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curves and explicit Galois descent

Reynald Lercier, Christophe Ritzenthaler, and Jeroen Sijsling

We show how to speed up the computation of isomorphisms of hyperelliptic
curves by using covariants. We also obtain new theoretical and practical results
concerning models of these curves over their field of moduli.

1. Introduction

Let X1 and X2 be two curves of genus g � 2 over a field k. We wish to quickly
determine the (possibly empty) set of isomorphisms between them. The standard
strategy mainly consists of interpolating the isomorphisms at Weierstrass or small
degree places, depending on whether the characteristic of the field is zero or pos-
itive [17]. This yields algorithms of complexity at least O.g6/ in general, and at
least O.g2/ even in very favorable cases.

In this article we restrict to hyperelliptic curves with equations Xi W y2 D fi .x/
over a field k of characteristic different from 2. The issue can then be rephrased
in terms of isomorphisms of degree 2gC 2 polynomials under the Möbius action
of GL2.k/ (see Section 2E1). Our first contribution is to show how to compute
the set of isomorphisms in a much faster way by combining two new ideas. The
first one uses the factorization of the Möbius action into a diagonal matrix times
a second matrix whose diagonal coefficients are equal to 1. This idea allows us
to perform the computation of the isomorphisms with only univariate polynomial
calculations (see Section 2B). The second idea relies on a classical generalization
of invariants, called covariants (see Section 2C). Using covariants, we can reduce
our search for an isomorphism between f1 and f2 to the search for an isomorphism
between polynomials of lower degree. This gives us an algorithm for generic
hyperelliptic curves whose complexity is quasilinear in g (see Section 2D). In
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the genus-2 and genus-3 cases, we analyze the small locus of curves where our
strategy fails (see Section 2E2). The use of covariants was inspired by work of
van Rijnswou [30], who used covariants, along with a miraculous isomorphism
from representation theory, to generically reduce the isomorphism question for
ternary quartics to that for binary quartics.

In a related direction, thanks to covariants, we get both theoretical and practical
results on Galois descent of hyperelliptic curves over their field of moduli. As the
terminology suggests, this issue is related to moduli spaces, namely as follows.

The use of invariants allows the construction of the coarse moduli space of
smooth curves admitting a suitable representation (for example, hyperelliptic or
planar) as a geometric quotient in the sense of Mumford [28]. Such quotients
have been calculated explicitly; for instance, for genus-2 and genus-3 hyperelliptic
curves, see [21; 34]. Given a field k, the k-points of these quotients correspond to
curves whose field of moduli, in the sense of Definition 3.1, is equal to k (up to
a possible purely inseparable extension). This statement is probably well-known,
but we could not find it in the literature; therefore, we give the link between these
two definitions in Section 3.

A natural question is to determine when a curve descends to its field of moduli,
that is, when its field of moduli is also a field of definition (and hence the smallest
possible field of definition, under inclusion). Examples of curves that do not so
descend were constructed by Shimura [33] and Earle [12], among others. However,
curves of genus at most 1 always descend to their field of moduli, and models over
the field of moduli can be explicitly constructed. Moreover, in the genus-2 case,
although an obstruction to the descent may exist, as is shown in [26] and [7], the
question of explicit descent to the field of moduli is solved. One of our aims is to
obtain similar results in the general hyperelliptic case.

Many theoretical results for the general case can be found in [18]. In practice,
though, computing an explicit model of a given curve over its field of moduli can
be a very hard task, as we explain in Section 3B1. Indeed, for a given finite Galois
extension, Weil’s criterion in [35] often leads to a computational answer; the main
difficulty in our context is to work out the finite Galois extension over which a
descent isomorphism is defined. As far as we know, there is no easy general way
to find this extension, except when k is finite or when the geometric automorphism
group of the curve is trivial. Moreover, for hyperelliptic curves there is a refinement
of the descent question — namely, to ask for a descent to a model of the form
y2 D f .x/— and this introduces additional difficulties.

The “magic” of the covariant method is to reduce the descent problem to lower
genus, where a solution may be easier to determine (Theorem 3.8). In the genus-1
case, for example, there is always an explicit model over the field of moduli and
we can quickly determine a descent isomorphism to this model, thanks to the first
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part of our work. It turns out that in suitable cases, this descent induces a descent
of the original hyperelliptic curve to its field of moduli.

We illustrate this descent to the field of moduli for genus-3 hyperelliptic curves
with automorphism group .Z=2Z/3, a case which remained unsolved in [25]; see
Section 3C1. We also look at the case of genus-3 hyperelliptic curves with auto-
morphism group .Z=2Z/2; in this case the field of moduli is not always a field of
definition, and we prove that we can always find a model over an at most quadratic
extension of the field of moduli. Finally, in Section 3D we show that our method
can be used to descend families of curves with the example of a 3-dimensional
family of genus-5 hyperelliptic curves from [13].

We stress that we are merely beginning to exploit the full strength of these new
ideas. An article on nonhyperelliptic curves is in progress. We are also developing
a general version of van Rijnswou’s algorithms that is much more effective over
finite fields and number fields. Finally, we seek to obtain new theoretical and
practical descent results by analyzing the influence of twists on covariants.

We have implemented our algorithms in Magma [3]; the resulting programs,
together with other useful scripts and output that was too large to include in this
paper, may be found at

http://perso.univ-rennes1.fr/christophe.ritzenthaler/programme/hyp-desc.tgz

Notation. In the following, k denotes a field of characteristic p (prime or 0) with
algebraic closure K. Hyperelliptic curves are additionally assumed to be smooth,
so that when a singular affine model of a curve is given, we actually consider its
desingularization. Unless noted otherwise, (iso)morphisms are defined over the
base field k. We use the following notation for groups: Cn D Z=nZ; D2n is
the dihedral group with 2n elements; U6 is the group with 24 elements defined
by hS; T i with S12 D T 2 D 1 and TST D S5; V8 is the group with 32 elements
defined by hS; T i with S4 D T 8 D .ST /2 D .S�1T /2 D 1; Sn is the symmetric
group over n symbols. Finally, if f1 and f2 are polynomials or matrices or some
other such objects over a field k, we will write f1 � f2 if there exists � 2 k� such
that f1 D � �f2.

