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Explicit 5-descent on elliptic curves

Tom Fisher

We compute equations for genus-one curves representing nontrivial elements of
order 5 in the Tate-Shafarevich group of an elliptic curve. We explain how to
write the equations in terms of Pfaffians and give examples for elliptic curves
over the rationals both with and without a rational 5-isogeny.

1. Introduction

An explicit descent calculation on an elliptic curve E over a number field K com-
putes the Selmer group (attached to some isogeny) and represents its elements
by giving equations for the corresponding covering curves. These curves may be
used to help search for generators of the Mordell-Weil group E.K/ or to exhibit
nontrivial elements of the Tate-Shafarevich group X.E=K/.

Let C be a smooth curve of genus one representing an element of order n in
X.E=K/. Cassels [8] showed that C admits a K-rational divisor D of degree n.
So for n � 3 we may embed C � Pn�1 by the complete linear system jDj. The
result is called a genus-one normal curve of degree n. For n� 4 it is well known
(see for example [19; 29]) that the homogeneous ideal of such a curve is generated
by a vector space of quadrics of dimension n.n� 3/=2.

The equations for a genus-one normal curve of degree 5 may conveniently be
written as the 4� 4 Pfaffians of a 5� 5 alternating matrix of linear forms. Over
the complex numbers this is a classical fact. In general it is a consequence of the
Buchsbaum-Eisenbud structure theorem [7; 6] for Gorenstein ideals of codimen-
sion 3. In Section 4 we explain how to compute these matrices of linear forms.

The author has been compiling [22] a list of explicit elements of X.E=Q/Œ5� for
elliptic curves E=Q of small conductor (taken from the Cremona database [10; 11]).
The equations are computed using either descent by 5-isogeny, full 5-descent, or
visibility. We give details of the first two of these methods in Sections 5 and 6,
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expanding on the treatments in [17] and [12; 13; 14]. Our use of visibility is
described in [20].

2. Background on descent

Let � WE!E 0 be an isogeny of elliptic curves over K. A �-covering of E 0 is a
pair .C; �/ where C is a smooth curve of genus one and � WC !E 0 is a morphism
(both defined over K) such that the diagram

C

 

��

�

  
E

�
// E 0

commutes for some isomorphism  W C !E defined over K.
We write H i .K;�/ as a shorthand for H i .Gal.K=K/;�/. Taking Galois co-

homology of the short exact sequence of Gal.K=K/-modules

0 �!EŒ�� �!E
�
�!E 0 �! 0

gives a long exact sequence of abelian groups

� � � �!E.K/
�
�!E 0.K/

ı
�!H 1.K;EŒ��/ �!H 1.K;E/ �! � � � : (1)

The group H 1.K;EŒ��/ parametrises the �-coverings of E 0, up to isomorphism
over K. The subgroup of everywhere locally soluble coverings is the �-Selmer
group S .�/.E=K/. Likewise the group H 1.K;E/ parametrises the torsors (or prin-
cipal homogeneous spaces) under E, up to isomorphism over K. The subgroup of
everywhere locally soluble torsors is the Tate-Shafarevich group X.E=K/. There
is then an exact sequence

0 �!E 0.K/=�E.K/
ı
�! S .�/.E=K/ �!X.E=K/Œ��� �! 0

where �� WX.E=K/!X.E 0=K/ is the map induced by �.
There are two natural ways to construct a rational divisor class on C . Let m

be the smallest positive integer such that EŒ�� � EŒm�. Then D D  �.m � 0E /
and D0 D ��.0E 0/ are divisors on C of degrees m and nD deg�, respectively. A
calculation shows that D is linearly equivalent to all its Galois conjugates, whereas
D0 is already defined over K. For each � 2 Gal.K=K/ we pick h� 2K.C/� with
div.h� /D �D�D. There is then an obstruction map (see [26; 30; 12])

Ob WH 1.K;EŒ��/ �! Br.K/DH 2.K;K�/
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that sends the �-covering .C; �/ to the class of the 2-cocycle .�; �/ 7!�.h� /h�=h�� .
Since H 1.K;K.C /�/D 0 it follows that D is linearly equivalent to a K-rational
divisor if and only if .C; �/ has trivial obstruction.

If #.EŒ��\EŒ2�/D 1 or 4 then the elements of EŒ�� sum to 0E , in which case
��.0E 0/� n � 0E and D0 � .n=m/D.

In this paper we are interested in the following two cases, where we may write
C as a genus-one normal curve of degree 5 with hyperplane section D:

(i) � is an isogeny of degree 5 and .C; �/ 2H 1.K;EŒ��/.

