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Tate-Shafarevich group of order five times a square

Stefan Keil and Remke Kloosterman

Let A D E1 � E2 be the product of two elliptic curves over Q, each having
a rational 5-torsion point Pi . Set B WD A=h.P1; P2/i. In this paper we give
an algorithm to decide whether the order of the Tate-Shafarevich group of the
abelian surface B is square or five times a square, under the assumptions that
we can find a basis for the Mordell-Weil groups of E1 and E2 and that the Tate-
Shafarevich groups of E1 and E2 are finite.

We considered all pairs .E1; E2/ with prescribed bounds on the conductor
and the coefficients in a minimal Weierstrass equation. In total we considered
around 20:0 million abelian surfaces, of which 49:16% have Tate-Shafarevich
groups of nonsquare order.

1. Introduction

Let A be an abelian variety over a number field K. The Tate-Shafarevich group
X.A=K/ plays an important role in understanding the arithmetic of A. For exam-
ple, it contains information on the tightness of the upper bound on the Mordell-
Weil rank obtained by m-descent. Moreover, the order of this group, which is
conjectured to be finite, plays a role in the Birch and Swinnerton-Dyer conjecture.

The Tate-Shafarevich group comes with a pairing, the Cassels-Tate pairing,
which depends on the choice of a polarization � W A! A_:

h � ; � i� WX.A=K/�X.A=K/!Q=Z:

Let X.A=K/nd denote the Tate-Shafarevich group modulo its maximal divisible
subgroup. If � is an isomorphism, that is, A is principally polarized, then the

MSC2010: primary 11G10; secondary 11G40, 14G10, 14K15.
Keywords: Tate-Shafarevich groups, abelian surface, Cassels-Tate equation.

413

http://msp.org/obs
http://dx.doi.org/10.2140/obs.2013.1-1
http://msp.org


414 STEFAN KEIL AND REMKE KLOOSTERMAN

induced pairing on X.A=K/nd is nondegenerate. If moreover this pairing is alter-
nating, then for all primes p the cardinality of the p-primary part X.A=K/ndŒp

1�

is a perfect square; thus, if X.A=K/ is finite then it is a perfect square.
Tate [18] showed that if � is an isomorphism and is induced from a K-rational

divisor on A, then the Cassels-Tate pairing is in fact alternating, as for example for
elliptic curves. However, if dimA > 1 then A may not admit a principal polariza-
tion, and even when A is principally polarized this polarization need not be induced
by a K-rational divisor on A. Poonen and Stoll [11] showed that in fact there exist
genus-2 curves C=Q such that #X.J.C /=Q/ is twice a square. Moreover, they
showed that if one assumes that X.J.C /=Q/ is finite for all genus-2 curves C=Q,
then the density of genus-2 curves whose Jacobians have Tate-Shafarevich groups
of nonsquare order exists, and is approximately 13%.

For arbitrary abelian varieties Flach [4] showed that if #X.A=K/D kn2, with
k square free, then k divides 2 times the degree of every polarization on A. Hence
for principally polarized abelian varieties one has that #X.A=K/ is either a square
or twice a square, if it is finite, but for general abelian varieties there are more
possibilities. Stein [17] constructed, for every prime number p < 25000 (excluding
p D 2 and p D 37), an example of a .p � 1/-dimensional abelian variety Ap=Q

such that #X.Ap/D pn
2.

We restrict now to the case of dimAD 2. The constructions of Poonen-Stoll and
of Stein yield examples of abelian surfaces such that #X.A=K/ is a square, twice
a square, or three times a square. One might wonder which further possibilities
occur. Recently, the first author [6] showed that there exist abelian surfaces such
that the Tate-Shafarevich group has order five times a square and seven times a
square.

In this paper we will take a closer look at the construction of abelian surfaces
with Tate-Shafarevich group of order five times a square. The examples of [6]
are members of a two-dimensional family of abelian surfaces with a polarization
of degree 52. Moreover, one can show that for a general member of this family,
every polarization it possesses has degree a multiple of 5; thus they are not a priori
excluded by Flach’s theorem and might have a Tate-Shafarevich group of order
five times a square.

The construction of this family goes as follows. Let .E;O/ be an elliptic curve
over Q with a point P of order 5. Then there exists a d 2Q� such that ..E;O/; P /
is isomorphic to ..Ed ; O/; .0; 0//, where

Ed W yC .d C 1/xyC dy D x
3
C dx2:

Take two numbers d1; d2 2Q� and consider Bd1;d2
WDEd1

�Ed2
=h.0; 0/� .0; 0/i.

Then Ad1;d2
WDEd1

�Ed2
! Bd1;d2

is an isogeny of degree 5. Moreover, if the
two elliptic curves are not isogenous, then all polarizations on Bd1;d2

have degree
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divisible by 5. The Bd1;d2
’s are the family we consider. In our case we know that

X.Ad1;d2
=Q/ has square order, if it is finite, since it is isomorphic to the product

of the two Tate-Shafarevich groups of Ed1
and Ed2

.
The behavior of the Tate-Shafarevich group under isogenies is well-known. This

behavior is part of Tate’s proof of the invariance of the Birch and Swinnerton-Dyer
conjecture; for more on this see Section 2. The upshot of this is the following: Let
' W A! B be an isogeny and assume that either #X.A=K/ or #X.B=K/ is finite
(which implies that both are finite). Denote by '_ WB_!A_ the dual isogeny. For
a field L�K denote by 'L W A.L/! B.L/ the induced map on L-rational points.
Let S be a finite set of places containing the primes where A has bad reduction, the
infinite places, and the primes dividing the degree of '. Then the following holds:

#X.A=K/

#X.B=K/
D

# ker'K# coker'_K
# ker'_K# coker'K

Y
v2S

# coker'Kv

# ker'Kv

:

In Sections 4 and 5 we show that for our choice of abelian surfaces the above-
mentioned cardinalities of kernels and cokernels can be determined, provided one
has a basis for the Mordell-Weil group of both Ed1

and Ed2
. (Actually something

weaker is enough; see the end of Section 4.) Hence, given bases for the Mordell-
Weil groups of both elliptic curves we can determine whether #X.B=Q/, if finite,
is a square or a nonsquare.

