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We find the polynomials P 2 CŒX� of degree 23 such that the Galois group of
P.x/� t over C.t/ is the Mathieu group M23. This completes the computation
of polyomials P for which the Galois group of P.x/� t is among the exceptional
groups listed by Müller.

1. Introduction

For P 2 CŒx� of degree n > 0, define GP to be the Galois group of P.x/ � t
over C.t/. Since P.x/ � t is irreducible, GP is a transitive subgroup of the
symmetric group Sn. Generically1 GP is all of Sn, but it can be as small as
the cyclic or dihedral group for special choices such as P D xn or P D Tn.x/
(Chebyshev polynomial) respectively. If P decomposes as P.x/ D P1.P2.x//

with each deg.Pi / > 1, then GP permutes the proper subsets fx W P2.x/D ug of
the roots with P1.u/D t , and is therefore imprimitive. The converse implication
is shown in [8, Proposition 3.4]. Müller [12] determined all GP that can arise for
indecomposable polynomials: they are the symmetric and alternating groups, the
cyclic groups of prime order, the dihedral groups of order twice an odd prime, and
twelve exceptional permutation groups with nD 6; 7; : : : ; 23; 31, the last two for
the sporadic Mathieu group M23 and the linear group GL5.Z=2Z/.

The proof uses covering-space methods and Riemann’s existence theorem, and
thus does not yield explicit polynomials. But it is still a natural question to exhibit
all P that realize each possible group GP , except for the cases of An and Sn,

MSC2010: primary 12F12; secondary 20D08.
Keywords: Mathieu group M23, Galois groups, Chebotarev density theorem.

1In particular, GP D Sn if dP=dx has n � 1 distinct roots at which P takes distinct values;
equivalently, if disct .discx.P.x/� t //¤ 0. This sufficient (but far from necessary) condition was
already noted by Hilbert ([10], see also [15, §4.4]); the formulation in terms of the discriminant of
the discriminant is attributed to Davenport in [3, p. 422].
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which occur in “many, not reasonably classifiable types” [12]. Say P;Q 2 CŒx�

are equivalent if Q.x/ D L1.P.L2.x/// for some polynomials L1; L2 both of
degree 1; then GP DGQ. Up to this equivalence, the cyclic and dihedral groups
occur only for powers and Chebyshev polynomials respectively. Some of the ex-
ceptional groups were realized in [12], or earlier by Matzat [11]; most of the others
were realized by Cassou-Noguès and Couveignes [4],2 leaving only M23. Here we
find the polynomials P with GP ŠM23.

The main novelty here is not in the computation of P but in the proof that
GP ŠM23. The coefficients of P were computed using a known p-adic method for
finding polynomial identities by solving the equivalent system of nonlinear equa-
tions in the coefficients, though here the search for the initial approximation took
several CPU-days. The difficulty was that these equations cannot distinguish be-
tween polynomials with Galois group M23 and A23, and there are four M23-covers
but numerous A23-covers with the same cycle structure (with all the A23-covers
probably defined only over number fields of rather high degree). Once we found P
with coefficients in a quartic number field F , we quickly convinced ourselves that
GP must beM23 by factoring P.x/�t0 mod � for many primes � of F and choices
of t0 mod � at which P.x/�t0 has distinct roots: in each case the degrees of the fac-
tors matched one of the 12 cycle structures of elements of M23, out of the 632 that
arise in A23. Moreover, the fraction of t0 values that yield each cycle structure was
quite near to the fraction of elements of M23 with that cycle structure, as promised
by the Chebotarev density theorem for Galois extensions of function fields. (I later
learned from Mark Watkins that Samir Siksek had independently used much the
same technique to find P and gather overwhelming evidence that GP ŠM23.)