(ii) � is multiplication-by-5 on E and .C; �/ 2 S .5/.E=K/.

The obstruction is trivial in both cases. In the first case this is because D � D0,
whereas in the second case the proof (which we follow in our calculations) uses
the local-to-global principle for the Brauer group.

3. Pfaffians

We recall some basic facts about Pfaffians. Let AD .aij / be an n�n alternating
matrix. If nD 2m is even then the Pfaffian of A is

pf.A/D
1

2mmŠ

X
�2Sn

sign.�/
mY
iD1

a�.2i�1/�.2i/: (2)

Standard calculations (see [3, §5]) show that pf.PAP T /D det.P / pf.A/ and that
det.A/D pf.A/2. Since det.A/ in an integer coefficient polynomial in the entries
of A, the same must be true of pf.A/. This is used to define the Pfaffian over an
arbitrary ring.

Pfaffians, just like determinants, may be expanded along a row. We write Afi;j g

for the matrix obtained from A by deleting the i -th and j -th rows and columns. It
may be shown using (2) that

pf.A/D
nX

jD2

.�1/ja1j pf.Af1;j g/:

For example, in the 4� 4 case we have

pf

0BB@
0 a12 a13 a14

0 a23 a24
� 0 a34

0

1CCAD a12a34� a13a24C a14a23:
Definition 3.1. Let A be an n� n alternating matrix with n odd. The row vector
of submaximal Pfaffians of A is Pf.A/D .p1; : : : ; pn/, where pi D .�1/i pf.Afig/
and Afig is the matrix obtained by deleting the i -th row and column of A.
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Lemma 3.2. If A is an n�n alternating matrix with n odd then

(i) Pf.A/AD 0,

(ii) Pf.PAP T /D Pf.A/ adj.P /,

(iii) adj.A/D Pf.A/T Pf.A/.

Proof. Since we only need the case n D 5 (which may be checked by a generic
computation) we omit the proof. �

4. Computing genus-one models

A genus-one model (of degree 5) is a 5� 5 alternating matrix of linear forms in
variables x1; : : : ; x5. We write X5.K/ for the space of all genus-one models with
coefficients in a field K, and Cˆ � P4 for the subscheme defined by the 4 � 4
Pfaffians of ˆ 2X5.K/.

Theorem 4.1. Let C � P4 be a genus-one normal curve of degree 5 defined over
a field K.

(i) There exists ˆ 2X5.K/ such that C D Cˆ.

(ii) If ˆ1; ˆ2 2 X5.K/ with C D Cˆ1
D Cˆ2

then there exist A 2 GL5.K/ and
� 2K� such that ˆ2 D �Aˆ1AT .

Theorem 4.1 is a consequence of the Buchsbaum-Eisenbud structure theorem [7;
6] for Gorenstein ideals of codimension 3. In this section we give a simplified form
of the proof and use it to give explicit algorithms for computing ˆ and A. These
algorithms are needed in our work [19; 20] on the invariant theory of genus-one
models.

Example 4.2. Let E be the elliptic curve y2D x3CaxCb. For any n� 3 we may
embed E into Pn�1 via the complete linear system jn � 0E j to give a genus-one
normal curve of degree n. If nD 5 then the embedding is given by

.x1 W � � � W x5/D .1 W x W y W x
2
W xy/

and the image is defined by the 4� 4 Pfaffians of0BBBB@
0 bx1 x5 x4C ax1 �x3

0 �x4 �x3 x2
0 �x2 0

� 0 �x1
0

1CCCCA :
(Since the homogeneous ideal is generated by a 5-dimensional space of quadrics,
it suffices to check that the 4� 4 Pfaffians are linearly independent and that they
vanish on E.)
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Let RDKŒx1; : : : ; xn�D
L
d�0Rd be the polynomial ring with its usual grad-

ing by degree. Let RC D
L
d�1Rd be the irrelevant ideal.

Definition 4.3. Let M be a finitely generated graded R-module. A graded free
resolution of M is a complex of graded free R-modules

F� W 0 �! Fs
's
�! Fs�1 �! � � � �! F2

'2
�! F1

'1
�! F0 �! 0

that is exact at all terms except F0, where we have F0= im.'1/ŠM . The resolu-
tion F� is minimal if �i .Fi /�RCFi�1 for all i .

We shall need the following two facts.

Lemma 4.4. Let F� be a minimal graded free resolution of M . Then any graded
free resolution of M is a direct sum of F� and a trivial complex. In particular, F� is
unique up to isomorphism.