For all pairs .d1; d2/ with di D ui=vi where max.jui j; jvi j/ is bounded by
N D 50,000 and where the conductor of Edi

is bounded by C D 106, we computed
this product of cardinalities of kernels and cokernels. There are 2,445,366 such
pairs, and 47:01% of these surfaces have a Tate-Shafarevich group of nonsquare
order (assuming that X.Ed1

=Q/ and X.Ed2
=Q/ are finite). We also computed

these cardinalities for all pairs .d1; d2/ such that the absolute value of the numerator
and denominator of di is bounded by N D 100. There are 18,522,741 such pairs,
and 49:31% of them have Tate-Shafarevich group of nonsquare order. Based on our
computations, we expect that the density of abelian surfaces Bd1;d2

with nonsquare
Tate-Shafarevich groups exists and is around 50%. For some heuristics see the end
of the final section.

The outline of this paper is as follows. In Section 2 we discuss some prelim-
inaries and in Section 3 we explain in more detail the construction of the family
of abelian surfaces we consider. In Section 4 we discuss how we can calculate
the global quotient and which conditions on Ed1

and Ed2
are needed for this. In

Section 5 we discuss how we calculate the local quotient, which turns out to be
a much simpler computation. In Section 6 we sketch the algorithm used for the
computations of the densities, and finally in Section 7 we discuss the results we
obtain.
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2. Preliminaries

Let K be a number field and let GK be the absolute Galois group Gal.K=K/. For
a (finite or infinite) place v of K, denote by Kv the completion of K with respect
to v and by GKv

the absolute Galois group of Kv.
Let A=K be an abelian variety. Denote by A_ the dual abelian variety. Then

the Tate-Shafarevich group of A=K is defined as

X.A=K/ WD ker
�
H 1.GK ; A/!

Q
v
H 1.GKv

; A/
�
;

where the product is taken over all finite and infinite places of K. Let ' W A! B

be an isogeny of abelian varieties. Then the '-Selmer group of A=K is defined as

S'.A=K/ WD ker
�
H 1.GK ; AŒ'�/!

Q
v
H 1.GKv

; A/
�
:

The Tate-Shafarevich group is a torsion group. It is conjectured to be finite,
and the '-Selmer group is known to be finite. The m-torsion subgroup of the
Tate-Shafarevich group fits in an exact sequence

0! A.K/=mA.K/! S Œm�.A=K/!X.A=K/Œm�! 0:

That is, it measures the difference between the m-Selmer group and A.K/=mA.K/.
In theory the m-Selmer group is computable; hence the Tate-Shafarevich group
measures the difference between the upper bound on the Mordell-Weil rank ob-
tained by doing m-descent and the actual Mordell-Weil rank of A.

The Tate-Shafarevich group plays also a role in the Birch and Swinnerton-Dyer
conjecture:

Conjecture 2.1 (Birch and Swinnerton-Dyer). Let A=K be an abelian variety and
let L.A; s/ be its L-series. Set r WD rkA.K/. Then X.A=K/ is finite, L.A; s/ has
a zero of exact order r at s D 1, and

lim
s!1

L.A; s/

.s� 1/r
D
2r#X.A=K/RA

QR
A.Kv/

j!jv

#A.K/tor#A_.K/tor
: (1)

The left hand side of (1) is invariant under isogeny. Cassels [2] (for the case
dimA D 1) and Tate [18] (for the general case dimA � 1) proved that the right
hand side is also invariant under isogeny. That is, if ' W A! B is an isogeny then

#X.A=K/

#X.B=K/
D
RB#A.K/tor#A_.K/tor

QR
B.Kv/

j!jv

RA#B.K/tor#B_.K/tor
QR

A.Kv/
j!jv

:
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This formula was used by Schaefer and the second author [9] to provide examples
of elliptic curves with large Selmer groups, by Matsuno [10] and by the second au-
thor [8] to provide examples of elliptic curves with large Tate-Shafarevich groups,
and by Flynn and Grattoni [5] to compute several Selmer groups.

However, the right hand side of (1) is not well-suited for calculation. One can
rewrite the right hand side as follows: For a field L�K, let 'L denote the group
homomorphism 'L W A.L/! B.L/. Then

#X.A=K/

#X.B=K/
D

# ker'K# coker'_K
# ker'_K# coker'K

Y
v

# coker'Kv

# ker'Kv

: (2)

We will call the first factor (with the 'K) the global factor, and the second factor
(with the 'Kv

) the local factor. If v is a finite prime of good reduction and v does
not divides the degree of the isogeny, then # coker'Kv

D # ker'Kv
; hence the

product on the right hand side is a finite product, where only the bad primes, the
infinite primes, and the primes dividing the degree of the isogeny need be taken
into account.

It is known that if an elliptic curve has analytic rank at most 1, then its Tate-
Shafarevich group is finite and its analytic rank is equal to its Mordell-Weil rank.
Throughout this paper we will assume that the same is true even for elliptic curves
with larger analytic rank.

3. Constructing a family of abelian surfaces

We will construct a two-dimensional family of abelian surfaces B=K, whose mem-
bers are quotients of products of two elliptic curves E1; E2 by an isogeny of degree
5. Therefore #X.B=K/�5aD#X.E1�E2/, for some a2Z. Since #X.E1�E2/ is
a square, it follows that #X.B=K/ modulo squares is one of f1; 5g. Additionally,
we have that for a general member of this family every polarization has degree
divisible by 5. Thus Flach’s theorem does not restrict us further.

Let G=K be a group scheme of prime order `. Let E1; E2 be two elliptic curves
over K such that G is a subgroup scheme of both E1 and E2. Let AD E1 �E2
and B D A=G, where G is embedded diagonally in A. Then the natural isogeny
' W A ! B has degree `. Moreover, one can show that either E1 and E2 are
isogenous or every polarization on B has degree a multiple of `. Hence for general
E1; E2 we are in the second case.

Consider the case G D Z=`Z; that is, the case in which G is generated by a
K-rational point. Since for ` > 4 the functor Y1.`/ is representable, one has a
universal family of elliptic curves E with a point P of order `. In the case `D 5
the universal family is given by

Ed W y
2
C .d C 1/xyC dy D x3C dx2; P D .0; 0/;
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for any d 2K� with d2C 11d � 1¤ 0. The four nontrivial 5-torsion points are
.0; 0/, .�d; d2/, .�d; 0/, and .0;�d/. If we move .0;�d/ to .0; 0/ and bring the
curve into standard form we obtain Ed . If we move .�d; d2/ or .�d; 0/ to .0; 0/
and bring the elliptic curve into standard form we obtain E�1=d .