Still this did not amount to a proof that GP Š M23. However, if GP were
actually A23 then we would observe a very different distribution of cycle structures,
which would contradict the Chebotarev theorem once the residue field of � got large
enough. In our function-field setting such a calculation turns out to be feasible
thanks to Weil’s proof of the Riemann hypothesis for curves over finite fields. We
did this for a � whose residue field is prime of characteristic l D 108 C 7 (the
smallest 9-digit prime, which happens to lie under a degree-1 prime of F ). We
showed that the resulting distribution of cycle structures implies that GP is not
5-transitive, which soon yields GP ŠM23 as desired.

The factorization of 108 polynomials mod � was a somewhat extravagant com-
putation (two days of CPU time in gp [13]). This is not the only way to prove
that GP Š M23; for example, one could do it also by numerically lifting mon-
odromy generators to permutations of 23 preimages, as Granboulan did for the 24

2Michael Zieve had already obtained but not published polynomials for a few of these cases, with
groups PGL2.Z=7Z/ (nD 8), P�L2.F8/ (nD 9, both classes), and M11 (nD 11); he also calculated
that there are four M23 polynomials up to equivalence, but was not able to exhibit such a polynomial.
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preimages of an M24-cover [9]. Still our technique using Chebotarev plus Weil has
some advantages over the monodromy computation: while our computation took
rather long to run, it was very easy to code, whereas the monodromy calculation
would require some careful estimates to guarantee that the precision was sufficient
to obtain the correct permutations; and our technique works also for Galois groups
of extensions in positive characteristic. This approach also raises the theoretical
question of how large a residue field is necessary: perhaps it can be shown that the
counts over a field of size much smaller than 108 would have sufficed.

In the next section we exhibit F and P 2 F Œx� and give some details on its
calculation. In the following section we report on the results of our computation
mod �, use them to prove that GP ©A23, and deduce that a polynomial P1 satisfies
GP1
ŠM23 if and only if P1 is equivalent to the image of our P under one of the

four embeddings of F into C.

2. Computation of P

Suppose GP ŠM23. By [12], the map P W P1! P1 is branched above only three
points, with orders 23 (at t D 1), 2, and 4. The group M23 contains only one
conjugacy class of order 2 and one of order 4. The corresponding monodromy
generators 2 and 4 must have 24 of order 23. Up to conjugation in M23,
there are four such pairs .2; 4/, two for each of the two conjugacy classes of
elements of order 23 in M23, and in each case 2 and 4 generate M23. Since M23

is its own normalizer in S23, we conclude that there are four equivalence classes
of M23 polynomials, each defined over a number field F containing Q.

p
�23/

with degree 1 or 2. We eventually found that F is the dihedral quartic field of
discriminant 3 �233 generated by a root of g4Cg3C9g2�10gC8, which indeed
contains the square roots ˙.2g3C 4g2C 16g� 7/=3 of �23.

The permutations 2 and 4 of 23 objects have cycle structures 1728 and 132244.
Thus P is equivalent to a monic polynomial with two double and four quadruple
roots. Then, if � is the value of P at its finite critical points other than zeros, we
can write

P D P 22 P3P
4
4 D P7P

2
8 C �; (1)

where the Pi (i D 2; 3; 4; 7; 8) are pairwise coprime monic polynomials of degree i ,
and � is a nonzero constant. It may seem that we have 10 coefficients to determine:
the 2C3C4 non-leading coefficients of P2; P3; P4, together with � . We can reduce
this to 8 variables using the remaining equivalences (translate x, and multiply x
by some nonzero � and divide each Pi by �i ). One further variable is eliminated
using a familiar3 differentiation trick: dP=dx has leading term 23x22 and is a

3The earliest published references I know of are [6; 2], but the trick must have been known and
used long before that.
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multiple of P2P
3
4 P8, so must equal 23P2P

3
4 P8; hence

P8 D
1

23

dP=dx

P2P
3
4

D
1

23

�
2P 0

2P3P4CP2P
0
3P4C 4P2P3P

0
4

�
: (2)

Still the remaining nonlinear equations are too complicated to solve directly by
techniques such as Gröbner bases, especially since they do not distinguish between
M23- and A23-covers.