Proof. See [16, §20.1] or [33, §7]. �
Lemma 4.5 (Buchsbaum-Eisenbud acyclicity criterion). The complex F� is acyclic
(that is, exact at all terms except F0) if and only if for all 1� i � s,

rankFi D rank'i C rank'iC1;

and the ideal generated by the ri � ri minors of 'i (where ri D rank'i ) has codi-
mension at least i .

Proof. See [5, Theorem 1.4.13] or [16, Theorem 20.9]. We use here that R is
Cohen-Macaulay, so that the codimension (also called height) of an ideal is the
same as the grade (also called depth). �

We follow the convention that maps of graded R-modules preserve the degree.
Let R.d/ be R as a graded module over itself with degrees shifted by d , that is,
R.d/e DRdCe . We use the same notation for maps of R-modules and the matrices
that represent them (with respect to the standard bases).

Theorem 4.6. Let C � P4 be a genus-one normal curve of degree 5 with homoge-
neous ideal I D I.C /�RDKŒx1; : : : ; x5�.

(i) The minimal graded free resolution of R=I takes the form

0 �!R.�5/
QT

�!R.�3/5
ˆ
�!R.�2/5

P
�!R �! 0: (3)

(This means that P D .p1; : : : ; p5/ and Q D .q1; : : : ; q5/ are vectors of
quadrics and ˆ is a 5� 5 matrix of linear forms.)

(ii) The K-vector space

fB 2Mat5.K/ jˆB is alternatingg

is 1-dimensional and contains a nonsingular matrix.
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(iii) If ˆ is alternating then P and Q are scalar multiples of Pf.ˆ/.

Proof. The conclusions of the theorem are unchanged if we extend our field K, so
we may assume K is algebraically closed. Then C is an elliptic curve, and up to
translation any two divisors on C of the same degree are linearly equivalent. So we
may change coordinates on P4 so that C DCˆ where ˆ is as given in Example 4.2.
(If K has characteristic 2 or 3, we use the more general formula in [19, §6].) By
Lemma 3.2(i) there is a complex

0 �!R.�5/
PT

�!R.�3/5
ˆ
�!R.�2/5

P
�!R �! 0 (4)

with P D Pf.ˆ/. Since P is not identically zero we have rank.ˆ/ D 4 and
rank.P /D 1. By Lemma 3.2(iii) the ideals generated by the 4� 4 Pfaffians of ˆ
and the 4�4 minors of ˆ have the same radical. Since C � P4 has codimension 3,
the conditions of Lemma 4.5 are satisfied and so (4) is the minimal graded free
resolution of R=I . This proves (i) and shows by Lemma 4.4 that for any resolu-
tion (3) there exist A1; A2 2GL5.K/ such that A1ˆA2 is alternating. Replacing ˆ
by ˆA2A�T1 we may assume for the proof of (ii) that ˆ is alternating.

Suppose that both ˆ and ˆB are alternating for some B 2 Mat5.K/. Then
Pˆ D PˆB D 0 and ˆP T D ˆBP T D 0. Since the sequence (3) is exact it
follows that P T and BP T are scalar multiples of QT . Therefore B is a scalar
matrix. This proves (ii). To prove (iii) we apply the same argument starting with
the identity Pf.ˆ/ˆD 0. �

Theorem 4.6 not only proves Theorem 4.1(i) but gives the following algorithm
for computing a genus-one modelˆ with C DCˆ. We start with a basis p1; : : : ; p5
for the space of quadrics vanishing on C . We then solve by linear algebra for a
matrix ‰ whose columns are a basis for the space of all 5-tuples of linear forms
.`1; : : : ; `5/ 2 R

5 satisfying
P5
iD1 `ipi D 0. Finally we take ˆ D ‰B where

B 2Mat5.K/ is any nonzero matrix satisfying ‰B D�BT‰T .
To prove Theorem 4.1(ii) we put P1 D Pf.ˆ1/ and P2 D Pf.ˆ2/, and note that

by Lemma 4.4 there is an isomorphism of complexes

0 // R.�5/
PT

1 //

�

��

R.�3/5
ˆ1 //

A�T

��

R.�2/5
P1 //

BT

��

R // 0

0 // R.�5/
PT

2 // R.�3/5
ˆ2 // R.�2/5

P2 // R // 0

for some A;B 2 GL5.K/ and � 2 K�. Commutativity of this diagram gives
P T1 D �A

TP T2 D BP
T
2 and ˆ2 D BTˆ1AT . Since the entries of P2 are linearly

independent it follows that B D �AT , and so ˆ2 D �Aˆ1AT , as required. The
proof shows that A2GL5.K/ is uniquely determined up to scalars by the condition
Pf.ˆ1// Pf.ˆ2/A. This observation (which also follows by Lemma 3.2(ii)) gives
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a convenient way to compute A. If K is algebraically closed then we may scale A
so that �D 1. With this convention A is unique up to sign.