We restrict now to the case where K D Q, `D 5, and G is generated by a Q-
rational point. Fix d1 and d2 in Q� and set A WDEd1

�Ed2
. The rational 5-torsion

subgroup of A has four diagonally embedded subgroups of order 5. Let G D Z=5Z

be one of those, so that G is the subscheme of A generated by .0; 0/� Œn�.0; 0/
for some n 2 f1; 2; 3; 4g. Let B WD A=G. Then B is a candidate for an abelian
surface such that X.B=Q/ has order five times a square. To actually check whether
X.B=Q/ has nonsquare order we will now calculate both the local and the global
factor.

Note that the 16 surfaces B=Q one obtains by replacing di by �1=di and using
the four values of n break into two sets of 8 isomorphic surfaces. For fixed d1; d2
the surfaces corresponding to nD 1; 4 lie in one of these isomorphism classes and
those for nD 2; 3 in the other one. We will see in the next two sections that for fixed
d1; d2 the size of X.B=Q/ is independent of n, and so all 16 surfaces will have
Tate-Shafarevich groups of the same cardinality. Therefore, for our computations
we will only consider the case d1; d2 > 0 and nD 1.

Let A0 be the quotient of Ed1
�Ed2

by the group scheme generated by .0; 0/�O
and O � .0; 0/, let E 0

di
be the quotient of Edi

by h.0; 0/i, and let �i be the natural
isogeny from Edi

to E 0
di

. The natural isogeny � W A! A0 factors as A! B! A0.
Consider now the dual picture

.A0/_! B_! A_:

Since A and A0 are products of elliptic curves, they are principally polarized. There-
fore we have the factorization

A0! B_! A:

The kernel of A0 ! A is Cartier dual to the kernel of A ! A0, and hence is
isomorphic to .�5/2. The kernel of A0 ! B_ is isomorphic to �5 embedded
with .1;�n/ in .�5/2.

In summary, we have the following diagram:

B
 

&&
ADEd1

�Ed2

'

88

�D�1��2
--
A0 DE 0

d1
�E 0

d2
:

 _

xx

�_

ll

B_
'_

ff
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Lemma 3.1. Suppose LDQ. Then ker'Q Š Z=5Z and ker'_
Q
D 0.

Proof. Since AŒ'�D Z=5Z it follows that A0Œ'_�D�5. Taking Q-rational points
yields the lemma. �

Lemma 3.2. Suppose LD R. Then ker'R Š Z=5Z and coker'R D 0.

Proof. The first assertion is automatic. The nontrivial element in Gal.C=R/ acts
on the fiber of an element of B.R/ under 'C either by swapping elements or fixing
them. Since the degree of ' is not divisible by 2 at least one element in the fiber
is fixed, and hence lies in A.R/. �

Let S be the set of primes where A has bad reduction, together with 5. Using
the above lemmas it follows that

#X.A=Q/

#X.B=Q/
D

# coker'_
Q

# coker'Q

Y
v2S

# coker'Qv

# ker'Qv

:

In other words, in our situation the global factor from (2) simplifies, and we do
not need to consider the local factor at infinity. In the next two sections we will
explain how to determine the global and local factors.

4. Determining the global factor

To determine
# coker'_

Q

# coker'Q

we assume for the moment that we have a basis for the Mordell-Weil groups
Ed1

.Q/, Ed2
.Q/, E 0

d1
.Q/, and E 0

d2
.Q/. We will now explain how one can de-

termine coker'Q and coker'_
Q

from this information.
Using the factorization �_ D '_ ı _ we obtain a surjective homomorphism

coker �_
Q
! coker'_

Q
. With Hilbert’s Theorem 90 we obtain

H 1.GQ; A
0Œ�_�/DH 1.GQ;�

2
5/D .Q

�=Q�5/2;

H 1.GQ; B
_Œ'_�/DH 1.GQ;�5/DQ�=Q�5:

Under these identifications, the surjection coker �_
Q
! coker'_

Q
becomes the map

.x; y/ 7! xn=y from .Q�=Q�5/2 to Q�=Q�5. One sees immediately that the image
of this map is independent of n, so to compute coker'_

Q
we may as well set nD

1. In order to determine coker'_
Q

it suffices to determine a basis in Q�=Q�5 for
coker �_1;Q and coker �_2;Q. By following [15, Exercise 10.1], this can be done quite
easily: Suppose that f is a function on Edi

with divisor 5.0; 0/� 5O . Then there
exists a unique constant c 2Q�=Q�5 such that the map

coker �_i;Q!Q�=Q�5



420 STEFAN KEIL AND REMKE KLOOSTERMAN

that sends P 6D .0; 0/;O to cf .P / mod Q�5 is a well-defined injective group homo-
morphism, with image equal to the image of the natural embedding of coker �_i;Q
into H 1.GQ; E

0
di
Œ�_i �/Š Q�=Q�5. In our case we can take the function f to be

�x2CyC xy and the constant c to be 1. The point .0; 0/ is mapped to d�1 and
O to 1 by linearity.

An element of Q�=Q�5 is determined by its valuations at each prime. Write
d D u=v and let S be the set of all primes p dividing five times the minimal
discriminant of Ed , that is, p j 5uv.u2C 11uv� v2/. Define

Q.S; 5/ WD fx 2Q�=Q�5 j vp.x/� 0 mod 5 for all p … Sg:

From the same exercise from [15] it follows that f .coker �_
Q
/ � Q.S; 5/. Hence

we can represent an element of coker �_
Q

by its valuation at each prime number
p 2 S . Once the cokernels of both �_i;Q are established, the cokernel of '_

Q
can be

computed easily.
To determine the cokernel of 'Q we use the exact sequence

0! ker. Q/='.ker �Q/! coker'Q

 
! coker �Q! coker Q! 0:

Note that ker. Q/D '.ker �Q/. Set K WDQ.�5/, where �5 is a primitive fifth root
of unity. Then the restriction map H 1.GQ;Z=5Z/!H 1.GK ;Z=5Z/ is injective,
because its kernel has exponent dividing both ŒK WQ�D 4 and #Z=5Z. Since AŒ'�,
AŒ��, and BŒ � are isomorphic overK to �5, �5��5, and �5 (respectively), we ob-
tain the following commutative diagram, where the vertical maps are embeddings:

0 // coker'Q

 //

��

coker �Q
//

��

coker Q
//

��

0

0 // K�=K�5 // .K�=K�5/2 // K�=K�5 // 0:

(3)

As above, the third of the lower horizontal maps is just .x; y/ 7! xn=y. Hence,
to determine the cokernel of 'Q it suffices to determine the kernel of xn=y on
coker �1;Q � coker �2;Q! coker Q. Again this is independent of n, so we may
take nD 1. We compute the kernel as follows:

(1) For some Qd 2K there is a K-isomorphism � WE 0
d
!E Qd that sends a generator

of ker �_ to .0; 0/. The map f WE 0
d
!K�=K�5 is then

P 7! �x.�.P //2Cy.�.P //C x.�.P //y.�.P //:

Hence we have to determine � . This can be done easily for each individual
curve E 0

d
.
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(2) To represent elements in coker �Q �K
�=K�5, note that the class number of

K� equals 1. Set

K.S; 5/ WD fx 2K�=K�5 j vp.x/� 0 mod 5 for all p … Sg;

where S contains all primes p of K that are bad primes for Ed or that divide
5; that is, all primes p of K lying over a prime p of Q such that

p j 5uv.u2C 11uv� v2/:

From [15, Exercise 10.9] it follows that f .coker �Q/ � K.S; 5/. Hence to
represent elements in coker �Q we have to fix a generator tp for each prime
p 2 S , and we have to fix generators for the unit group of K modulo fifth
powers. The field K is well-understood, and it is easy to see that its unit
group is generated by ��5 and .1C �5/. Hence we can write

f .P /� �
a0

5 .1C �5/
a1

Y
p2S

t
vp.f .P //
p

modulo fifth powers.

Remark. We can weaken the assumption of having a basis for the Mordell-Weil
groups Ed1

.Q/, Ed2
.Q/, E 0

d1
.Q/, and E 0

d2
.Q/. It is actually sufficient to just have

generators of finite-index sublattices of these four groups, such that the indices are
not divisible by 5; that is, the generators of infinite order are not divisible by 5
modulo torsion. Such sublattices suffice because their images in the cokernels
of �_i , respectively �i , are the entire cokernels. Also, it is sufficient to just know
such sublattices for Ed1

.Q/ and Ed2
.Q/, because suitable dual sublattices can be

easily computed using the isogenies �i . One only has to calculate the images of
the generators under �i and then check whether their span contains points divisible
by 5 modulo torsion.

5. Determining the local factor

We want to calculate
# coker'Qp

# ker'Qp

for all bad primes p and for p D deg' D 5. Since the kernel of 'Qp
is generated

by a Q-rational point it follows that # ker'Qp
D 5. The size of the cokernel of 'Qp

depends on the reduction of Ed1
and Ed2

, but turns out to be independent of n.
For � WD �i , we first describe how coker �Qp

depends on the reduction type of
E WD Edi

. Write di DW u=v with u; v 2 Z and gcd.u; v/D 1. Then E has global
minimal equation

E W y2C .uC v/xyCuvy D x3Cuv2x2
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and discriminant �.uv/5.u2C 11uv� v2/.

Lemma 5.1. The elliptic curve E has the following reduction type at a prime p.

(1) If p j uv then the reduction is split multiplicative and the point .0; 0/ does not
lie on the identity component of the Néron model of E.

(2) If p j u2C 11uv� v2 then .0; 0/ lies on the identity component of the Néron
model of E and either p D 5, or p �˙1 mod 5 holds. If p D 5 the reduction
is additive, if p � 1 mod 5 then the reduction is split multiplicative, and if
p � 4 mod 5 then the reduction type is nonsplit multiplicative.

Proof. LetE beE mod p and letEns be the smooth locus ofE. If p juv thenE has
equation y2C˛xy D x3 for some nonzero ˛ 2 Z=pZ. In particular, .0; 0/ mod p
is a node of E and the tangent cone is generated by x D �˛y and y D 0, hence
the reduction is split multiplicative. Since .0; 0/ reduces to the singular point of E
this point does not lie on the identity component of the Néron model of E.

If p j u2C11uv�v2 then the reduction of .0; 0/ is both on Ens and is nontrivial.
In particular the order of the reduction of .0; 0/, which is 5, divides #Ens.Fp/. If
the reduction is split multiplicative this group has order p� 1, if the reduction is
nonsplit this group has order pC 1, and if the reduction is additive this group has
order p; that is, p � 1 mod 5, p ��1 mod 5, and p D 5 respectively. �

Let E 0 WD E 0
di

be the isogenous elliptic curve. Denote by cE;p and cE 0;p the
local Tamagawa numbers, that is, the number of components of the Néron model.
We refer to the ratio of cE 0;p to cE;p as the Tamagawa quotient.

Lemma 5.2. For the Tamagawa quotient we have

cE 0;p

cE;p
D

8<:
1=5 if p j uv;
5 if p j u2C 11uv� v2 and p � 1 mod 5;
1 otherwise:

Proof. Since � has degree 5 it follows that cE 0;p=cE;p D 5
a for some a 2 Z. If the

reduction is different from split multiplicative then cE;p and cE 0;p are at most 4,
hence aD 0 and cE;p D cE 0;p.

In [6, Proposition 2.16] it is shown by using Tate curves that if the reduction is
split multiplicative then a 2 f�1; 1g, depending on whether or not the kernel is on
the identity component of the Néron model. �

If p − deg �D 5 then from [12, Lemma 3.8] it follows that

# coker �Qp

# ker �Qp

D
cE 0;p

cE;p
:

Using this, we easily obtain the following lemma:
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Lemma 5.3. Suppose p is a prime different from 5. We have

coker �Qp
Š

8̂̂̂<̂
ˆ̂:

Z=5Z if p is good for E,
0 if p j uv,
.Z=5Z/2 if p j u2C 11uv� v2 and p � 1 mod 5,
Z=5Z if p j u2C 11uv� v2 and p � 4 mod 5.

Now coker �Qp
�H 1.GQp

;Z=5Z/. From Theorem 2 and Proposition 17 of [14,
§II.5] it follows that for p − deg �D 5 we have

#H 1.GQp
;Z=5Z/D #H 0.GQp

;Z=5Z/ #H 0.GQp
;�5/D 5

a;

where aD 1 if p � 4 mod 5 and aD 2 if p � 1 mod 5. From this we deduce the
following:

Proposition 5.4. Suppose that p ¤ 5 is a prime dividing u2C 11uv� v2 (so that
E has bad reduction at p). Then coker �Qp

DH 1.GQp
;Z=5Z/.

We now return to our abelian surface A. The above proposition enables us to
determine coker'Qp

for bad primes different from 5.

