h(a, b) = (Iav−b, fav−b). The hidden subgroup in this
case is H = 〈(1, v)〉, and h(H) = (O, 0). A set of coset representatives for H is
{(0, w) : w ∈ Zn/B}. Then h((0, w)+ n(1, v))= h(n, w+ nv)= (I−w, f−w), and
so the different values of w correspond to the set of elements in Rep f ∗(O). So h is
constant on cosets and distinct on different cosets. The function h can be computed
efficiently using a small modification of Close (Algorithm 4.8). Therefore there is
an efficient quantum algorithm for finding generators for H . Given an element
(n, nv) ∈ ZM ×Zn/B of H , it is easy to compute v. �

Theorem 5.3. There is a polynomial-time quantum algorithm for computing the
ideal class group of a function field.

Proof. To compute the class group we also reduce to an abelian hidden sub-
group problem where the function takes quantum states as values. Since it is not
known how to compute unique representatives in the class group we instead create
quantum states to represent each element, as a superposition over all elements of

352 KIRSTEN EISENTRÄGER AND SEAN HALLGREN

Rep f ∗(J) for the ideal class of J . Let g1, . . . , gm be a set of generators for Cl(O);
Appendix A shows how to compute such a set. For an ideal J , let

|φJ 〉 =
∑

(I,v)∈Rep f ∗(J)

|I, v〉.

Define
f : Zm

→ C|Pic0(K)|

by f (e1, . . . , em)=|φJ 〉, where J is the ideal resulting from Reduce(ge1
1 · · · g

em
m , 0).

The function f can be efficiently evaluated using the algorithm for the principal
ideal problem as follows. Given |e1, . . . , em〉, compute |e1, . . . , em, J 〉, where J
is the ideal resulting from Reduce(ge1

1 · · · g
em
m , 0). The ideal in the last register,

call it J , is now used to create the superposition over reduced ideals. Create∑
v∈Zn/B |J, v〉, then

∑
v∈Zn/B |J, v, (Jv, fv)〉 where (Jv, fv) is the result of calling

Reduce(J, v). Next use the principal ideal algorithm on J · J−1
v , which outputs

v, to create
∑

v∈Zn/B |J, v, (Jv, fv), v〉. Next uncompute v in the second register
using the fourth, then uncompute the fourth register by running the principal ideal
algorithm backwards. Finally, uncompute J using e1, . . . , em . �

Acknowledgments

This work was supported in part by the National Security Agency (NSA) under
Army Research Office (ARO) contract number W911NF-08-1-0298. The first au-
thor was partially supported by National Science Foundation grant DMS-1056703
and a Sloan Research Fellowship. The second author was partially supported by
National Science Foundation grant CCF-0747274.

Appendix A. Computing generators for Cl(O)

As usual, let K be an algebraic function field over a finite field of constants k = Fq .
As discussed in Section 2, when S = {p1, . . . , pn+1} is the set of places at infinity
and deg pn+1 = 1, we have a short exact sequence

0−→ Ker−→ Pic0(K)−→ Cl(O)→ 1

where the map from Pic0(K)→ Cl(O) is given as∑
p∈PK

npp 7−→
∏

p∈PK−S

(p∩O)−np .

Given a function field K as above, there is a smooth projective geometrically
irreducible curve C whose function field is K . Let g denote the genus of this curve.

In [28] Kedlaya proved that for q with q1/2 > 16g there exists a randomized
algorithm that produces a generating set for Pic0(K) in time polynomial in g and

THE UNIT GROUP, THE CLASS GROUP, AND COMPACT REPRESENTATIONS 353

log q. The genus of the curve C does not change if we increase the size of the
base field k. Hence by enlarging the constant field, if necessary, we may assume
that q1/2 > 16g. From the exact sequence above it follows that the image of the
generating set for Pic0(K) under the map described above gives a generating set
of Cl(O).