5. Descent by isogeny

We return to working over a number field K. Let � WE!E 0 be a cyclic isogeny
of degree n and let y� W E 0! E be its dual isogeny. If .C; �/ is a �-covering of
E 0 then .C; y� ı�/ is an n-covering of E. In general not all n-coverings of E arise
in this way. Instead, an upper bound for the rank is obtained by computing both
S .�/.E=K/ and S .y�/.E 0=K/.

Since the Weil pairing EŒ���E 0Œy��!�n is nondegenerate, the action of Galois
on EŒ��, E 0Œy��, and �n is described by three characters

��1!; �; ! W Gal.K=K/! .Z=nZ/�:

Let LDK.E 0Œy��/ be the fixed field of the kernel of �, and let GDGal.L=K/. If n
is prime then ŒL WK� divides n�1 and so is coprime to n. By the inflation-restriction
exact sequence we have

H 1.K;EŒ��/ŠH 1.L;EŒ��/G :

Since H 1.L;EŒ��/ Š H 1.L; �n/ Š L
�=.L�/n it follows (by keeping track of

the G-actions) that H 1.K;EŒ��/Š .L�=.L�/n/�, where, if A is a G-module, we
write

A� D fa 2 A j �.a/D a�.�/ for all � 2Gg:

There is an analogue of the exact sequence (1) obtained by replacing K by its
completion Kv. Let ıv be the connecting map in this exact sequence. The Selmer
group attached to � is

S .�/.E=K/D f� 2H 1.K;EŒ��/ j resv.�/ 2 im ıv for all places vg

where resv WH 1.K;EŒ��/!H 1.Kv; EŒ��/ is the restriction map. Assuming we
can compute the groups

L.S; n/D f� 2 L�=.L�/n j vp.�/� 0 mod n for all p 62 Sg

for S a finite set of primes, the problem of computing the Selmer group reduces
to that of computing the images of the local connecting maps ıv. Since we give
equations for the covering curves, the images of the ıv may be computed by work-
ing out conditions for these curves to be locally soluble. See for example [17; 18;
9]. Alternatively, as described for example in [23; 28], the images of the ıv may
be computed as the cokernels of the maps � WE.Kv/!E 0.Kv/.
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We take nD 5 and split into the cases where � has order 1, 2 or 4. If � is trivial
then EŒ��Š �5 and E 0Œy��Š Z=5Z as Galois modules. We recall from [17] that
E Š C� and E 0 ŠD� for some � 2K, where C� and D� are the curves given by

C� W y2C .1��/xy ��y D x3��x2C a4xC a6;

D� W y2C .1��/xy ��y D x3��x2;
(5)

where a4 D�5�.�2C 2�� 1/ and a6 D��.�4C 10�3� 5�2C 15�� 1/.

Theorem 5.1. If �0; : : : ; �4 are elements of K such that

�D

4Y
iD0

�i and � �

4Y
iD0

�ii mod .K�/5; (6)

then the �-covering of D� corresponding to � 2K�=.K�/5 is defined by the 4� 4
Pfaffians of 0BBBB@

0 �1x1 x2 �x3 ��4x4
0 �3x3 x4 �x0

0 �0x0 x1
� 0 �2x2

0

1CCCCA :
Proof. See [17, Proposition 2.12]. The analogue of this result for cyclic isogenies
of degrees 3 and 4 is given in [18, §1.2]. �

Example 5.2. Taking K D Q and .�0; : : : ; �4/ D .1; 1; 2; 3; 5/ gives an element
of order 5 in X.C30=Q/.

If � is a quadratic character then E and E 0 are the quadratic twists by � of C�
and D� for some � 2K. We write LDK.

p
d/.

Theorem 5.3. If r and s are elements of K, not both zero, then the �-covering
of E 0 corresponding to � D .r C s

p
d/=.r � s

p
d/ 2 .L�=.L�/5/� is defined by

the 4� 4 Pfaffians of0BBBB@
0 �x0 d.x2� x4/ �x1C x3 �x3

0 �x1� x3 x2C x4 x4
0 .r2� s2d/x0 rx1C sdx2

� 0 sx1C rx2
0

1CCCCA :

Proof. Let ˛ D r C s
p
d and ˛0 D r � s

p
d . We apply Theorem 5.1 over L with

.�0; : : : ; �4/D .�=.˛˛
0/; ˛; 1; 1; ˛0/:



EXPLICIT 5-DESCENT ON ELLIPTIC CURVES 403

We then substitute x0 �.r2� s2d/x0 and

.x1; : : : ; x4/ .x1C
p
dx2; x3C

p
dx4; x3�

p
dx4; x1�

p
dx2/

to give a curve defined over K. Since ŒL WK� and deg� are coprime to one another,
the restriction map H 1.K;EŒ��/!H 1.L;EŒ��/ is injective. Since the curve we
have found and the curve we are looking for are isomorphic over L, they must
therefore be isomorphic over K. �

Example 5.4. Taking K DQ and �D 11, d D 5, r D sD 1 gives an element of or-
der 5 in X.E=Q/ where E is the elliptic curve 275b3 in Cremona’s tables [10; 11].

Remark 5.5. The curve in Theorem 5.1 is defined by the 5 quadrics

�ix
2
i C xi�1xiC1��i�2�iC2xi�2xiC2 D 0

where the subscripts are read modulo 5. If �0i D ��2i=.�2i�2�2iC2/ then the
curves defined by �0; : : : ; �4 and �00; : : : ; �

0
4 are isomorphic via

.x0 W � � � W x4/ 7! .x0 W x2 W x4 W x1 W x3/:

Taking Jacobians it follows that C� Š C�1=�. Alternatively this last statement may
be checked using the Weierstrass equations (5).

Now suppose � has order 4. Let � be the generator of Gal.L=K/ with �.�/D 2.
Then E and E 0 are isomorphic over L to C� and D� for some � 2 L satisfying
�.�/D�1=�.

Theorem 5.6. If ˛ 2 L� then the �-covering of E 0 corresponding to

� D ˛4�.˛/2�2.˛/�3.˛/3 2 .L�=.L�/5/� (7)

is isomorphic over L to the curve in Theorem 5.1 with

.�0; : : : ; �4/D

�
��.˛/�3.˛/;

˛

��.˛/�3.˛/
;
��.˛/

˛
;
��3.˛/

�2.˛/
;

�2.˛/

��.˛/�3.˛/

�
:

Moreover a model for this curve over K is obtained by substituting0BB@
x1
x2
x3
x4

1CCA 
0BB@

ˇ1 ˇ2 ˇ3 ˇ4
�.ˇ1/ �.ˇ2/ �.ˇ3/ �.ˇ4/

�3.ˇ1/ �
3.ˇ2/ �

3.ˇ3/ �
3.ˇ4/

�2.ˇ1/ �
2.ˇ2/ �

2.ˇ3/ �
2.ˇ4/

1CCA
0BB@
x1
x2
x3
x4

1CCA
where ˇ1; : : : ; ˇ4 is a basis for L over K.

Proof. The first part is clear since we have chosen �0; : : : ; �4 to satisfy (6). We
have also arranged that �.�i /D��2i=.�2i�2�2iC2/. The second part then follows
by Remark 5.5. �
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Remark 5.7. Since � D 4C 2� C �2C 3�3 2 F5ŒG� is an idempotent satisfying
��D 2�, every element of .L�=.L�/5/� is of the form (7).

Example 5.8. Let E and E 0 be the 5-isogenous elliptic curves

E D 23808c3 W y2 D x3� x2� 785949x� 271615419;

E 0 D 23808c2 W y2 D x3� x2C 7651xC 676677:

Then LDQ."/ where "D
p
2C
p
2. Moreover �D .49C41

p
2/=31 and � W " 7!

"3� 3". We take ˛ D 1C " and ǰ D "
j�1 for j D 1; : : : ; 4. After following the

construction in Theorem 5.6, the algorithms for minimisation and reduction in [21]
suggest the change of coordinates0BBBB@

x0
x1
x2
x3
x4

1CCCCA 
0BBBB@

0 0 0 0 62

0 6 �6 14 0

13 �13 �7 �7 0

0 1 �1 �8 0

�3 3 4 4 0

1CCCCA
0BBBB@
x0
x1
x2
x3
x4

1CCCCA :

The result is C � P4 defined by the 4� 4 Pfaffians of0BBBB@
0 x0� x1C x3C 4x4 x1� x2� x4 �x2� 2x3C 4x4 x1

0 �x2� 4x4 x1� x2C x4 x3
0 x0� x1� x3� 4x4 x2

� 0 x0
0

1CCCCA :
Computing the invariants, as described in [19], and using Bruin’s programs [4] to
check local solubility, we find that C represents an element of X.E=Q/Œ5�. It is
nontrivial since E 0.Q/D 0 and � … .L�/5.