2. Isomorphisms between forms and hyperelliptic curves

2A. Isomorphisms of binary forms. Let n � 1 be an integer, let V D k2 be the
k-vector space with basis .x; z/, and let Sn.V / be the .nC 1/-dimensional vector
space of homogeneous forms

Pn
iD0 aix

izn�i of degree n in .x; z/. In the sequel,
we call an element of Sn.V / a (binary) form. When n D 0, we let S0.V / D k.
Let G be a subgroup of GL2.k/ and let M be an element of G. If f is a form
in Sn.V /, we define M:f by .M:f /.x; z/D f .M�1.x; z//, where the action of
a matrix on .x; z/ is the standard action on t.x; z/.

http://perso.univ-rennes1.fr/christophe.ritzenthaler/programme/hyp-desc.tgz
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Definition 2.1. Let f1; f2 be forms of degree n� 1 over a field k. We denote by
Isom.f1; f2/� PGL2.k/ the set of matrices M up to scalar equivalence such that
M:f1 � f2. Additionally, we write Autf1 for Isom.f1; f1/.

If Isom.f1; f2/¤∅, this set is a principal homogeneous space over Autf1. In
particular, Isom.f1; f2/DM Autf1 for any M 2 Isom.f1; f2/.

Let f be a form of degree n over k. OverK, we can write f D
Qs
iD1.˛ix�ˇiz/

ni,
where .˛i ; ˇi /2K2nf.0; 0/g and ni 2N. We associate to such a form its squarefree
part zf D

Qs
iD1.˛ix�ˇiz/, which is defined up to a multiplicative constant. The

action of M on f reflects the classical Möbius action of PGL2.K/ on the roots
.˛i W ˇi / 2 P1K of f . In particular, two forms of the same degree are K-isomorphic
if and only if there exists an M 2 GL2.K/ mapping the roots of the first form to
the roots of the second form (counting multiplicities). Hence we have:

Lemma 2.2. The group AutKf is finite if and only if s � 3, that is, if and only if
deg zf � 3. Moreover, AutKf � AutK zf .

2B. The direct approach. The classical method to compute isomorphisms between
two binary forms f1, f2 of degree n over a field k is to find a PGL2.k/-transfor-
mation of P1 which maps the roots of the first form to the root of the second form.
The most time-consuming task is to compute an isomorphism between the splitting
fields of f1 and f2. Even in the most favorable case, where k is a finite field, the
fastest algorithms need at least O.n2; 5Co.1// operations in k (see [22]).

We show here that it is actually possible to get rid of this cumbersome ring
isomorphism computation, and describe an algorithm of time complexity only
quasilinear in n. This algorithm takes as input binary forms f1 D

P
i Aix

izn�i

and f2 D
P
i Bix

izn�i of equal degree n� 3, each having at least three distinct
roots. It returns matrices representing the elements of Isom.f1; f2/.

First, we suppose that the coefficient An�1 is equal to zero. Note that this is
typically not a big restriction, since we may apply linear transformations to f1. A
notable exception is when p divides n. We therefore assume that p is prime to n.

Second, we note that determining Isom.f1; f2/ is equivalent to determining the
matrices M D .mi;j / 2 GL2.k/ such that

f2.m11xCm12z;m21xCm22z/D �f1.x; z/ for some � 2 k�: (1)

Third, because of homogeneity, we may suppose that the � in (1) equals 1,
after enlarging k by a radical extension if necessary. Note that though this radical
extension is a priori unknown, the details of the algorithm below will show how it
can be determined.

Finally, we may suppose that the M in (1) are of the form

M D

�
1=˛ ˇ=ı


=˛ 1=ı

�
:
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Of course this may not be true, because a zero may occur on the diagonal of one
of these M . However, one can fix this situation by applying a suitable change of
variables to f2.

The equation f2.m11xCm12z;m21xCm22z/D f1.x; z/ now becomes

f2.xCˇz; 
xC z/D f1.˛x; ız/:

Equating the coefficients of xn in both sides of this equation yieldsAn˛nDf2.1; 
/,
and we can write ˛n in terms of 
 . Similarly, the equality of the coefficients
of xn�1z,

ˇ
@f2

@x
.1; 
/C

@f2

@z
.1; 
/D 0;

enables us to write ˇ in term of 
 too. More generally, equating the coefficients
of xn�izi for i D 2; : : : ; n, where we substitute ˛n and ˇ in term of 
 , yields n�1
equations of the form

An

� iX
j D0

�
i

j

��
�
@f2

@z

�j�@f2
@x

�i�j @if2

@xj @zi�j

�
.1; 
/

D i Š

�
@f2

@x
.1; 
/

�i� ı
˛

�i
f2.1; 
/: (2)

Note that the left-hand side of (2) is actually a polynomial multiple of f2.x; z/,
and we can divide both sides by f2.1; 
/— see [16, Chapter 1, §§15–16] for an
elegant explanation. This yields equations of degree i.n� 2/ in 
 for the left side
and of degree i.n� 1/ in 
 and degree i in ı=˛ on the right side.

Now, dividing the square of (2) specialized at i D 3 by the cube of (2) spe-
cialized at i D 2 allows to eliminate, up to some constant, the right-hand side of
these equations, in particular the unknown ı=˛. We end up with an equation of
degree 6.n� 2/ in 
 . Similarly, when n > 3, dividing (2) specialized at i D 4 by
the square of (2) specialized at i D 2 yields an equation of degree 4.n� 2/ in 
 .
Taking the gcd, we obtain a polynomial of low degree with root 
 . Generically,
this gcd is of degree 1.

Under the assumptions made, the algorithm is therefore straightforward. For
each possible 
 , we compute ˛; ˇ and ı and check whether the resulting matrix is
in Isom.f1; f2/.

The computations involved in this algorithm (taking gcds of polynomials of
degree O.n/, taking n-th roots, and so forth) are all of time complexity quasilinear
in n.

We have implemented the algorithm in Magma (version 2.18-2) and have timed
the resulting procedure, IsGL2EquivFast, on a laptop (based on an Intel Core i7
M620 2.67GHz processor) for irreducible forms of increasing degree, the most
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Computations over F10007 Computations over Q

Genus Old Section 2B Section 2D Old Section 2B Section 2D

1 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.4 0.0 0.0
8 0.0 0.0 0.0 15 0.0 0.0

16 0.1 0.0 0.0 1150 0.1 0.0
32 0.2 0.0 0.0 — 0.2 0.0
64 0.9 0.1 0.0 — 0.6 0.0

128 6.5 0.6 0.0 — 3 0.2
256 39 3.7 0.1 — 30 0.6
512 242 25 0.5 — 382 3.4

1024 1560 165 2.5 — 5850 7

Table 1. Timings (in seconds) for isomorphisms between forms of degree 2gC2,
over F10007 and over Q. The columns labeled “Old” give timings for Magma’s
built-in function IsGL2Equivalent; the columns labeled “Section 2B” give tim-
ings for the function IsGL2EquivFast described in Section 2B; and the columns
labeled “Section 2D” give timings for the function IsGL2EquivCovariant de-
scribed in Section 2D. Entries of “—” indicate computations that were aborted
after an hour.

favorable case for the native Magma routine IsGL2Equivalent. We compare with
IsGL2Equivalent, which implements the classical method, first over the finite
field F10007, then over the rationals with coefficients bounded by ˙2. The results
are in Table 1. (See Section 2D for the definition of IsGL2EquivCovariant.)