Appendix B. Computing Riemann-Roch spaces

In this section we analyze the complexity of computing the Riemann-Roch space
L(D) := { f ∈ K : div(f)+ D ≥ 0} ∪ {0}. The input to the problem is a function
field K and a divisor

D =
(

A,
n+1∑
i=1

tipi

)
of K . The fractional ideal A of O is given in HNF relative to an O-basis. The
second part of D is given by a set of integers {ti : 1≤ i ≤ n+ 1} that determine the
multiplicity of the infinite places, that is, the places of S = {p1, . . . , pn+1}, in D.

We follow Hess’s [26] algorithm to compute the Riemann-Roch space. In [26]
Hess does not include any proofs for the complexity of his algorithm, so in this
section we show that the Riemann-Roch space L(D) can be computed in time poly-
nomial in d, log q and ht(D). (For the definition of ht(D) see Section 2.) Hess’s
algorithm is a relatively simple, self-contained algorithm. We also investigate more
closely the complexity of computing o∞-bases of the ideals we are working with.

The main idea in [26] is that the Riemann-Roch space can be computed as the
intersection of two ideals that come from the divisor D, where the two ideals are
in the rings O and O∞.

First we show that we can compute an o∞-basis for O∞ in polynomial time.

Proposition B.1 ([15], Proposition 4.13). Let R ⊂ S be commutative rings with
identity and let U be a multiplicatively closed subset of R. If S′ is the integral
closure of R in S, then S′[U−1

] is the integral closure of R[U−1
] in S[U−1

].

Lemma B.2. An o∞-basis for O∞ is computable in time polynomial in d and log q.

Proof. By [11, Theorem 1] applied to k[1/x], we can compute a basis β1, . . . , βd

of the integral closure of k[1/x] in K . By Proposition B.1, taking integral closures
commutes with localization, so when we apply the proposition to the rings R =
k[1/x] and S= K , with U being the complement of the prime ideal (1/x) of R, we
find that o∞ = k[1/x][U−1

]. Let S′ be the integral closure of k[1/x] in K . Then
O∞ = S′[U−1

], which implies that β1, . . . , βd is an o∞-basis for O∞. �

Lemma B.3. Let A be a fractional ideal of O given by a k[x]-basis, and let B be
a fractional ideal of O∞ given by an o∞-basis. There exist bases a1, . . . , ad of A
and b1, . . . , bd of B and uniquely determined integers λi such that x−λi bi = ai .

354 KIRSTEN EISENTRÄGER AND SEAN HALLGREN

Proof. Let a′1, . . . , a′d ∈ K be a k[x]-basis of A and b′1, . . . , b′d ∈ K a o∞-basis of
B. Both of these are bases for K as a k(x)-vector space. Let M ∈ k(x)d×d be such
that

(a′1, . . . , a′d)= (b
′

1, . . . , b′d)M.

By [26, Corollary 4.3] there exists a unimodular T1 ∈ od×d
∞
⊂ k[[x−1

]]
d×d and a

unimodular T2 ∈ k[x]d×d such that T1 MT2 = (x−λ j δi j)i j .
Let (a1, . . . , ad)= (a′1, . . . , a′d)T2 and (b1, . . . , bd)= (b′1, . . . , b′d)T

−1
1 . Then

(b1, . . . , bn)T1 MT2 = (b′1, . . . , b′d)MT2 = (a′1, . . . , a′d)T2 = (a1, . . . , ad). �

Lemma B.4. If a1, . . . , ad and b1, . . . , bd are bases as in Lemma B.3, then A∩ B
has k-basis {x j ai : 1≤ i ≤ d, 0≤ j ≤ λ j }.

Proof. Assume λ≥ 0. Because x ∈ O, the elements x j ai lie in A for j ≥ 0, so all
we have to show is that x j ai ∈ B if and only if 0≤ j ≤ λ. We have ai = x−λi bi ∈ B
since 1/x ∈ o∞, B is an o∞-module and λi ≥ 0. Similarly, x j ai = x j−λi bi ∈ B if
and only if j − λi ≤ 0, that is, if and only if j ≤ λi . But x j ai ∈ A if and only if
j ≥ 0, so x j ai ∈ A∩ B for 0≤ j ≤ λi .