Proposition 5.5. Suppose p is a prime of bad reduction for A and p ¤ 5. Then

coker'Qp
Š

8̂̂<̂
:̂
0 if p j u1v1u2v2;
.Z=5Z/2 if p j gcd.u21C 11u1v1� v

2
1 ; u

2
2C 11u2v2� v

2
2/

and p � 1 mod 5,
Z=5Z otherwise:

Proof. Recall that

coker'Qp
D ker.coker �1;Qp

� coker �2;Qp
! coker Qp

/;

which equals

.coker �1;Qp
� coker �2;Qp

/\ ker
�
H 1.GQp

;Z=5Z/2!H 1.GQp
;Z=5Z/

�
:

The surjective map H 1.GQp
;Z=5Z/2 ! H 1.GQp

;Z=5Z/ is given by .x; y/ 7!
nx�y. Suppose that p j u1v1u2v2. Then by Lemma 5.3 we have coker �i;Qp

D 0

for at least one i , and therefore coker'Qp
D 0.

Suppose now p − u1v1u2v2. By assumption one of the Edi
, say Ed1

, has
bad reduction at p. Since p − 5u1v1 it follows from the above proposition that
coker �1;Qp

DH 1.GQp
;Z=5Z/ and hence coker'Qp

Š coker �2;Qp
. Now Ed2

has
either additive or good reduction. The reduction of Ed2

is additive if and only if
p j gcd.u21C 11u1v1� v

2
1 ; u

2
2C 11u2v2� v

2
2/. Now apply Lemma 5.3 to deduce

the structure of coker �2;Qp
, hence the structure of coker'Qp

. �



424 STEFAN KEIL AND REMKE KLOOSTERMAN

It remains to check the case p D 5. As before, we first have a look at the
elliptic curve E. If 5 j uv then as above the reduction is split multiplicative and
cE 0;p=cE;p D 1=5. Using Tate curves one easily shows that coker �Qp

D 0.
If 5 j u2C11uv�v2 then the reduction is additive. In particular, the component

groups of E and E 0 have the same order, which is also the case if the reduction
is good. Therefore cE 0;p=cE;p D 1. The isogeny � W E ! E 0 can be written as
a power series in one variable in a neighborhood of the point O . Again from [12,
Lemma 3.8] it follows that

# coker �Q5

# ker �Q5

D j�0.0/j�15 ;

where j�0.0/j5 is the normalized 5-adic absolute value of the leading coefficient of
the power series representation of � evaluated at 0. This can be easily computed
using Vélu’s algorithm [19]. In Lemma 4.1 and Proposition 4.2 of [6] it is shown
that in the additive case we have v5.u2 C 11uv � v2/ 2 f2; 3g; furthermore, if
v5.u

2C 11uv� v2/D 2 then j�0.0/j5 D 1, while if v5.u2C 11uv� v2/D 3 then
j�0.0/j5D 1=5. If E has good reduction at pD 5 then it follows that # coker �Qp

D

# ker �Qp
, because in this case we also have j�0.0/j5D 1. We summarize as follows.

Lemma 5.6. We have

coker �Qp
Š

8̂̂̂<̂
ˆ̂:

Z=5Z if 5 is good for E,
0 if 5 j uv,
.Z=5Z/2 if 53 j u2C 11uv� v2,
Z=5Z if 5 j u2C 11uv� v2 and 53 − u2C 11uv� v2.

Now we can calculate coker'Qp
in the remaining case p D 5.

Lemma 5.7. We have

# coker'Q5
D

8<:
1 if 5 j u1v1u2v2,
52 if 53 j gcd.u21C 11u1v1� v

2
1 ; u

2
2C 11u2v2� v

2
2/,

5 otherwise.

Proof. If coker �i;Q5
D 0 for one i , then coker'Q5

D 0. The first condition is
equivalent to 5 j u1v1u2v2.

Suppose now that coker �i;Q5
¤ 0 for both i , which implies that p D 5 is ad-

ditive or good for Edi
. From Proposition 18 and Theorem 5 of [14, §II.5], we

find that H 1.GQ5
;Z=5Z/ D .Z=5Z/2 and H 1

nr.GQ5
;Z=5Z/ D Z=5Z. As in the

proof of Proposition 5.5, we have that if coker �1;Q5
D H 1.GQ5

;Z=5Z/, then
coker'Q5

Š coker �2;Q5
and vice versa. This gives the second case of the lemma,

since coker �i;Q5
D .Z=5Z/2 if and only if 53 ju2i C11uivi�v

2
i , and coker �i;Q5

D

Z=5Z otherwise.
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It remains to consider coker �1;Q5
D coker �2;Q5

D .Z=5Z/. In this case one
can show that coker �i;Q5

DH 1
nr.GQ5

;Z=5Z/, for both i ; see [6, Propositions 2.10
and 3.5; 13, §3]. Thus the kernel of coker �1;Q5

� coker �2;Q5
! coker Q5

, which
equals coker'Q5

, has five elements. This finishes the proof. �

Putting everything together yields the following proposition:

Proposition 5.8. Let p be a prime. Then

# coker'Qp

# ker'Qp

is a nonsquare if and only if one of the following occurs:

(1) p j u1v1u2v2,

(2) p j gcd.u21C 11u1v1� v
2
1 ; u

2
2C 11u2v2� v

2
2/ and p � 1 mod 5, or

(3) p3 j gcd.u21C 11u1v1� v
2
1 ; u

2
2C 11u2v2� v

2
2/ and p D 5.

6. Algorithm

In this section we present the algorithm that we used to produce the databases of
abelian surfaces that we studied. Our code was implemented in Sage [16] and is
available at [7]. The algorithm consists of two main steps and an initialization step,
which we call step 0. In step 1 one creates a database of elliptic curves having
a point P of order 5, which are parametrized by two coprime positive integers
.u; v/. One has to specify which pairs .u; v/ one wants to consider. In step 2 one
takes such a database of elliptic curves Ed , for d D u=v, goes over all pairs of
these curves and determines whether the order of the Tate-Shafarevich group of the
abelian surfaces Bd1;d2

D Ed1
�Ed2

=h.P1; P2/i is a square. For trivial reasons,
pairs of the same elliptic curve are omitted and pairs are considered to be without
order.

Algorithm 6.1.

Input: A height bound N and, optionally, a conductor bound C .

Output: The list of all unordered pairs fd1; d2g, where d1 and d2 are distinct
positive rationals of height at most N such that the elliptic curves Ed1

and Ed2
have conductor at most C , together with an indication of whether

X.Bd1;d2
=Q/ has square order.