As concluding remarks, we note first of all that this algorithm is equally suitable
for determining K-isomorphisms. Moreover, in the special case of binary quartics,
it is just as efficient as the algorithm given in [8].

2C. The covariant approach. Let k be an infinite field of characteristic p and let
n > 1 be an integer.

Definition 2.3. Let r � 0 be an integer. A homogeneous polynomial function
C W Sn.V /! Sr.V / of degree d is a covariant if there exists ! 2 Z such that, for
all M 2G and all f 2 Sn.V /, we have

C.M:f /D .detM/�! �M:C.f /:

When r D 0, such a C is called a (relative) invariant and is denoted by I .

The integer r is called the order of the covariant. If nd � r is odd, the covariant
is necessarily zero. Otherwise the integer ! is unique, and is called the weight
of the covariant. It is equal to .nd � r/=2. In the sequel, we often identify C
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with C.f / for a general form f 2 F.a0; : : : ; an/Œx; z�, where F is the prime field
of k. For instance, the identity function Sn.V /! Sn.V / is a covariant of degree 1
and order n that we identify with f itself.

Remark 2.4. The determinant factor prevents the addition of covariants of differ-
ent weights when GDGL2.K/. Hence one generally studies the graded algebra Cn
of covariants and In of invariants under the action of SL2.K/. It is easy to see
that the homogeneous elements of Cn and In are actually all the covariants or
invariants under the action of GL2.K/. Despite this ambiguity, in the rest of the
article we work with G D GL2.K/ instead of SL2.K/ because, in practice, this
choice often allows us to avoid a quadratic extension of k when looking for an
isomorphism M between two forms.

There is a large literature on how to generate invariants and covariants start-
ing from f . Gordan’s algorithm [15] allows to find a set of generators for the
algebras Cn and In thanks to the use of certain differential operators, called h-
transvectants and defined as follows. Given two covariants C1; C2 of degree d1; d2
and of order r1; r2, and given an integer h � 1, we can create a new covariant
denoted .C1; C2/h and usually defined as [29, p. 88]

.r1� h/Š.r2� h/Š

r1Šr2Š

hX
iD0

.�1/i
�
h

i

�
@hC1

@xh�i@zi

@hC2

@xi@zh�i
:

In practice, we use the univariate counterpart. Looking at C1, C2 as univariate
polynomials in x=z, we get [29, Theorem 5.6]

hŠ
.r1� h/Š.r2� h/Š

r1Šr2Š

hX
iD0

.�1/i
�
r1� i

h� i

��
r2� hC i

i

�
dh�iC1

dxh�i

d iC2

dxi
: (3)

Effective methods for computing sets of generators when K DC have been worked
out for n up to 10 (see [11; 14; 10; 2; 34; 9; 5; 4]). It has been shown that, if C is
replaced by an algebraically closed field K of characteristic p, these computations
are still valid for g D 2 if p ¤ 2; 3; 5 [24] and for g D 3 if p ¤ 2; 3; 5; 7 [25].

Our second idea to compute isomorphisms between forms of a given degree is
to reduce the question to smaller degree by using covariants. Indeed, the following
observation is a simple consequence of the definition itself.

Proposition 2.5. Let f1; f2 be forms of even degree n over a field k. Let C be a
covariant of order r for binary forms of degree n, defined over the prime field of k,
and let ci D C.fi / 2 Sr.V /. Then Isom.f1; f2/� Isom.c1; c2/. �

We illustrate this idea and study its limitations with the computation of isomor-
phisms for forms and hyperelliptic curves in Sections 2D and 2E. As we want the
covariants ci to have the smallest degree possible and Isom.c1; c2/ to be finite,
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we want that deg zci � 3. Actually, in what follows we mostly deal with forms of
even degree, so nonzero covariants will be of even order, and the smallest degree
meeting our restriction is then 4.

Consider a binary quartic q D a4x4Ca3x3zCa2x2z2Ca1xz3Ca0z4 over k
with p ¤ 2; 3. We define

I D I.q/ D 12a4a0� 3a3a1C a
2
2;

J D J.q/D 72a4a2a0C 9a3a2a1� 27a4a
2
1 � 27a0a

2
3 � 2a

3
2

as in [8]. The form q has distinct roots if and only if � D 4I 3 � J 2 ¤ 0.
Given I; J 2 K such that �¤ 0, one can easily reconstruct a form with at least
three distinct roots which is K-isomorphic to q. We can take

q D

�
x3z� 27.I 3=J 2/xz3� 27.I 3=J 2/z4 if J ¤ 0;
x3zC xz3 otherwise.

(4)

Concerning the geometric automorphisms of binary quartics, we have the fol-
lowing easy result, for which we could not find a reference.

Proposition 2.6. Let q be a binary quartic form over K, with invariants I and J .
Suppose that �¤ 0. Then

Aut q Š

8<:
A4 if I D 0;
D8 if J D 0;
D4 otherwise.

(5)

Proof. Let ƒ � P1.K/ be the set of four roots of q. Using the 3-transitivity
of the action of PGL2.K/ on P1.K/, we may assume that ƒ D f0; 1;1; �g for
some � 2K n f0; 1g. Then the transformation x 7! �=x induces the permutation
.01/.1�/ of ƒ. By symmetry, we see that Stabƒ � Symƒ contains the Vier-
gruppe D4 � Symƒ.

We are reduced to analyzing the case when Stabƒ properly contains D4. Since
the extension 1!D4! S4! S3! 1 is split and all subgroups of S3 of equal
order are conjugate, this is in turn equivalent to determining when Stabƒ contains
an additional given 2- or 3-cycle. These cases give rise to the exceptional groups
in (5) of order 8 and 12.

First let us see for which � the permutation .1�/ is in Stabƒ. In this case, the
fractional linear transformation fixes 0 and1 and is therefore of the form x 7! cx.
This only gives a new automorphism if c D�1, so �D�1 and J D 0.