Instead we use the following strategy. Suppose the solution is defined over a
number field F with a prime � of small residue field at which the cover P WP1!P1

has good reduction. We can then find our cover mod � by exhaustive search. An
arbitrary lift to the �-adic numbers is then an approximate solution, which can
be improved by a multivariate Newton iteration. Once we have the solution to
high enough �-adic precision, we can recognize it as an F -rational point by lattice
reduction, and verify that it satisfies the equations exactly.

For a general system of nonlinear equations we could not know in advance
which � satisfy the condition of good reduction. In our setting, we are seeking
a “Belyi map” (a cover of P1 ramified only above three points), so Beckmann’s
theorem [1] gives a sufficient condition: if the characteristic of the residue field of �
does not divide the order of the Galois group then the cover has good reduction
at � . But we do not know F in advance, and thus do not know which residue fields
arise. We therefore tried small prime fields Z=pZ in the hope that one would work.
But searches over .Z=pZ/7 became ever longer without finding the desired cover.
For example, a search mod 13 (the smallest prime not dividing jM23j) found only

P2 D x
2
� 3x� 6; P3 D x

4
� 4x� 4; P4 D x

4
C 5x2� 5x� 1

with � D 5; but the resulting P DP 22 P3P
4
4 cannot have Galois group M23 because

there are t0 ¤ 0; 5 for which the factorization of P � t0 mod 13 has degrees not
seen in any of the M23 cycle structures — for instance, P � 1 has an irreducible
factor of degree 19. In retrospect we know there is no M23 polynomial over Z=13Z,
because F has no prime of degree 1 above 13 (even though 13 does split in the
quadratic subfield Q.

p
�23/).

To bring larger p within reach, we applied the following refinement. For j � 0
and anyQ2CŒx�, denote by cj .Q/ the xj coefficient ofQ; for example ci .Pi /D 1
for each i D 2; 3; 4; 7; 8. For any monic P2; P3; P4, let R be the remainder
when P23 is divided by P 28 , where P23 and P8 are defined by (1) and (2). Then R
has degree deg.P 28 / � 1 D 15 generically, but must vanish at the desired solu-
tion. We noticed that if we hold all but c0.P4/ and c1.P4/ fixed then c15.R/ and
c14.R/ are polynomials of degree only 2 in c0.P4/ and of degree 3 in c1.P4/;
in fact, c15.R/ and c14.R/ have degrees 2 and 3 respectively in .c0.P4/; c1.P4//
together. We could have solved the simultaneous equations c15.R/D c14.R/D 0 in
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.c0.P4/; c1.P4//, reducing the search from O.p7/ to O.p5/ but with quite a large
O-constant. Instead we opted for the following strategy, which is still O.p7/ but
with a much smaller constant. Having fixed all but c0.P4/ and c1.P4/, compute R
at the 12 sample points with c0.P4/D 0; 1; 2 and c1.P4/D 0; 1; 2; 3, and then use
the fact that both c15.R/ and c14.R/ are quadratic in c0.P4/ and cubic in c1.P4/
to recursively evaluate them at all other choices of c0.P4/ and c1.P4/. If both
vanish, test whether deg.R/D 0. This way, instead of computing p2 polynomial
remainders we need on average only 13: twelve sample points, and one more for
the expected number of solutions of c15.R/D c14.R/D 0.