To see that this set forms a k-basis note that A∩ B =
⋃d

i=1(A∩ B∩k(x)ai), and
a k-basis for A∩ B is the union of the k-bases for A∩ B ∩ k(x)ai .

But for i with λi ≥ 0 we have A∩ B ∩ k(x)ai = A∩ B ∩ ai k[x], so it suffices to
determine which monomials (x j)ai are in this intersection. By the above argument
the only monomials in this intersection are ai , xai , . . . , xλi ai , and these elements
are clearly linearly independent over k, so they form a k-basis for A∩ B ∩ k(x)ai

(for i with λi ≥ 0). �

Lemma B.5. The elements a1, . . . , ad and the integers λ1, . . . , λd above can be
computed in polynomial time.

Proof. We will first show that the matrices M and T2 from the proof of Lemma B.3
can be computed in polynomial time. The lemma then follows from the fact that
(a1, . . . , ad)= (a′1, . . . , a′d)T2, and that the maximum degree of elements of the j-
th column of MT2 is equal to −λ j ([19, p. 15], [26, Corollary 4.3]). When elements
in K are specified as polynomials in y, that is, as

∑n
i=0 ai yi for coefficients ai ∈

k(x), then writing a element α ∈ K in terms of a basis ω1, . . . , ωn is a vector space
transformation, with vector space generators 1, y, y2, . . . , yn−1. The columns of
the matrix A ∈ k(x)n×n contain the coefficients of the polynomials ω1, . . . , ωn .
Then solving the equation Az = b over k(x) for z gives the coefficients of b in
terms of the basis. For M , this can be done for each column.

The matrix T2 is computed using Paulus’s polynomial-time algorithm [32] by
keeping track of the operations during the basis reduction. �

THE UNIT GROUP, THE CLASS GROUP, AND COMPACT REPRESENTATIONS 355

Algorithm B.6 (Ideal intersection for ideals in two different rings).

Input: A function field K ; an element x ∈ K ; a k[x]-basis ω1, . . . , ωd of O; a
k[x]-basis a′1, . . . , a′d of the fractional ideal A of O; an o∞-basis v1, . . . , vd

of O∞; and an o∞-basis b′1, . . . , b′d of the fractional ideal B of O∞.

Output: Elements a1, . . . , ad of K and integers λ1, . . . , λd such that {x j ai : 1 ≤
i ≤ d, 0≤ j ≤ λi } is k-basis of the k-vector space A∩ B.

1. Compute a matrix M such that (b′1, . . . , b′d)M = (a
′

1, . . . , a′d).

2. Do a basis reduction on M . Keep track of the operations and let T2 ∈ Gld(k[x])
be the transformation. Let −λi be the maximum degree in the i-th column of
the reduced matrix MT2.

3. Let (a1, . . . , ad)= (a′1, . . . , a′d)T2.

4. Return (a1, . . . , ad; λ1, . . . , λd).

Proposition B.7. Algorithm B.6 is correct, and runs in polynomial time.

Proof. The matrix M computed in Step 1 of the algorithm is exactly the matrix
from Lemma B.3 that leads to the special basis for A; that is, (a1, . . . , ad) =

(a′1, . . . , a′d)T2. By Lemma B.4 and its proof, if −λ j is the maximum column
degree in the j-th column of MT2, then {x j ai : 1≤ i ≤ d, 0≤ j ≤ λi } is a k-basis
for the intersection A∩ B. By Lemma B.5, the ai and the λi can be computed in
polynomial time. �

Algorithm B.8 (Riemann-Roch space).

Input: A function field K ; a k[x]-basis ω1, . . . , ωd of O; and a divisor D =
(A,

∑n+1
i=1 tipi), where A is a fractional ideal of O given in a k[x]-basis.

Output: Elements a1, . . . , ad of K and integers λ1, . . . , λd such that {x j ai : 1 ≤
i ≤ d, 0≤ j ≤ λi } is a basis of the Riemann-Roch space L(D).