In the case where the permutation .01�/ is in Stabƒ, a slightly more involved
calculation gives that �D �3C 1 for a primitive third root of unity �3, and in that
case I D 0. �

We will also need in the sequel the following result.
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Proposition 2.7. Let q be a binary quartic form defined over k with distinct roots,
and let q be the form defined by (4). Assume that I.q/ ¤ 0 and J.q/ ¤ 0. Then
a K-isomorphism between q and qD z.x3C b1xz

2C b0z
3/ is defined over any

extension of k where q has a root.

Proof. Let k0 be an extension of k where q has a root. By a change of variable
defined over k0, we can map this root to infinity and hence q onto q0 D zr , where
r D x3C a1xz

2C a0z
3 2 k0Œx; z�. Now, since

I.q0/D�a1=4; I.q/D�b1=4;

J.q0/D�a0=16; J.q/D�b0=16;

we get the relation a31=a
2
0 D b

3
1=b

2
0 . Hence if we define � 2 k0 by

�D
J.q0/I.q/

J.q/I.q0/
;

the k0-isomorphism M W .x; z/ 7! .�x; z/ maps q0 onto q. �

2D. Generic forms of even degree. We now describe an algorithm, based on the
ideas of Sections 2B and 2C, to compute the isomorphisms between two generic
binary forms f1 and f2. Our notation is as in Section 2B.

Algorithm 2.8 (IsGL2EquivCovariant).

Input: Two forms f1 and f2 of the same degree n � 3 over k, and integer
parameters Border � 3, Bdegree � 2, and Bsingular � 0.

Output: The matrices M D .mi;j /i;j in PGL2.k/ such that M:f1 � f2.

1. Order loop. For o increasing from 3 to Border do:

(a) Degree loop. For d increasing from 2 to Bdegree do:

i. Compute a random covariant C of order o and degree d using transvec-
tants.

ii. If zC.f1/ is of degree at least 3, then compute Isom. zC.f1/; zC.f2// and
return the elements which induce isomorphisms between f1 and f2.

iii. Otherwise, repeat the following procedure Bsingular times:

– Compute a new random covariant C 0 of order o and degree d using
transvectants, and replace C by the covariant C C �C 0 for some
random � in the field k.

– If zC.f1/ is of degree at least 3, compute Isom. zC.f1/; zC.f2// and
return the elements that induce isomorphisms between f1 and f2.

2. Failure. Return the result of IsGL2EquivFast(f1, f2).
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For the purpose of computing random covariants, we follow Gordan [15]. Given
an order o and a degree d , we construct recursively a covariant C D

�Q
Cd 0;o0 ; f

�
h

as a transvectant of some level h of the form f and a product of covariants of
intermediate orders o0 and degrees d 0, under the two constraints d D

P
d 0 and

oD nC
P
o0� 2h.

When n is even, the transvectant of smallest order and degree isC2;4D .f; f /n�2.
The next simplest transvectant is C3;4D ..f; f /n=2; f /n�2, of order 4 and degree 3.
For large orders and degrees, covariants must be computed “on the fly”, specialized
for f1 and f2, since expressions are far too large to be precomputed.

To completely specify the algorithm, we have to be more precise about how to
compute covariants and how to choose the loop bounds Border, Bdegree and Bsingular.
A straightforward choice for the loop bounds is Border D 4, Bdegree D 2, and
Bsingular D 0. With this choice, only the covariant C2;4 D .f; f /n�2 is tested for n
even, and when it turns out that the discriminant of this covariant vanishes, we go
back to the method IsGL2EquivFast. First note that the covariant .f; f /n�2 can
be easily computed. Using (3), we find that we can write

.nŠ/2

.n� 2/Š
.f; f /n�2 D c4x

4
C c3x

3zC c2x
2z2C c1xz

3
C c0z

4; (6)

where the coefficients ci are given by

c0 D

n�2X
kD0

.�1/k.n� k/Š.kC 2/Š an�2�kak;

c1 D

n�2X
kD0

.�1/k.n� k/Š.kC 2/Š
�
.n� 1� k/an�1�kakC .kC 1/an�2�kakC1

�
;

c2 D
1

2

n�2X
kD0

.�1/k.n� k/Š.kC 2/Š
�
.kC 2/.kC 1/akC2an�2�k

C 2.n� 1� k/.kC 1/akC1an�1�kC .n� k/.n� 1� k/akan�k
�
;

c3 D

n�2X
kD0

.�1/k.n� k/Š.kC 2/Š
�
.n� 1� k/an�kakC1C .kC 1/an�1�kakC2

�
;

c4 D

n�2X
kD0

.�1/k.n� k/Š.kC 2/Š an�kakC2:

Moreover, this setting is a good option for generic forms, as the following propo-
sition shows.

Proposition 2.9. Let n � 6 be an even integer and p ¤ 2; 3. Let f be a generic
binary form of degree n over k. Then the discriminant of C2;4.f / is nonzero.
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Proof. It is enough to find a single form f of degree n for which C2;4.f / has
nonzero discriminant. First let us suppose that p is coprime to

n.n� 2/.n� 3/.n2C 3nC 6/:

We then take f D xnCxn�1z�xzn�1� zn. Note that this form is in fact nonsin-
gular because f D .xC z/.xn�1� zn�1/. We have that

�C2;4.f /D
4

n
x3zC

2.n2�nC 6/

n2
x2zC

4

n
xz2:

This form has discriminant equal to 64.n� 3/.n� 2/.n2C 3nC 6/=n6, which is
nonzero by hypothesis.

One calculates similarly that for the other values of p ¤ 2; 3; 5, one can use the
form xnC xn�1zC xzn�1� zn instead. Indeed, under these hypotheses on p the
numerator n4C 2n3C 5n2� 12nC 36 of the resulting discriminant is coprime to
the previous numerator. To finish the proof, p D 5 can be excluded using the form
xnC xn�1zC xzn�1C 2zn. �

For nonrandom forms, especially forms of small degree with nontrivial automor-
phism group, it may be interesting to test other covariants than merely C4;2. We
then propose the following settings:

Border Dmin.8; n/; Bdegree D 10; and Bsingular D 10:

These bounds are constant in order to keep the total time complexity quasilinear
in n. More precisely, the bound Border is chosen to be at most 8 so as to take
advantage of the classification work of [25], the bound Bdegree is chosen to cover
all the possible fundamental covariants of degree 8 and with order between 4 and 8
(see [25, Table 1, p. 607]), and the bound Bsingular is chosen so as to increase the
probability that our covariants, if singular, have distinct points of singularity (so
that a linear combination may be nonsingular).