0. Initialization. Fix a (large) integerM . For each prime number p�M determine
the prime ideals p of K DQ.�5/ above p and fix an ordering of them. Then fix
for each prime ideal p a generator tp.
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1. Creation of a database D of elliptic curves. For each pair of coprime positive
integers .u; v/ such that max.u; v/ � N , set E WD Ed , where d D u=v. If no
conductor bound is given or the conductor of E is at most C , do the following:

(a) Collect all the primes dividing 5uv.u2C 11uv� v2/ in a set S .
(b) Collect all the primes dividing uv in a set T .
(c) Collect all the primes p � 1 mod 5 dividing u2C 11uv� v2 in a set U .
(d) If v5.u2C 11uv� v2/D 3, add p D 5 to the set U .
(e) Determine the analytic rank r of E.
(f) Determine a system of r generators of a sublattice ƒ of E.Q/, such that

the points of infinite order modulo torsion are not divisible by 5. Take the
image of ƒ in Q.S; 5/ to determine a basis P of coker �_

Q
�Q.S; 5/. The

data for each basis element consists of a pair for each prime in S , where
the first entry is the corresponding element in S and the second entry is the
exponent as an element in Z=5Z.

(g) Calculate the image of ƒ under � in E 0.Q/ and determine which image
points are divisible by 5 modulo torsion. Divide if possible and determine
the nontrivial 5-torsion points of E 0.Q/ to get a sublattice ƒ0 of E 0.Q/,
such that the points of infinite order modulo torsion are not divisible by 5.
Use this information to compute dim coker �Q.

(h) Take the image of ƒ0 in K.S; 5/ to determine a basis Q for coker �Q �

K.S; 5/. The data for each basis element consists of a pair for each prime
in S and a pair for the units. For the primes p in S , the first entry is p and
the second entry is a list of elements in Z=5Z, containing as many entries
as there are prime ideals p in K over p; for the units, the first element is 1
and the second is the list of exponents of the units.

(i) Append ..u; v/; S; T; U; P;Q/ to the database D.

2. Determination of surfaces with X of nonsquare order. For each pair

..u1; v1/; S1; T1; U1; P1;Q1/ and ..u2; v2/; S2; T2; U2; P2;Q2/

of distinct elements D (modulo ordering), do the following:

(a) Set L WD #.U1\U2/� #.T1[T2/.
(b) Fix an ordering for S WD S1[S2.
(c) Write out the elements from P1[P2 into a matrix with respect to S. This

gives a matrix with entries in Z=5Z. Calculate the rank of this matrix, which
equals the dimension of coker'_

Q
.

(d) Write out the elements from Q1 [Q2 into a matrix with respect to the
prime ideals .tp/ lying over the primes of S (and with respect to the units).
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This gives a matrix with entries in Z=5Z. Calculate the rank of this matrix,
which equals the dimension of coker Q.

(e) Set G WD dim coker'_
Q
� dim coker �1;Q� dim coker �2;QC dim coker Q.

(We have dim coker'Q D dim coker �1;QCdim coker �2;Q�dim coker Q

from the sequence (3), so G D dim coker'_
Q
� dim coker'Q.)

(f) Output .d1; d2; LCG mod 2/, where di D ui=vi .

Remark. The final step is justified as follows: The local factor (without the infinite
prime) is a nonsquare if and only if L is odd, and the global factor (without the
kernels) is a nonsquare if and only if G is odd. Since the contribution of the infinite
prime and the kernels cancel, we have that X.Bd1;d2

=Q/ has nonsquare order if
and only if LCG is odd.

The databases we constructed and the results we obtained are summarized in
the following section. To conclude this section, we make some comments on our
implementation.

In the cases we considered, Step 0 is not computationally demanding. For
example, on a desktop computer it may take some seconds up to a few minutes
to compute all generators for all prime ideals of K lying over all primes up to
500,000. Step 2 is also no problem. It consists only of simple set operations and
the calculation of the ranks of small matrices with coefficients in Z=5Z. A few
million pairs of elliptic curves can be considered in under an hour.

The computationally demanding part is step 1. There are two main issues. The
most problematic calculation is the determination of r generators of a finite index
subgroup of the Mordell-Weil group, where r is the analytic rank. We used the
standard Sage method E.point_search(height_limit=18,rank_bound=r),
and in case this did not come up with enough points we tried some of the re-
maining curves with E.gens(). In several cases these methods did not provide
an answer within 48 hours on a single CPU. For these curves we used the method
MordellWeilShaInformation() in Magma [1], which could handle all our prob-
lematic curves in a few seconds each.

The second problematic calculation in the actual code is the computation of the
image of coker �Q in K.S; 5/. The computation involves factoring ideals of K that
are generated by elements of possibly very big norm. For example, the curve Ed ,
for d D 1=94, has analytic rank 1; the numerator and denominator of the image
of the point of infinite order in K.S; 5/ each have about 600 digits, and Sage was
not able to factor the corresponding ideal. As we already knew that the image was
trivial, since the dimension of coker �Q was zero, we could skip this calculation.
Considering this additional information in the algorithm allowed us to deal with
all of the curves we tried. This problem might be avoidable by trying another
strategy working modulo primes. The rest of step 1 is not a problem for moderately
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chosen d D u=v, because it consists mainly of finding the prime factorizations of
integers and of rational polynomials of degree 25 (to divide points by 5), as well
as calculating isogenies and analytic ranks. In a few hours on a desktop computer,
one could produce a database of a few thousand curves.

Remark. At various places in the algorithm we need to assume the Birch and
Swinnerton-Dyer conjecture. In step 1(e) we compute the analytic rank of an
elliptic curve. To actually compute the analytic rank of a curve E of analytic
rank r , we need to assume that the Birch and Swinnerton-Dyer conjecture holds
for all elliptic curves with analytic rank at most r � 2 and that the Mordell-Weil
rank of E is at least the analytic rank minus 1. Step 1(f) terminates if and only if
the analytic rank of E is at least the Mordell-Weil rank of E.

A second place where we use the Birch and Swinnerton-Dyer conjecture is in
the computation of the quantity G in step 2(e). For this we have to assume that
for both curves under consideration the analytic rank is precisely the Mordell-Weil
rank. However, if we have come this far in the algorithm then we know already
that the Mordell-Weil rank is at least the analytic rank.

One may replace steps 1(e) and 1(f) by an algorithm that actually computes a
basis for the Mordell-Weil group. This would make the output of the algorithm
unconditional. However, in the sample we take below, all elliptic curves have
analytic rank at most 3, and for each of them step 1(f) terminated. Hence, to speed
up our computations we preferred to determine analytic ranks rather than do full
descents.