1. Compute a k[x]-basis of A−1.

2. Compute an o∞-basis of B :=5n+1
i=1 (pi ∩O∞)

ti ⊆ O∞.

3. Compute an o∞-basis of B−1.

4. Use Algorithm B.6 to compute A−1
∩ B−1.

5. Return the (a1, . . . , ad; λ1, . . . , λd) computed by Algorithm B.6.

Theorem B.9. Algorithm B.8 computes the Riemann-Roch space L(D) in time
polynomial in d, log q , and ht(D).

356 KIRSTEN EISENTRÄGER AND SEAN HALLGREN

Proof. Computing the inverse of a fractional ideal A of O can be done in time
polynomial in log q , d , and ht(div(A)) [14, Proposition 2.69(b)]. The ideals pi∩O∞
in Step 2 are the prime ideals of O∞ corresponding to the places in S. These can
be computed in polynomial time with an algorithm similar to the one given for
number fields in [16]. Hence we can compute an o∞-basis for the ideal B in
Step 2 in polynomial time. The inverse of an ideal B in this ring can be computed
efficiently as well. Finally, by Proposition B.7 above, a basis for the k-vector space
A−1
∩ B−1 can be computed in polynomial time. �

References

[1] ACM (ed.), STOC’05: Proceedings of the 37th Annual ACM Symposium on Theory of Com-
puting, held in Baltimore, MD, May 22–24, 2005, New York, Association for Computing
Machinery, 2005. MR 2006f:68006

[2] ACM (ed.), STOC’07—Proceedings of the 39th Annual ACM Symposium on Theory of Com-
puting, held in San Diego, CA, June 11–13, 2007, New York, Association for Computing Ma-
chinery, 2007. MR 2009a:68002

[3] ACM (ed.), STOC’09—Proceedings of the 2009 ACM International Symposium on Theory of
Computing, held in Bethesda, MD, May 31–June 2, 2009, New York, Association for Comput-
ing Machinery, 2009. MR 2012d:68003

[4] Leonard M. Adleman, Jonathan DeMarrais, and Ming-Deh Huang, A subexponential algorithm
for discrete logarithms over the rational subgroup of the Jacobians of large genus hyperelliptic
curves over finite fields, in Adleman and Huang [5], 1994, pp. 28–40. MR 96b:11078

[5] Leonard M. Adleman and Ming-Deh Huang (eds.), Algorithmic number theory: Proceedings of
the First International Symposium (ANTS-I) held at Cornell University, Ithaca, New York, May
6–9, 1994, Lecture Notes in Computer Science, no. 877, Berlin, Springer, 1994. MR 95j:11119

[6] G. Brassard (ed.), Advances in cryptology—CRYPTO ’89: Proceedings of the Conference on
the Theory and Applications of Cryptology held at the University of California, Santa Bar-
bara, California, August 20–24, 1989, Lecture Notes in Computer Science, no. 435, New York,
Springer, 1990. MR 91b:94002

[7] Johannes A. Buchmann and Hugh C. Williams, A key exchange system based on real quadratic
fields (extended abstract), in Brassard [6], 1990, pp. 335–343. MR 91f:94014

[8] J. P. Buhler (ed.), Algorithmic number theory: Proceedings of the 3rd International Symposium
(ANTS-III) held at Reed College, Portland, OR, June 21–25, 1998, Lecture Notes in Computer
Science, no. 1423, Berlin, Springer, 1998. MR 2000g:11002

[9] Moses Charikar (ed.), Proceedings of the Twenty-First Annual ACM-SIAM Symposium on
Discrete Algorithms held in Austin, TX, January 17–19, 2010, Philadelphia, PA, Society for
Industrial and Applied Mathematics, 2010. MR 2012f:68008

[10] Kevin K. H. Cheung and Michele Mosca, Decomposing finite abelian groups, Quantum Inf.
Comput. 1 (2001), no. 3, 26–32. MR 2003e:81030