Remark 2.10. We may enter the last loop of the algorithm even if the form f has
no geometric automorphisms. For example, this happens with the degree-8 form

x7zC 7x6z2C 7x5z3C 8x4z4C 2x3z5C 10x2z6C 9xz7

over k D F11.

We have programmed Algorithm 2.8 in Magma (version 2.18-2), using the
first setting of the parameters. In particular, we have implemented the covari-
ant C4;2 using (6), and we have measured the timings of the resulting procedure,
IsGL2EquivCovariant, in the same experiments as in Section 2B. The results
are presented in Table 1. As expected, computing isomorphisms is much faster
with the help of covariants, even if the forms are split over k.
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2E. Application to isomorphisms of hyperelliptic curves.

2E1. Isomorphisms of forms and of hyperelliptic curves. A curve X of genus g� 1
defined over k will be called hyperelliptic if X=K has a separable degree-2 map
to P1K . If g > 1, the curve X then has a unique involution �, called the hyperelliptic
involution, such that QDX=h�i is of genus 0. This involution is in the center of
AutK X . We call AutK X D .AutK X/=h�i the reduced automorphism group of X .

Let us assume from now on that p ¤ 2. Then if Q has a rational point, X is
birationally equivalent to an affine curve of the form y2 D f .x/ for a separable
polynomial f of degree 2gC 1 or 2gC 2. We say that f is a hyperelliptic poly-
nomial and that X has a hyperelliptic equation if a curve in its isomorphism class
(over k) can be written in the form above. We denote by Xf the curve associated
to a hyperelliptic polynomial f . A hyperelliptic curve automatically has a hyperel-
liptic equation when k is algebraically closed or a finite field. However, for more
general fields and curves of odd genus, this is not necessarily the case (see [25]).

By homogenizing to weighted projective coordinates of weight .1; gC 1; 1/, we
obtain an equation y2D f .x; z/. Here f is seen as a form of degree 2gC2, taking
into account a “root” at infinity when degf D 2gC 1. With this convention, the
roots of f are the ramification points of the cover X=Q. We will use these conven-
tions for the roots and degree in the sequel when we speak about a hyperelliptic
polynomial or the associated form.

If f1 and f2 are hyperelliptic polynomials of even degree 2g C 2 � 6, then
isomorphisms between the hyperelliptic curves y2 D fi .x; z/ are represented by
pairs .M; e/ with

M D

�
a b

c d

�
2 GL2.k/

and e 2 k�. To such a couple, one associates the isomorphism

.x; z; y/ 7! .axC bz; cxC dz; ey/:

The representation is unique up to the equivalence .M; e/ � .�M; �gC1e/ for
� 2 k�. Hence, if M:f1 D � �f2 then the map

Isom.f1; f2/! .GL2.k/�K�/=�; M 7! .M;˙
p
�/

is well-defined up to the choice of a sign. It surjects onto Isom.Xf1
; Xf2

/, so know-
ing Isom.f1; f2/ is enough to determine Isom.Xf1

; Xf2
/ “up to the hyperelliptic

involution”.

2E2. Hyperelliptic curves of genus 2 and 3. The covariant approach requires a
covariant with at least three distinct roots, and hence it may fail in special cases,
which we can specify for small genera. We give some details on the more difficult
of the two cases: the genus-3 case. This problem is naturally stratified by the
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AutK Xf AutK Xf Normal models Xf W y2 D f

C2 f1g f D x.x� 1/.x5C ax4C bx3C cx2C dxC e/

D4 C2 f D x8C ax6C bx4C cx2C 1 or
f D .x2� 1/.x6C ax4C bx2C c/

C4 C2 f D x.x2� 1/.x4C ax2C b/

C 3
2 D4 f D .x4C ax2C 1/.x4C bx2C 1/

C2 �C4 D4 f D .x4� 1/.x4C ax2C 1/ or
f D x.x2� 1/.x4C ax2C 1/

D12 D6 f D x.x6C ax3C 1/

C2 �D8 D8 f D x8C ax4C 1

C14 C7 f D x7� 1

U6 D12 f D x.x6� 1/

V8 D16 f D x8� 1

C2 �S4 S4 f D x8C 14x4C 1

Table 2. Automorphism groups of genus-3 hyperelliptic curves. For each auto-
morphism group, we list the associated reduced automorphism group, together
with normal model(s) for the generic hyperelliptic curve with that automorphism
group. The notation for the groups is given at the end of the Introduction.

possible automorphism groups of the curve; we list these automorphism groups,
together with normal models and inclusion relations between the strata, in Table 2
and Figure 1. We assume here that p D 0 or p > 7.

C2 5-dimensional

D4 3-dimensional

C4 C 3
2 2-dimensional

C2 �C4 D12 C2 �D8 1-dimensional

C14 U6 V8 C2 �S4 0-dimensional

Figure 1. Dimensions and containment relationships among the moduli spaces
of genus-3 hyperelliptic curves with given automorphism groups.
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The moduli space of hyperelliptic curves of genus 3 is 5-dimensional, and can be
explicitly described using the Shioda invariants J2; J3; : : : ; J10 constructed in [34].
These invariants were used to speed up the calculations leading to the proof of the
following proposition, which shows that the locus where the covariant method fails
is of codimension 4 in the full moduli space. (The Magma parts of this proof, and
of other proofs in this section, may be found at the URL listed in the Introduction.)

Proposition 2.11. Let Xf =K W y2 D f .x/ be a genus-3 hyperelliptic curve such
that the form f cancels the discriminants of all its quartic covariants. Then AutXf
contains either D12, C2 �D8, or C14.

Proof. Construct

C.f /˙ � � I.f / �C 0.f /

such that degC D deg ICdegC 0, where C and C 0 run through the 14 fundamental
quartic covariants given in [25, Table 1], where I.f / equals either 1 or a Shioda
invariant Ji .f /, and where � runs through the integers between 0 and 10. We
rewrite the discriminants of these covariants in terms of Shioda invariants and add
to them the five Shioda relations [34, Theorem 3, p. 1042]. Using Magma, we have
been able to compute a Gröbner basis of this polynomial system, over Q, for the
graded reverse lexicographical (grevlex) order J2 < J3 < � � �< J10 with weights 2,
3, . . . , 10. Upon removing multiplicities, we obtain a basis with 22 polynomials,
of total degree between 8 and 20. One then checks, using the stratum formulas
from [25], that the irreducible components of the corresponding subscheme of the
moduli space either correspond to families of forms with discriminant zero or to
strata of curves Xf such that AutXf contain D12, C2 �D8, or C14. �

We see from this that curves with automorphism group D12, C2 �D8, or C14
cannot have separable quartic covariants. In these cases, using Proposition 2.5 and
the normal models from Table 2, one can show:

� if AutX is equal to D12 or U6 then the sextic covariant C3;6 D ..f; f /4; f /5
has nonzero discriminant;

� if AutX contains C2�D8 or is equal to C14 then there is no order-4 or order-6
covariant with three distinct roots.