For the elliptic curves of analytic rank at least 2 we have also to assume that
the Tate-Shafarevich group is finite. If this group were infinite then our algorithm
would detect whether # ker'�=# coker'� is a square. Here '� is the induced
morphism on the Tate-Shafarevich groups.

7. Results

Using Algorithm 6.1, in a short time one can produce millions of examples of
abelian surfaces over Q such that the order of the Tate-Shafarevich group is either
a square or five times a square. In the cases arising from two elliptic curves each of
analytic rank at most 1, the examples are completely unconditional. We constructed
two databases of elliptic curves using step 1 of the algorithm. The first database
consists of all elliptic curves Ed , where d D u=v for positive integers u and v
with max.u; v/� 50,000, and where the conductor of Ed is bounded by C D 106.
The second database consists of all elliptic curves Ed , where d D u=v for positive
integers u and v such that max.u; v/� 100.

Database 1 contains 2212 elliptic curves, all of them having analytic rank r � 2.
It is likely that there are no further elliptic curves of conductor at most 106 that
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Number of Ed of rank r

N #Ed rD0 rD1 rD2

50,000 2,212 987 1,109 116
4,617 2,212 987 1,109 116
3,375 2,211 986 1,109 116
3,072 2,210 986 1,108 116
2,695 2,209 986 1,107 116
2,000 2,200 982 1,102 116
1,000 2,174 963 1,095 116

900 2,170 961 1,093 116

Number of Ed of rank r

N #Ed rD0 rD1 rD2

800 2,159 956 1,088 115
700 2,145 951 1,079 115
600 2,119 941 1,063 115
500 2,088 921 1,052 115
400 2,066 912 1,039 115
300 1,993 872 1,009 112
200 1,818 786 929 103
100 1,391 616 697 78

50 845 394 405 46

Table 1. Summary of database 1. For each N , we give the number of curves Ed
of conductor at most 106, where d>0 has height at most N . The final three
columns give the number of such curves of analytic rank 0, 1, and 2.

have a rational torsion point of order 5, since there is no such curve with 4617 <
max.u; v/� 50,000. The database is described in more detail in Table 1, where we
state for each analytic rank the number of elliptic curves with conductor at most
106 and with max.u; v/ � N . Database 2 contains 6,087 elliptic curves. All of
them have analytic rank r � 3. See Table 2 for more details. In the following
we will present the results of step 2 of the algorithm applied to the two databases
described above.

Database 1 yields 2,445,366 abelian surfaces Bd1;d2
. It turns out that 47:01% of

these surfaces have Tate-Shafarevich groups of nonsquare order. Database 2 leads
to 18,522,741 abelian surfaces. The percentage of the nonsquare case is 49:31. The
intersection of the two databases consists of 1,391 curves, hence we considered
966,745 surfaces twice. In total this gives 20,001,362 surfaces, of which 49:16%
have a Tate-Shafarevich group of nonsquare order.

Number of Ed of rank r

N #Ed rD0 rD1 rD2 rD3

100 6,087 2,390 3,038 633 26
90 4,959 1,987 2,463 490 19
80 3,931 1,597 1,940 380 14
70 2,987 1,235 1,455 287 10
60 2,203 925 1,074 198 6

Number of Ed of rank r

N #Ed rD0 rD1 rD2 rD3

50 1,547 660 760 123 4
40 979 412 494 70 3
30 555 245 277 33 0
20 255 130 115 10 0
10 63 40 22 1 0

Table 2. Summary of database 2. For each N , we give the number of curves Ed ,
where d>0 has height at most N . The final four columns give the number of
such curves of analytic rank 0, 1, 2, and 3.
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rkE1 rkE2 #B %.XD�/ %.RE� rkB/

0 0 486,591 54.041 100.00
1 1 614,386 58.614 63.51
2 2 6,670 92.039 55.53

0 1 1,094,583 46.634 83.44
0 2 114,492 52.867 47.96
1 2 128,644 74.314 42.48

� 1 � 1 2,195,560 51.628 81.53

Table 3. Results of experiment 1 for database 1, the curves Ed of conductor at
most 106 and with d > 0 of height at most 50,000. For each pair of ranks, we list
the number of surfaces B obtained from elliptic curves in database 1 with those
ranks. The fourth column gives the percentage of these surfaces for which X has
square order, and the fifth column gives the percentage for which the exponent of
the regulator quotient is congruent modulo 2 to the rank of the surface.

We did two different experiments with the two databases. In experiment 1 we
investigated how the rank influences the squareness of the Tate-Shafarevich group.
We list the result in Table 3 for database 1 and in Table 4 for database 2. The first
three, respectively four, entries correspond to pairs .E1; E2/ with the same analytic
rank. The following three, respectively six, lines correspond to pairs with different

rkE1 rkE2 #B %.XD�/ %.RE� rkB/

0 0 2,854,855 48.598 100.00
1 1 4,613,203 48.882 80.91
2 2 200,028 73.031 44.03
3 3 325 98.154 51.08

0 1 7,260,820 51.366 91.02
0 2 1,512,870 50.567 71.36
0 3 62,140 49.891 52.73
1 2 1,923,054 52.717 59.50
1 3 78,988 60.632 46.23
2 3 16,458 84.470 48.23

� 1 � 1 14,728,878 50.051 89.59

Table 4. Results of experiment 1 for database 2, the curves Ed with d > 0 of
height at most 100. For each pair of ranks, we list the number of surfaces B
obtained from elliptic curves in database 2 with those ranks. The fourth column
gives the percentage of these surfaces for which X has square order, and the fifth
column gives the percentage for which the exponent of the regulator quotient is
congruent modulo 2 to the rank of the surface.
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C #E #B %.XD�/ %.RE� rkB/

1,000,000 2,212 2,445,366 52.990 77.84
800,000 1,966 1,931,595 53.232 77.16
600,000 1,683 1,415,403 53.758 76.06
400,000 1,351 911,925 54.215 75.24
200,000 924 426,426 55.001 73.91
100,000 623 193,753 57.074 74.29

80,000 547 149,331 57.776 74.03
60,000 470 110,215 57.990 72.75
40,000 376 70,500 59.306 73.34
20,000 245 29,890 61.288 71.72
10,000 152 11,476 62.182 72.59