We implemented this search in gp (which we used also for the earlier O.p7/
method), and finally succeeded at p D 29. We assumed that c2.P3/ D 0, and
that c0.P3/ D c1.P3/ if both c0.P3/ and c0.P1/ are nonzero; every choice of
P2; P3; P4 with c0.P3/c1.P3/ ¤ 0 is equivalent to exactly one satisfying these
conditions. (One can also make a unique choice if c0.P3/D 0 or c1.P3/D 0, but
here this was not necessary.) The search took 46 CPU-hours, compressed to less
than five hours by running on 10 heads in parallel, which is an order of magnitude
smaller than the time to compute some 297 polynomial remainders. The result-
ing list of solutions contained two for which every P.x/� t0 has a factorization
consistent with GP ŠM23. One of these was

P2 D x
2
� x� 3; P3 D x

3
� 3x� 3; P4 D x

4
� 3x3� 11x2C 13xC 7

with � D 5. Lifting to Z=p128Z (while retaining the conditions c2.P3/ D 0 and
c0.P3/D c1.P3/) gave more than enough precision to identify all the coefficients
as elements of the quartic field F DQŒg�=.g4Cg3C 9g2� 10gC 8/.

These elements ofF are quite complicated because of the normalization c0.P3/D
c1.P3/. Once we have found one choice of P2; P3; P4 2 F Œx� that works, we can
find equivalent but simpler ones by removing this normalization and the spurious
bad reduction that it entails. One reasonably simple choice we found (dropping
also the condition that the Pi be monic) is as follows:

P2 D .8g
3
C 16g2� 20gC 20/x2� .7g3C 17g2� 7gC 76/x

� 13g3C 25g2� 107gC 596I

P3 D 8.31g
3
C 405g2� 459gC 333/x3C .941g3C 1303g2� 1853gC 1772/x

C 85g3� 385g2C 395g� 220I

P4 D 32.4g
3
� 69g2C 74g� 49/x4C 32.21g3C 53g2� 68gC 58/x3

� 8.97g3C 95g2� 145gC 148/x2C 8.41g3� 89g2�gC 140/x

� 123g3C 391g2� 93gC 3228:
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With this choice,

� D
238317

233
.47323g3� 1084897g2C 7751g� 711002/;

the last factor having norm 227323510.

3. Proof of Gal.P.x/� t/ŠM23

We chose the degree-1 prime � of F above the rational prime l D 108 C 7 at
which g � 36436770 mod l . We reduced P mod � to obtain a polynomial P
with coefficients in F� D Z=lZ, and factored P � t0 for each of the l � 2 values
of t0 mod l for which P � t0 has no repeated roots. In each case the degrees of
the irreducible factors, and thus the cycle structure of the action of Frobenius at
t D t0, agreed with the cycle structure of one or two of the conjugacy classes ofM23.
Table 1 lists the key information for each class or pair of classes c�M23, including
the difference between the expected and the actual number of occurrences of c’s
cycle structure. The agreement is quite close: the discrepancy never exceeds twice
the square root of the expected value.

In particular, because each of theM23 cycle structures occurs (and GP �A23 be-
cause discx.P.x/� t / is a square) we know that GP is a transitive subgroup of A23
containing elements of order p for each of the prime factors p D 2; 3; 5; 7; 11; 23

Occurrences

ATLAS label Cycle structure jcj=jM23j Expected Actual �

1A 123 1=jM23j 10 9 �1

2A 1728 1=2688 37202 37235 33

3A 1536 1=180 555556 556547 991

4A 132244 1=32 3125000 3123317 �1683

5A 1354 1=15 6666667 6665816 �851

6A 1 223262 1=12 8333334 8329354 �3980

7A, 7B 1273 2=14 14285715 14290600 4885

8A 1 2 4 82 1=8 12500001 12493007 �6994

11A, 11B 1 112 2=11 18181819 18185450 3631

14A, 14B 2 7 14 2=14 14285715 14289505 3790

15A, 15B 3 5 15 2=15 13333334 13331689 �1645

23A, 23B 23 2=23 8695653 8697476 1823

Table 1. Data on conjugacy classes. For each class or pair of classes c �M23,
we list the ATLAS label [5, p. 71], the cycle structure, the fraction jcj=jM23j,
the integer nearest to .jcj=jM23j/.l � 2/ (which is the expected number of occur-
rences of this cycle structure), the actual number of times it appeared, and the
difference between the actual and expected counts.
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of jM23j D 2
7 � 32 � 5 � 7 � 11 � 23 D 10200960. This shows that GP is either M23

or A23.
One could try various strategies for deducing GP © A23 from the counts in

Table 1. The following approach was the one that worked most easily. We shall
take C0 and C1 to be the projective t - and x-lines in the following general setup.