The number of covariants considered in the proof of Proposition 2.11 — namely,
1253— is not minimal, but the redundancy helped Magma during the Gröbner
basis computations. Nevertheless, similar computations show that we can easily
reduce this number for curves with automorphism group larger than C2 (and also
impose conditions on the automorphism groups of the covariants; see Sections 3B2
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and 3C2). For example, consider the following five quartic covariants:

C2;4 D .f; f /6; C4;4 D ...f; f /4; f /6; f /4;

C3;4 D ..f; f /4; f /6; C 04;4 D ...f; f /4; f /4; f /6;

C5;4 D ....f; f /4; f /6; f /1; f /7:

If Xf =K is a genus-3 hyperelliptic curve, we find that:

� If AutXf ŠD4, one of the five covariants above has nonzero discriminant.

� If AutXf Š C4, one of C2;4, C3;4, C4;4, and C 04;4 has nonzero discriminant.

� If AutXf Š C 3
2 , one of C2;4, C3;4, and C4;4 has nonzero discriminant.

� If AutXf Š C2 �C4, the covariant C3;4 has nonzero discriminant.

Remark 2.12. Similar conclusions hold for genus 2. Specifically, there is no quartic
covariant with nonzero discriminant for the curves Xf =K such that D12 �AutXf
or AutXf 'C10. Moreover, when AutXf 'D8 then .f; f /4 has nonzero discrim-
inant, and when AutXf ' D4 then at least one of .f; f /4, ...f; f /2; f /4; f /4,
and ....f; f /2; f /3; f /2; f /6 has nonzero discriminant.

3. Explicit descent for hyperelliptic curves

3A. Field of moduli and fields of definition. Let X be a curve defined over K of
genus g � 1, let k be a subfield of K, and let F be the prime field of K.

Definition 3.1. The field of moduli of X , denoted MX , is the subfield of K fixed
by f� 2 AutK jX 'X�g.

We now restrict to hyperelliptic curves and we assume that p ¤ 2. Let X DXf
be a hyperelliptic curve over K given by a hyperelliptic polynomial f of even
degree n. Our first task is to show that we can get information on MX through the
invariants.

Lemma 3.2. Let I1; I2 be two invariants of the same degree for binary forms
of degree n. Assume that I1; I2 are defined over F and that I2.f / ¤ 0. Then
�D I1.f /=I2.f / is an element of MXf

.

Proof. It is enough to prove that �� D � for all � 2 Gal.K=MX /. By the definition
of MX , there exists an isomorphism between X and X� . We have seen that such
an isomorphism induces an element M 2 Isom.f; f � /. Therefore

�� D
I1.f

� /

I2.f � /
D
I1.� �M:f /

I2.� �M:f /
D �: �
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It is not always practical to work with a fixed quotient of invariants as above,
since I2.f / may be zero. As shown in [25], it is better to work inside a weighted
projective space, for elements of which one can define a canonical representative
as follows. Let .I1 W � � � W Im/ be an m-tuple of degree-di invariants of degree-n
binary forms, where m � 2, and suppose each Ii is defined over F . Let f be a
binary form of degree n. Let d be the gcd of the degrees di of the invariants Ii
whose values at f are nonzero. Then there exist ci 2 Z, with ci D 0 if Ii .f /D 0,
such that

P
cidi D d . We then define I D

Q
i I
ci

i . The canonical representative
of .I1.f / W � � � W Im.f // is

.I1.f /; : : : ;Im.f //D

�
I1.f /

I.f /d1=d
; : : : ;

Im.f /

I.f /dm=d

�
2Mm

X :

Proposition 3.3. Let .I1 W � � � W Im/ be a set of generators for In defined over F .
Then

MX D F.I1.f /; : : : ;Im.f //:

Proof. Let � 2 Gal.K=F.I1.f /; : : : ;Im.f ///. Since

.I1.f
� /; : : : ;Im.f

� //D .I1.f /; : : : ;Im.f //;

and since In separates the orbits of separable forms [28, p. 78], there exists a
matrix M 2 GL2.K/ such that M:f � f � , hence an isomorphism between Xf
and X�

f
. �

With our current knowledge of invariants, we are then able to compute MXf
for

nD 6; 8; 10. However, in the following applications to descent we will see that we
often do not need a complete set of invariants.

Definition 3.4. We say that k is a field of definition of X if there exists a curve X=k

such that X is K-isomorphic to X . The curve X=k is a model of X over k and we
call a geometric isomorphism between the two curves a descent isomorphism.

A classical problem is to determine the smallest field of definition of a curve.
Assuming for simplicity that every subfield of K is perfect, if MX is a field of
definition then it is the smallest possible field of definition, because it is the inter-
section of all the fields of definition (see [23] or [19, Theorem 1.5.8]). There might
be an obstruction for MX being a field of definition, but if there is none we will
denote by X a model of X over MX . In the case of hyperelliptic curves of odd
genus, there is a subtlety: The curve X does not necessarily admit a hyperelliptic
equation. However, if it does, we will say that X can be hyperelliptically defined
over MX , and we denote by f 2MX Œx� a hyperelliptic polynomial associated to
this model.

One can find in the literature several sufficient conditions for a curve to be hy-
perelliptically defined over MX . For instance, it is always the case when K is
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the algebraic closure of a finite field (see [18, Corollary 2.11]). Over an arbitrary
algebraically closed field K, the work of Huggins [18] shows that if the reduced au-
tomorphism group is noncyclic then the curve can be hyperelliptically defined over
its field of moduli. For g D 2, it has been proved that if the reduced automorphism
group is nontrivial, then the curve can be hyperelliptically defined over its field of
moduli [7]. This is also the case for g D 3, except for curves with automorphism
group isomorphic to D4 (see [25] and Section 3C2).

3B. Explicit hyperelliptic descent. Now let Xf be a hyperelliptic curve over K
that can be hyperelliptically defined over MX . We want to find f 2MX Œx� and
A 2 GL2.K/ such that f � A:f . The first task is of course to compute MX . As
we have seen, this can be done if we have a set of generators for the invariants
of the form f . However, if we do not have a full set of generators, and instead
have only some invariants .I1; : : : ; Im/ over F with m� 2, we can always try to
hyperelliptically descend Xf over the field k generated by .I1.f /; : : : ;Im.f //.
Since k �MX , if this can be achieved, we are done.