[11] A. L. Chistov, The complexity of the construction of the ring of integers of a global field, Dokl.
Akad. Nauk SSSR 306 (1989), no. 5, 1063–1067. MR 90g:11170

[12] Henri Cohen (ed.), Algorithmic number theory: Proceedings of the 2nd International Sympo-
sium (ANTS-II) held at the Université Bordeaux I, Talence, May 18–23, 1996, Lecture Notes in
Computer Science, no. 1122, Berlin, Springer, 1996. MR 97k:11001

THE UNIT GROUP, THE CLASS GROUP, AND COMPACT REPRESENTATIONS 357

[13] Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, Kim Nguyen,
and Frederik Vercauteren (eds.), Handbook of elliptic and hyperelliptic curve cryptography,
Chapman & Hall/CRC, Boca Raton, FL, 2006. MR 2007f:14020

[14] Claus Diem, On arithmetic and the discrete logarithm problem in class groups of curves, Ha-
bilitationsschrift, Universität Leipzig, 2008. http://www.math.uni-leipzig.de/~diem/preprints/
habil.pdf

[15] David Eisenbud, Commutative algebra, with a view toward algebraic geometry, Graduate Texts
in Mathematics, no. 150, Springer, New York, 1995. MR 97a:13001

[16] Kirsten Eisenträger and Sean Hallgren, Algorithms for ray class groups and Hilbert class fields,
in Charikar [9], 2010, pp. 471–483. MR 2012i:11103

[17] Felix Fontein, The infrastructure of a global field of arbitrary unit rank, Math. Comp. 80 (2011),
no. 276, 2325–2357. MR 2012f:11243

[18] Felix Fontein and Pawel Wocjan, Quantum algorithm for computing the period lattice of an
infrastructure, 2011. arXiv 1111.1348 [quant-ph]

[19] Felix Wolfgang Fontein, The infrastructure of a global field and baby step-giant step algorithms,
Ph.D. thesis, University of Zurich, 2009. http://dx.doi.org/10.5167/uzh-24993

[20] Arnaldo García and Henning Stichtenoth, A tower of Artin-Schreier extensions of function fields
attaining the Drinfel′d-Vlăduţ bound, Invent. Math. 121 (1995), no. 1, 211–222. MR 96d:11074

[21] Henri Gilbert (ed.), Advances in cryptology—EUROCRYPT 2010: Proceedings of the 29th
Annual International Conference on the Theory and Applications of Cryptographic Techniques
held on the French Riviera, May 30–June 3, 2010, Lecture Notes in Computer Science, no.
6110, Berlin, Springer, 2010. MR 2011g:94001

[22] V. D. Goppa, Geometry and codes, Mathematics and its Applications (Soviet Series), no. 24,
Kluwer Academic Publishers Group, Dordrecht, 1988. MR 91a:14013

[23] Venkatesan Guruswami, Constructions of codes from number fields, IEEE Trans. Inform. The-
ory 49 (2003), no. 3, 594–603. MR 2004g:94093

[24] , Artin automorphisms, cyclotomic function fields, and folded list-decodable codes (ex-
tended abstract), in ACM [3], 2009, pp. 23–32. MR 2780046

[25] Sean Hallgren, Fast quantum algorithms for computing the unit group and class group of a
number field, in ACM [1], 2005, pp. 468–474. MR 2006g:81032

[26] F. Hess, Computing Riemann-Roch spaces in algebraic function fields and related topics, J.
Symbolic Comput. 33 (2002), no. 4, 425–445. MR 2003j:14032

[27] Ming-Deh Huang and Doug Ierardi, Efficient algorithms for the Riemann-Roch problem and
for addition in the Jacobian of a curve, J. Symbolic Comput. 18 (1994), no. 6, 519–539.
MR 96h:14077

[28] Kiran S. Kedlaya, Quantum computation of zeta functions of curves, Comput. Complexity 15
(2006), no. 1, 1–19. MR 2007b:14042

[29] A. K. Lenstra and H. W. Lenstra, Jr. (eds.), The development of the number field sieve, Lecture
Notes in Mathematics, no. 1554, Springer, Berlin, 1993. MR 96m:11116