Suppose C1=C0 is a degree-n covering of curves over some finite field F�. Let zC
be the Galois closure, with Galois group G � Sn. Assume that G is k-transitive.
Let Gk be the stabilizer of a k-element set, so the action of Gk on that set gives a
surjective homomorphism Gk! Sk whose kernel is the k-point stabilizer; write
Ck D zC=Gk , so Ck=C0 is a cover of degree

�
n
k

�
. If the cover C1=C0 is given

by a polynomial Q of degree n, then with finitely many exceptions a point of Ck
corresponds to a degree-k factor of a specialization of Q.

LetNk be the number of F�-rational points of Ck . For an unramified F�-rational
point t0 on C0, let Nk.t0/ be the number of F�-rational points of Ck lying over t0.
We next express Nk.t0/ in terms of the Galois structure of the preimage of t0 in C1.
Let � be the Frobenius permutation of the preimage of t0 in C1.

Lemma. Let c1; c2; : : : ; cm (with
Pm
iD1 cm D n) be the cycle lengths of �. Then

Nk.t0/ is the Xk coefficient of the polynomial
Qm
iD1.1CX

ci /.

Proof. A k-element subset of the preimage of t0 yields a rational point of Ck if and
only if it is taken to itself by �; equivalently, if and only if it is the union of orbits
of �. Since these orbits have sizes ci , the expansion of

Qm
iD1.1CX

ci / yields
a sum of 2m monomials, with each monomial Xk corresponding to a k-element
subset. �

We now take C0 and C1 to be the t - and x-lines. Then G DGP by Beckmann’s
criterion [1] (since l is too large to be a factor of jGj even if G D A23). Using the
entries in Table 1, we find for each k D 1; 2; : : : ; 22 the sum of

Qm
iD1.1CX

ci /

over the l � 2 unramified points t0. The sum is invariant under k$ n� k, so we
need only tabulate up to k D 11. In each case we write

P
t0
Nk.t0/DAl �B with

A 2 Z minimizing jBj; the results are given in Table 2.
In each case Al �B is a lower bound for Nk , with the difference coming from

the counts above the three ramified points. If G acts k-transitively then Ck is an

k A B k A B k A B

1 1 10 5 2 10892 9 5 487620
2 1 6592 6 3 60120 10 5 742744
3 1 19784 7 4 109978 11 7 883854
4 1 2326 8 5 243430

Table 2. Integers A and B such that
P
t0
Nk.t0/D Al �B , with jBj minimal.
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irreducible curve, and then the Weil bound gives jNk � .l C 1/j � 2l1=2g.Ck/.
Table 2 suggests that this might happen for k � 4 but not for k D 5 (and indeed C5
has two components, one for each of the orbits of the action of M23 on 5-element
subsets). We next prove that G is not 5-transitive by bounding g.C5/. If GP DA23
then Ck has genus at most

1C
1

2

�
1�

1

2
�
1

4
�
1

23

�
ŒCk W C0�D 1C

1

2

19

92

�
23

k

�
by the Riemann-Hurwitz formula. For k D 5 this gives 27805=8, so g.C5/ < 3476.
Therefore

jN5� .l C 1/j< 2l
1=2
� 3476 < 7 � 107: (3)

But the k D 5 row of Table 2 gives

N5� .l C 1/� l � 10893 > 9 � 10
7; (4)

even without including the preimages of the ramified points. The conflict between
inequalities (3) and (4) refutes the hypothesis that GP D A23 and completes the
proof that GP ŠM23. �
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