3B1. The cocycle approach. The direct approach relies on the following slightly
modified version of Weil’s cocycle relations (see [25]).

Lemma 3.5. The curve Xf can be hyperelliptically defined over k if and only
if there exists a finite extension k0=k such that for all � 2 Gal.K=k/, there exists
M� 2GL2.k0/ such thatM� 2 Isomk0.f; f � / and such that for all �; � 2Gal.K=k/,
we have M�� DM

�
�M� .

Assume that Xf can be hyperelliptically defined over k and let � WXf !Xf be
a descent isomorphism. It induces a matrix zA 2 IsomK.f; f/ � PGL2.K/. If we
choose a representative A 2GL2.K/ of zA, we can define M� D .A

�1/�A for all
� 2Gal.K=k/. It is easy to check that this choice ofM� satisfies all the hypotheses
of the lemma. Moreover, if A is defined over a Galois extension L=k then k0 � L,
and we have M� D id for all � 2 Gal.K=k/ such that �jL D id. Conversely, the
crucial step to construct such an A is to identify a Galois extension L=k satisfying
this property, since in this case one can use an explicit version of Hilbert 90 as
in [31, Proposition 3, p. 159]: For a general matrix P 2 GL2.k0/ the matrix

AD
X

� 2Gal.L=k/

P �M� (7)

gives a descent morphism.

Lemma 3.6. Assume that f is defined over an extension k0 of k. If AutKf D fidg
then we can take L to be the Galois closure of k0=k.
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Proof. We have to prove that A can be defined over such an L. Let A0 be induced
by a descent morphism. Since A0 2 IsomK.f; f/, we have

..A0/�1/�A0 2 IsomK.f; f � /D AutKf

for all � 2 Gal.K=L/; hence there exists �� 2K� such that .A0/� D �� �A0. One
can easily check that the �� satisfy a cocycle relation, so there exists e 2K� such
that �� D e=e� for all � . We then define AD e �A0, and we are done. �

As far as we know, there is no easy way to determine such an L when the
automorphism group is nontrivial (but see [25] for the case when k is a finite
field). Naïvely, one would expect to be able to construct the cocycle over the
field L0 over which all isomorphisms between f and its conjugates are defined.
Typically, what then happens is the following: Let � 2 Gal.L0=k/ be an element
of order n. Then usually no M� exists over L0 such that the cocycle condition
1DM�n DM �n�1

� � �M � �M is satisfied. We have to work with matrices of the
form �M� , where � belongs to a quadratic extension L of L0. This enlarges the
field and the Galois group, which may in turn give rise to more problems of the
same type. Even if this problem can be resolved, the computation of (7) is time-
consuming and limited to extensions of small degree (less than 50) in practice. In
the next section, we present a new idea that works extremely well to get around
these difficulties in certain cases.

Remark 3.7. In the odd genus case, it turns out that if we only want Xf to have
a model over k, instead of a hyperelliptic model, then the cocycle condition is
replaced by the condition M�� �M

�
�M� . However, even in this case we do not

know a general method to address the problem effectively.

3B2. The covariant approach. Using covariants, we can sometimes reduce the
problem of descent for Xf to a descent problem for a curve of lower genus.

Theorem 3.8. Assume that there exists a covariant C of order r � 4 such that
c D C.f / is a hyperelliptic polynomial, and let Xc W y2 D c.x/ be the associated
curve. Then MXc

�MXf
.

Moreover, if Xc is hyperelliptically defined over MXc
, then Xf is hyperellipti-

cally defined over an extension of MXf
of degree at most ŒAutK c W AutKf �.

In particular, if AutK cDAutKf and Xc is hyperelliptically defined over MXc
,

then Xf is hyperelliptically defined over MXf
.

Proof. Let � be an element of the group � D Gal.K=MXf
/. Then there exists a

K-isomorphism between Xf and X�
f

which induces a matrix M 2 IsomK.f; f � /.
Since we have the inclusion IsomK.f; f � /� IsomK.c; c� / by Proposition 2.5, we
get a K-isomorphism between Xc and X�c , so MXc

�MXf
.
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Assume now that Xc can be hyperelliptically defined over MXc
as Xc for some

form c 2MXc
Œx�. There exists A 2 IsomK.c; c/. Let us consider hD A:f , which

we can assume to be monic. We want to prove that h is defined over an extension
of MXf

DMXh
of degree at most

`D #.AutK c=AutKf /D #.AutK c=AutK h/:

First note that C.h/�A:C.f /� c. LetH �� be the subgroup consisting of the au-
tomorphisms � such that h� h� . Since we have assumed that h is monic, we even
have hD h� . We must show that #�=H � `. To this end, we note that c� D c for all
� 2� . Hence we can associate to each � 2� a matrixM 2 IsomK.h; h� /�AutK c.
In fact, this association gives rise to a well-defined class of AutK c=AutK h, so we
have defined a map � from � to AutK c=AutK h. If �.�/ D �.� 0/ then we have
h� � h�

0

, and hence ��1� 0 2H . Therefore � induces an injective map from �=H

to AutK c=AutK h, and we get our result. �

To use the theorem in a constructive way, we need a covariant that has a finite
automorphism group and for which we know how to find a hyperelliptic model
over its field of moduli. We give some examples in Sections 3C and 3D.

Remark 3.9. The fields of moduli of Xf and Xc may be different, even when the
automorphism groups of the forms are the same. For instance, let r be a root of
t2C 2t C 16=9D 0 and let f be the form

f D .x4C rx2z2C z4/.x4� 3rx2z2C z4/I

then the field of moduli of f is Q.r/, while the field of moduli of

c D .f; f /6 D .16=49/x
4
C .992=441/x2C .16=49/

is Q. Using the programs of [25], one sees that AutKf D AutK c 'D4.

3C. Application to genus-3 hyperelliptic curves. In [25], the two first authors
give algorithms for reconstructing genus-3 hyperelliptic models from given invari-
ants. These models are defined over the field of moduli, with the notable exception
of the 2-dimensional stratum C 3

2 and the 3-dimensional stratum D4. As an illus-
tration of our strategy, we see how our method applies in these remaining cases.