6. An example of full 5-descent

In this section we compute equations for an order-5 element in the Tate-Shafarevich
group of the elliptic curve E=Q:

6727a1 W y2C xy D x3� x2� 202951x� 34841040:

Since E has no rational 5-isogenies, our method is to use full 5-descent; that is,
descent with respect to the multiplication-by-5 map on E. Further details of the
calculation are given in a Magma [2] file available at this article’s webpage.

Let T D .xT ; yT / be a nontrivial 5-torsion point on E. Then L D Q.T / is a
number field of degree 24. Let �2 be the automorphism of L with �2.T / D 2T .
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We shall write elements of L in terms of u and v where

v D�31.2yT C xT /=.x
2
T C 480xT C 87391/

and uD v=�2.v/. Explicitly, u has minimal polynomial

X12C 4X11� 6X10� 20X9C 15X8� 303X7

C 323X6C 303X5C 15X4C 20X3� 6X2� 4X C 1

and v is a square root of

.2u11C9u10�8u9�46u8C10u7�591u6C343u5C928u4C331u3C60u2C8u�9/=3:

We recall from [15; 34] that there is an injective group homomorphism

H 1.Q; EŒ5�/! L�=.L�/5

whose image is contained in the �2-eigenspace

fx 2 L�=.L�/5 j �2.x/� x
2 mod .L�/5g: (8)

The primes of bad reduction for E are 7 and 31, with Tamagawa numbers c7 D 1
and c31D 2. Since the Tamagawa numbers are coprime to 5, we have S .5/.E=Q/�

L.S; 5/ where SD fp1; p2g is the set of primes of L above 5.
The number field L is too large for an unconditional computation of its class

group and units. However according to PARI/GP [32] (which by default makes
heuristic assumptions) the class number is 2. We also used PARI/GP to compute
a set of fundamental units, and generators for the prime ideals p1 and p2. This
gives a basis for L.S; 5/ Š .Z=5Z/15. The intersection of L.S; 5/ with the �2-
eigenspace (8) is 3-dimensional. One of the nontrivial elements is aD a0=294, with

a0 D .4600u11C8325u10�72155u9�50035u8C289975u7�1450795u6

C4510595u5�592350u4�3962957u3�1755928u2�811953u�191035/v

C.158985u11C661975u10�836070u9�3280275u8C1784950u7

�48064875u6C43645605u5C52498690u4C14516335u3C7628705u2

C310520u�311257/:

We have .a/D c5 for some integral ideal c, and a�2.a/2Db5 where bDb0=294 and

b0 D .452u11C 1935u10� 2186u9� 9743u8C 4070u7� 135379u6

C 108106u5C 172665u4C 54912u3C 14840u2� 4879u� 12762/v

C .�1983u11� 9082u10C 7240u9C 46137u8� 7149u7C 585937u6

� 289205u5� 957562u4� 338134u3� 139997u2� 62943uC 7646/:
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We recall some of the theory from [12; 13; 14]. Let E be an elliptic curve over
a field K of characteristic 0. Let R be the K-algebra of all Galois-equivariant
maps EŒn�! K and let w W EŒn�! R� DMap.EŒn�;K�/ be the map induced
by the Weil pairing en. If � 7! �� is a cocycle representing � 2 H 1.K;EŒn�/

then by Hilbert’s theorem 90 there exists  2 R� with �./= D w.�� / for all
� 2 Gal.K=K/. We put ˛ D n and �D @ where

@ WR�! .R˝R/� DMap.EŒn��EŒn�;K�/

is given by .@z/.T1; T2/ D z.T1/z.T2/=z.T1C T2/. Then according to [12, §3]
there are group homomorphisms

w1 WH
1.K;EŒn�/!R�=.R�/n; � 7! ˛;

w2 WH
1.K;EŒn�/! .R˝R/�=@R�; � 7! �:

The map w1 is injective for n prime, whereas w2 is always injective.
Let Ob WH 1.K;EŒn�/! Br.K/ be the obstruction map as defined in Section 2.

Theorem 6.1. Assume n is odd. Let � 2 H 1.K;EŒn�/ and � 2 .R˝ R/� with
w2.�/ D �@R

�. Let A� D .R;C;��/ where the new multiplication �� is defined
by

z1 �� z2 W T 7!
X

T1CT2DT

en.T1; T2/
.nC1/=2�.T1; T2/z1.T1/z2.T2/:

Then A� is a central simple algebra over K of dimension n2 representing the class
of Ob.�/ in Br.K/.