[30] Vadim Lyubashevsky, Chris Peikert, and Oded Regev, On ideal lattices and learning with errors
over rings, in Gilbert [21], 2010, pp. 1–23. MR 2660480

[31] Volker Müller, Andreas Stein, and Christoph Thiel, Computing discrete logarithms in real qua-
dratic congruence function fields of large genus, Math. Comp. 68 (1999), no. 226, 807–822.
MR 99i:11119

358 KIRSTEN EISENTRÄGER AND SEAN HALLGREN

[32] Sachar Paulus, Lattice basis reduction in function fields, in Buhler [8], 1998, pp. 567–575. MR
2000i:11193

[33] Chris Peikert and Alon Rosen, Lattices that admit logarithmic worst-case to average-case con-
nection factors, in ACM [2], 2007, pp. 478–487. MR 2010e:68099

[34] Michael Rosen, Number theory in function fields, Graduate Texts in Mathematics, no. 210,
Springer, New York, 2002. MR 2003d:11171

[35] Pradeep Sarvepalli and Pawel Wocjan, Quantum algorithms for one-dimensional infrastruc-
tures, 2011. arXiv 1106.6347 [quant-ph]

[36] R. Scheidler, Compact representation in real quadratic congruence function fields, in Cohen
[12], 1996, pp. 323–336. MR 98c:11126

[37] , Decision problems in quadratic function fields of high genus, J. Complexity 16 (2000),
no. 2, 411–423. MR 2001e:11112

[38] Arthur Schmidt and Ulrich Vollmer, Polynomial time quantum algorithm for the computation
of the unit group of a number field (extended abstract), in ACM [1], 2005, pp. 475–480.
MR 2006g:81038

[39] René Schoof, Algebraic curves over F2 with many rational points, J. Number Theory 41 (1992),
no. 1, 6–14. MR 93h:11062

[40] Nigel P. Smart, Reduced ideals in function fields, Tech. Report, HP Laboratories Bristol, 1998.
http://www.hpl.hp.com/techreports/98/HPL-98-201.html

[41] Henning Stichtenoth, Algebraic function fields and codes, 2nd ed., Graduate Texts in Mathe-
matics, no. 254, Springer, Berlin, 2009. MR 2010d:14034

[42] Christoph Thiel, On the complexity of some problems in algorithmic algebraic number theory,
Ph.D. thesis, Universität des Saarlandes, 1995. http://tinyurl.com/thiel-phd

[43] Emil J. Volcheck, Computing in the Jacobian of a plane algebraic curve, in Adleman and
Huang [5], 1994, pp. 221–233. MR 96a:14033

KIRSTEN EISENTRÄGER: eisentra@math.psu.edu
Department of Mathematics, Penn State University, University Park, PA 16802, United States

SEAN HALLGREN: hallgren@cse.psu.edu
Department of Computer Science and Engineering, Penn State University,
University Park, PA 16802, United States

msp

VOLUME EDITORS

Everett W. Howe
Center for Communications Research

4320 Westerra Court
San Diego, CA 92121-1969

United States

Kiran S. Kedlaya
Department of Mathematics

University of California, San Diego
9500 Gilman Drive #0112
La Jolla, CA 92093-0112

Front cover artwork based on a detail of
Chicano Legacy 40 Años ©2010 Mario Torero.

The contents of this work are copyrighted by MSP or the respective authors.
All rights reserved.

Electronic copies can be obtained free of charge from http://msp.org/obs/1
and printed copies can be ordered from MSP (contact@msp.org).

The Open Book Series is a trademark of Mathematical Sciences Publishers.