5,000 110 5,995 59.783 71.79
1,000 45 990 65.556 76.77

Table 5. Results of experiment 2 for database 1. For each value of C , we list
the number of elliptic curves Ed having conductor at most C and with d > 0
of height at most 50,000. In the third column we list the number of abelian
surfaces B obtained from pairs of such curves. The fourth column gives the
percentage of these surfaces for which X has square order, and the fifth column
gives the percentage for which the exponent of the regulator quotient is congruent
modulo 2 to the rank of the surface.

analytic ranks, and the final line corresponds to pairs with analytic rank r � 1. If we
consider abelian surfaces of fixed analytic rank of at least 4 then the density of the
surfaces with square Tate-Shafarevich group seems to be significant larger than 0:5.
However the surfaces with rank larger than 2 inside our family are conjectured to
have density zero and our database contains very few such cases. The calculations
with curves of rank r � 1 all show that the nonsquare case happens in about 50%
of all cases. For both experiments we list how many abelian surfaces Bd1;d2

occur
in each of the cases, we state the percentage of the surfaces with square Tate-
Shafarevich group, and we give the percentage of in how many cases the parity
of the rank of the abelian surface agrees with the parity of the exponent of the
regulator quotient (RE). Note that the results are unconditional in case rk.Ei /� 1,
for both Ei . If one of the analytic ranks is at least 2 then we need to make some
assumptions; see the remark at the send of Section 6.

In experiment 2 we looked for the behavior of the distribution of square and
nonsquare Tate-Shafarevich group orders for increasing conductor (for database 1)
and height (for database 2) of the elliptic curves. For low bounds on the conductor
and height, the nonsquare case was less likely. When we increase these bounds
the frequency of nonsquares tends to approximately 50%. The results of experi-
ment 2 is given in Table 5 for database 1 and Table 6 for database 2. Note that for
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N #E #B %.XD�/ %.RE� rkB/

100 6,087 18,522,741 50.694 84.14
90 4,959 12,293,361 50.821 83.66
80 3,931 7,724,415 50.941 83.32
70 2,987 4,459,591 51.235 82.51
60 2,203 2,425,503 51.461 82.00
50 1,547 1,195,831 52.211 80.85
40 979 478,731 52.764 79.92
30 555 153,735 54.157 77.12
20 255 32,385 56.384 77.11
10 63 1,953 67.179 74.04

Table 6. Results of experiment 2 for database 2. For each value of N , we list the
number of curves Ed with d > 0 of height at most N , as well as the number of
abelian surfaces B obtained from pairs of such curves. The fourth column gives
the percentage of these surfaces for which X has square order, and the fifth
column gives the percentage for which the exponent of the regulator quotient is
congruent modulo 2 to the rank of the surface.

some of the surfaces we assume the weak form of the Birch and Swinnerton-Dyer
conjecture mentioned above.

The two ways we ordered the elliptic curves, via conductor and via height, are
natural orderings. It is conjectured that the densities obtained with respect to these
orderings agree. In both cases the densities seem to exist and are around 0:5. This
is in contrast to the results of Poonen and Stoll [11], who showed that the density
of nonsquare #X for Jacobians of genus-2 curves is about 0:13, while for higher-
genus curves the density tends to zero as the genus increases.

We end by giving some heuristics why we expect the density to be 50%. We
expect that for a random pair .d1 D u1=v1; d2 D u2=v2/ in Q� �Q� the global
factor is a square for 50% of the abelian surfaces and that the local factor is a
square for 50% of them, too. We also expect these distributions to be independent.
Using the 18,522,741 pairs obtained from the second database, we get numerical
evidence for the independence, as illustrated in Table 7.

Global quotient Local quotient Percentage

square square 26.08
square nonsquare 24.04

nonsquare square 25.26
nonsquare nonsquare 24.61

Table 7. Fraction of surfaces coming from database 2 with square and nonsquare
local and global quotients.
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#.U1\U2/ #.T1[T2/ Percentage

even even 46.71
even odd 49.55
odd even 1.80
odd odd 1.95

Table 8. Fraction of surfaces coming from database 2 with even and odd values
of #.U1 \U2/ and #.T1 [T2/.

Recall that the exponent of the local quotient equals #.U1\U2/� #.T1[T2/,
hence one could prove the expected densities for the local quotient by showing that
the probability that the set .T1[T2/ has an even number of elements is independent
of the probability that the set .U1 \ U2/ has an even number of elements. The
corresponding numerical result for database 2 is gathered in Table 8.

The global quotient is harder to control. The exponent of the torsion quotient
equals 3 on a density-1 subset of the pairs .d1; d2/; see [6, Proposition 4.6]. The
results of Tables 3–6 suggest that the squareness of the regular quotient, and hence
the squareness of the global quotient, is not independent of the parity of the rank.
If the ranks of both of the elliptic curves E1 and E2 are equal to 0, hence are even,
the regulator quotient equals 1, hence is a square. If one elliptic curve is of rank 0
and the other is of rank 1, then the regulator quotient is a nonsquare if and only if
coker �Q can be generated by torsion points, where � is the usual isogeny belonging
to the elliptic curve of rank 1. In database 2 we have the following situation. For the
rank-1 curves it happens in about 91:2% of the cases that �Q is surjective on the free
part. In case both ranks are equal to 1, the regulator quotient is a square in about
80:9% of the cases. For the complete second database we get that the parity of the
exponent of the regulator quotient agrees with the parity of the rank in 84:14% of
the cases. If we consider only all the elliptic curves of rank � 1, then we have that
for abelian surfaces Bd1;d2

of even rank the regulator quotient is a square in about
88:2% of the cases, and for abelian surfaces Bd1;d2

of odd rank the regulator quo-
tient is a nonsquare in about 91:0% of the cases; together, this means there is agree-
ment 89:6% of the time. Table 9 gives the situation for the complete database 2.

Regulator quotient rk.Bd1;d2
/ Percentage

square even 42.067
square odd 7.931

nonsquare even 7.927
nonsquare odd 42.075

Table 9. Fraction of surfaces Bd1;d2
coming from database 2 with square and

nonsquare regulator quotient and even and odd rank.
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Local quotient rk.Bd1;d2
/ Percentage

square even 25.670
square odd 25.675

nonsquare even 24.324
nonsquare odd 24.331

Table 10. Fraction of surfaces Bd1;d2
coming from database 2 with square and

nonsquare local quotient and even and odd rank.

In contrast to the global quotient, the squareness of the local quotient seems to
be independent of the parity of the rank of the abelian surfaces. Table 10 gives the
numerical results for database 2.
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