Proof. See [12, Lemma 3.11 and §4]. �

Returning to our numerical example, we write ˛ and ˇ for the elements .1; a/
and .1; b/ in the étale algebra RDQ�L. To compute � exactly (using @˛ D �5)
we must extract a 5th root in a number field of degree 1

2
# GL2.Z=5Z/D 240. This

would be the direct analogue of what we do for 3-descent (see [14, §8]), but is
clearly not very promising. So instead we write �D @ and (fixing an embedding
Q� C) represent  2 RDMap.EŒ5�;Q/ numerically. Since 5 D ˛ there are at
first sight 525 possibilities for  . We cut down to just 53 choices by requiring that

(i) .T /.2T /2 D ˇ.T / for all T 2EŒ5�, and

(ii)  WE.C/Œ5�! C is Gal.C=R/-equivariant.

To explain these conditions we recall that �./= D w.�� / for all � 2 Gal.Q=Q/.
From this it is easy to see that T 7! .T /.2T /2 is Galois-equivariant. Since
˛.T /˛.2T /2 D ˇ.T /5, and there are no nontrivial fifth roots of unity in R, this
proves (i). Let � 2Gal.Q=Q/ be complex conjugation. (Recall that we fixed an em-
bedding Q�C.) Since H 1.R; EŒ5�/D 0 we have �./= Dw.�� /Dw.�.S/�S/
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for some S 2E.C/Œ5�. Dividing  by w.S/ now gives (ii). Multiplying  by w.T /
for T 2E.R/Œ5� does not change �D @ , so in fact we only need to loop over 52

choices for  .
Let T1, T2 be a basis forEŒ5�.C/ with T 1DT1, T 2D�T2. Then �D e5.T1; T2/

is a primitive fifth root of unity. We define

h.T1/D

0BBBB@
0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

1CCCCA ; h.T2/D

0BBBB@
1 0 0 0 0

0 � 0 0 0

0 0 �2 0 0

0 0 0 �3 0

0 0 0 0 �4

1CCCCA ;
and

h WEŒ5�.C/!Mat5.C/; h.rT1C sT2/D �
�rs=2h.T1/

rh.T2/
s;

where the exponent of � is read as an element of Z=5Z.
We compute the structure constants for A� from the real trivialisation given in

[14, §5], that is,

A�˝R �!� Mat5.R/; z 7!
X

T2EŒ5�

.T /z.T /h.T /:

As recommended there, we choose our Q-basis for L to be a Z-basis for c�1 that
is LLL-reduced with respect to the inner product

hz1; z2i D
X

06DT2EŒ5�

j˛.T /j2=5z1.T /z2.T /:

This makes the structure constants small integers, which are therefore easy to recog-
nise from floating-point approximations. The incorrect choices of  are quickly
discarded since the structure constants do not in general turn out to be integers.

To record our final choice of  we let T1; T2 be the basis for E.C/Œ5� given
(approximately) by

T1 D .1996:32;�87675:66/;

T2 D .�643:55; 321:77� 13079:33i/:

Then  is the fifth root of ˛ given (approximately) by the following matrix, with
entries .rT1C sT2/ for r; s D 0; : : : ; 4.0BBBB@

1:00 �3:96C 0:90i 1:39� 4:05i 1:39C 4:05i �3:96� 0:90i

�0:92 5:87� 2:18i 2:39C 1:96i 2:39� 1:96i 5:87C 2:18i

�2:20 4:41C 3:00i �3:56� 4:19i �3:56C 4:19i 4:41� 3:00i

�2:12 �7:13� 4:33i �0:29C 3:75i �0:29� 3:75i �7:13C 4:33i

4:44 0:14� 0:12i �0:96� 0:48i �0:96C 0:48i 0:14C 0:12i

1CCCCA
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Although our method for choosing a basis for L as a Q-vector space works well
on a computer, the basis vectors (which are elements of c�1) are extremely messy
to write down. To assist in recording some details of the calculation, we replace ˛
and  by their inverses. Our Q-basis u1; : : : ; u24 for L is now a Z-basis for c. Its
first two elements are u1 D u01=147 and u2 D u02=294, where

u01 D 906u
11
C 3697u10� 5099u9� 18382u8C 11847u7� 274284u6

C 271264u5C 284304u4C 51522u3C 31261u2� 4247u� 3174

and

u02 D .640u
11
C 2621u10� 3565u9� 13051u8C 8154u7� 193589u6

C 188894u5C 204155u4C 40745u3C 21338u2� 5548u� 2903/v

C .�221u11� 943u10C 1135u9C 4972u8� 2330u7C 65086u6

� 53197u5� 99488u4� 12061u3C 13094u2C 5473uC 4980/:

Then R has basis r1; : : : ; r25, where r1 D .1; 0/ and riC1 D .0; ui /. Let A� D
.R;C;��/ with basis a1; : : : ; a25 corresponding to r1; : : : ; r25. Note that a1 is the
identity. The structure constants turn out to be integers with maximum absolute
value 448 and mean absolute value 22:65. As predicted by [14, Lemma 5.2] the
order with basis the ai has discriminant 548 � 716 � 3118 D 525 �Disc.L/. The basis
vectors ai have minimal polynomials

X � 1; X5C 435X3C 7315X2C 835X C 32172;

X5� 390X3� 4885X2C 17560X C 1407822; : : :

If ˛ 2R�=.R�/5 corresponds to a Selmer group element, then by the local-to-
global principle for the Brauer group we have A� Š Mat5.Q/. The problem of
finding such an isomorphism (called a trivialisation) is addressed in [14; 24; 25].
By using Magma to compute a maximal order (and running LLL on the change of
basis matrix) we found a basis with minimal polynomials

X2; X2; X2; X4; X2; X3; X2; X3�X;

X5� 2X3CX; X4�X2; X4�X2; X5CX3; X2;

X4�X2; X3; X4� 2X2; X4�X2; X5�X3CX2CX;

X5�X3� 4X2C 4X; X4� 2X2�X; X4CX3�X2�X;

X5�X3; X5� 2X3; X5� 5X2CX; X3CX2:

Any reducible minimal polynomial gives a zero-divisor in A�, and once we know a
zero-divisor it is easy to find a trivialisation. In this way we found a trivialisation �
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that maps a1 7! I5 and

a2 7!

0BBBB@
13 �5 �20 �20 �15

�40 �22 40 20 10

�20 �35 3 �15 �15

�15 0 30 13 0

15 15 �10 �5 �7

1CCCCA ; a3 7!

0BBBB@
�12 5 0 10 5

�30 �42 35 5 0

�50 �35 38 20 5

�110 �50 65 8 5

45 45 �30 0 8

1CCCCA :

These calculations show that the element ˛ of R�=.R�/5 corresponds to an element
ofH 1.Q; EŒ5�/ with trivial obstruction. It may therefore be represented by a genus-
one normal curve C � P4.

We compute equations for C using the “Hesse pencil method”, as described
in [12, §5.1]. Let r�1 ; : : : ; r

�
25 be the basis for R with TrR=Q.rir

�
j / D ıij . It is

shown that

M D

25X
iD1

r�i �.ai / 2 GL5.R/DMapQ.EŒ5�;GL5.Q//

describes the action of EŒ5� on C � P4. In [20, §12] we gave a practical method
for computing all genus-one normal curves C � P4 that have Jacobian E and
are invariant under the matrices MT for T 2 EŒ5�. As predicted by [12, Proposi-
tion 5.5] there is only one such curve defined over Q. We use the algorithms for
minimisation and reduction in [21] to make a final change of coordinates. In this
example the model obtained is already minimal, whereas reduction suggests the
change of coordinates0BBBB@

x1
x2
x3
x4
x5

1CCCCA 
0BBBB@
�1 2 1 �2 1

�1 1 1 �1 1

1 �1 0 1 0

0 0 0 0 1

0 0 0 1 0

1CCCCA
0BBBB@
x1
x2
x3
x4
x5

1CCCCA :

The result is C � P4 defined by the 4� 4 Pfaffians of0BBBB@
0 �x1Cx2Cx3 x1C3x2Cx4 �2x2Cx3Cx5 2x2�2x3Cx5

0 �x1�x2�x3Cx5 x2�x4Cx5 �x2Cx3Cx4
0 �x3Cx5 �x1Cx3�x5

� 0 x4
0

1CCCCA :
Computing the invariants, as described in [19], and using Bruin’s programs [4] to
check local solubility, we find that C represents an element of X.E=Q/Œ5�. It is
nontrivial since E.Q/=5E.Q/D 0 and ˛ … .R�/5.
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The theory in [12, §3] shows that if M 5 D ˛0I5 then ˛0=˛ 2 .R�/5. This
is a condition we can check exactly. So even though we made use of floating-
point approximations (and did not check at the outset that ˛ is in the image of w1,
although methods for doing this are described in [15; 34]), we can be sure that C
corresponds to our original choice of ˛.

Repeating for other choices of ˛, we found a subgroup of X.E=Q/ isomor-
phic to .Z=5Z/2. For these, and examples for other elliptic curves E=Q of small
conductor, see [22]. The main difficulty in computing further examples is that the
computation of class group and units is often prohibitively expensive.
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