ISSN: 2329-9061 (print), 2329-907X (electronic)

ISBN: 978-1-935107-00-2 (print), 978-1-935107-01-9 (electronic)

First published 2013.

msp

MATHEMATICAL SCIENCES PUBLISHERS

798 Evans Hall #3840, c/o University of California, Berkeley CA 94720-3840

contact@msp.org http: //msp.org

http://msp.org/obs/1
mailto:contact@msp.org
mailto:contact@msp.org
http://msp.org

THE OPEN BOOK SERIES 1

Tenth Algorithmic Number Theory Symposium

The Algorithmic Number Theory Symposium (ANTS), held biennially since 1994, is the premier
international forum for research in computational number theory. ANTS is devoted to algorithmic
aspects of number theory, including elementary, algebraic, and analytic number theory, the
geometry of numbers, arithmetic algebraic geometry, the theory of finite fields, and cryptography.

This volume is the proceedings of the tenth ANTS meeting, held July 9–13, 2012, at the Univer-
sity of California, San Diego. It includes revised and edited versions of the 25 refereed papers
presented at the conference, together with extended abstracts of two of the five invited talks.

TABLE OF CONTENTS

1Deterministic elliptic curve primality proving for a special sequence of numbers — Alexander Abatzoglou,
Alice Silverberg, Andrew V. Sutherland, and Angela Wong

21Imaginary quadratic fields with isomorphic abelian Galois groups — Athanasios Angelakis and Peter
Stevenhagen

41Iterated Coleman integration for hyperelliptic curves — Jennifer S. Balakrishnan

63Finding ECM-friendly curves through a study of Galois properties — Razvan Bărbulescu, Joppe W. Bos, Cyril
Bouvier, Thorsten Kleinjung, and Peter L. Montgomery

87Two grumpy giants and a baby — Daniel J. Bernstein and Tanja Lange

113Improved techniques for computing the ideal class group and a system of fundamental units in number fields —
Jean-François Biasse and Claus Fieker

135Conditionally bounding analytic ranks of elliptic curves — Jonathan W. Bober

145A database of elliptic curves over Q(
√

5): a first report — Jonathan Bober, Alyson Deines, Ariah Klages-Mundt,
Benjamin LeVeque, R. Andrew Ohana, Ashwath Rabindranath, Paul Sharaba, and William Stein

167Finding simultaneous Diophantine approximations with prescribed quality — Wieb Bosma and Ionica Smeets

187Success and challenges in determining the rational points on curves — Nils Bruin

213Solving quadratic equations in dimension 5 or more without factoring — Pierre Castel

235Counting value sets: algorithm and complexity — Qi Cheng, Joshua E. Hill, and Daqing Wan

249Haberland’s formula and numerical computation of Petersson scalar products — Henri Cohen

271Approximate common divisors via lattices — Henry Cohn and Nadia Heninger

295Explicit descent in the Picard group of a cyclic cover of the projective line — Brendan Creutz

317Computing equations of curves with many points — Virgile Ducet and Claus Fieker

335Computing the unit group, class group, and compact representations in algebraic function fields — Kirsten
Eisenträger and Sean Hallgren

359The complex polynomials P(x) with Gal(P(x)− t)∼= M23 — Noam D. Elkies

369Experiments with the transcendental Brauer-Manin obstruction — Andreas-Stephan Elsenhans and Jörg Jahnel

395Explicit 5-descent on elliptic curves — Tom Fisher

413On the density of abelian surfaces with Tate-Shafarevich group of order five times a square — Stefan Keil and
Remke Kloosterman

437Improved CRT algorithm for class polynomials in genus 2 — Kristin E. Lauter and Damien Robert

463Fast computation of isomorphisms of hyperelliptic curves and explicit Galois descent — Reynald Lercier,
Christophe Ritzenthaler, and Jeroen Sijsling

487Elliptic factors in Jacobians of hyperelliptic curves with certain automorphism groups — Jennifer Paulhus

507Isogeny volcanoes — Andrew V. Sutherland

531On the evaluation of modular polynomials — Andrew V. Sutherland

557Constructing and tabulating dihedral function fields — Colin Weir, Renate Scheidler, and Everett W. Howe

A
N

T
S

X
:

Tenth
A

lgorithm
ic

N
um

ber
Theory

Sym
posium

H
ow

e,Kedlaya
O

B
S

1

	
	
	