3C1. Descent of curves with automorphism group C 3
2 . Let X=K W y2 D f .x/ be

a genus-3 hyperelliptic curve with automorphism group isomorphic to C 3
2 . Since

the reduced automorphism group is not cyclic, [18] shows that X can be hyper-
elliptically defined over its field of moduli. In [25], we showed how to construct
a hyperelliptic equation for a model over an extension of the field of moduli of
degree at most 3. Using covariants, we can now give a method to get an equation
over the field of moduli itself.
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In Section 2E2, we checked that at least one of the quartic covariants in the
list fC2;4.f /; C3;4.f /; C4;4.f /g has nonzero discriminant. Moreover, we see by
Proposition 2.6 that the automorphism group of such a quartic is equal to D4 if
the quartic invariants I and J are both nonzero. Using some formal computations
(see the Magma scripts available at the URL listed in the Introduction), we checked
that it is always the case that at least one of the three covariants has nonzero dis-
criminant and I and J nonzero. Since AutK.f /'D4 we can use the approach
of Theorem 3.8 to find a hyperelliptic equation y2 D f.x/ over the field of moduli.
The procedure can actually be applied to a generic element of the family, but the
result is too large to be written down here; instead, we present an example.

Example 3.10. When we evaluate the parametrization formulas given in [25] for
the stratum C 3

2 at t D 0 and uD 1, we find the rational point

.j2 W j3 W � � � W j10/

D

�
0 W 0 W �

25

98
W �
25

98
W �

225

2744
W �

25

1372
W �

225

134456
W
1125

76832
W
15125

3764768

�
in the moduli space. This gives rise to the curve X W y2 D f with

f D .�32˛2C 420˛� 2275/x8=160C .�12˛2C 140˛� 700/x6=25

C˛x4C x2C .16˛2C 280˛� 2275/=12250

over Q.˛/, with ˛3�.35=2/˛2C.1925=16/˛�.18375=64/D0. By Proposition 3.3,
we have MX DQ.

Let c be the covariant .f; f /6. We find

c D
�16˛2C 180˛� 875

280
x4C

24˛2� 630˛C 3150

1225
x2z2C

4˛C 35

490
z4;

so that I D�75=49 and J D�2025=343. Then cD x3zC .25=9/xz3C .25=9/z4

is GL2.Q/-equivalent to c, is defined over MX D Q, and satisfies AutQ c ' D4.
The direct approach of Section 2B explicitly finds a Q-isomorphism M between c
and c. Its inverse M�1 is equal to .mi;j /i;j , where

m11 D 110250;

m12 D .3360˛
2
� 58800˛C 147000/ˇ2� 16800˛2C 147000˛� 18375;

m21 D .�2064˛
2
C 24780˛� 60900/ˇ3C .�3120˛2C 67200˛� 375375/ˇ;

m22 D .�5840˛
2
C 74900˛� 280000/ˇ3C .16880˛2� 173600˛C 487375/ˇ:

Here ˇ satisfies

ˇ4C
32˛2� 280˛C 350

175
ˇ2�

176˛2� 1820˛C 7350

175
D 0:
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We compute the monic form f�M:f :

fD x8C 160x7� 560x6� 2800x5C 64750x4� 91000x3

C 3010000x2� 2225000x� 9696875:

So y2 D f.x/ is a model of X over MX DQ.

3C2. Descent of curves with automorphism group D4. It is proved in [19, Chap-
ter 5] that there may be an obstruction for a genus-3 hyperelliptic curve overK with
automorphism group isomorphic to D4 to have a model over its field of moduli.
In [25], we were able to construct a model of such curves over an extension of the
field of moduli of degree at most 8. Using Theorem 3.8, we find:

Proposition 3.11. Let Xf be a genus-3 hyperelliptic curve over K with automor-
phism group isomorphic to D4. Then there exists an explicit model of X over an
at most quadratic extension of MX .

Proof. Applying the methods of Proposition 2.11 to the stratum D4 shows that
at least one of the five binary covariants C2;4.f /, C3;4.f /, C4;4.f /, C 04;4.f /,
C5;4.f / has not only a discriminant different from 0, but also I.f /¤ 0, J.f /¤ 0.
(The computations can be found in the Magma scripts available at the URL given
in the Introduction.) One then combines Proposition 2.6 and Theorem 3.8. �

We plan to investigate how to apply the theory of twists to the binary quartics
used in the application of Theorem 3.8 to give a precise characterization of the
obstruction to the descent on the field of moduli.

3D. Application to a family of Fuertes-González-Diez in genus 5. Let k be the
degree-3 Galois extension of Q defined by the irreducible polynomial t3� 3t C 1.
Let r1; r2; r3 be the roots of this polynomial in k. Then, as in [13], we can consider
the family

y2 D

6Y
iD4

�
x4� 2

�
1� 2

r3� r1

r3� r2

qi � r2

q4� r1

�
x2C 1

�
(8)

of genus-5 hyperelliptic curves, with q4; q5; q6 in Q. It was proved in [13] that the
members of this family have field of moduli equal to Q and automorphism group
isomorphic to C 3

2 . Moreover, it was claimed in [13] that these curves cannot be
hyperelliptically defined over Q, in contradiction with [18]. However, the proof
turns out to contain a subtle error. Still, the explicit descent of any of the member
of the family was extremely hard.

As in Example 3.10, we can use Theorem 3.8 to construct an explicit descent
for the curves in this family. For this particular family, the descent can even be per-
formed uniformly to yield a general expression in q4; q5; q6. Let F D k.q4; q5; q6/
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be the rational function field over k in three indeterminates, and define the binary
quartic form f 2 F Œx; z� as the homogenization of the right-hand side of (8). Let c
be the transvectant .f; f /10. Then c is a covariant of order 4 with nonzero discrimi-
nant and nonzero I.c/ and J.c/, and hence has automorphism group D4. The field
of moduli of Xc is contained in the field of moduli of Xf , which is a subfield of
Q.q4; q5; q6/; therefore the quartic c as in (4) is defined over Q.q4; q5; q6/ and is
GL2.F /-equivalent to c.

Now let L be the degree-4 extension of F defined by the dehomogenization of c.
From Proposition 2.7, we can explicitly construct an L-isomorphism between c
and c. This transformation gives a descent of the curve corresponding to c, which
by Theorem 3.8 also yields a descent of the curve corresponding to f . The resulting
expression, though indeed defined over the rationals, is huge and impossible to give
here. (The computations above, their final result, and the program to compute the
descent of any given specialization are available at the URL listed in the Introduc-
tion.) However, we can give an example for a specialization.

Example 3.12. Take q4 D 1, q5 D 2, q6 D 3. The hyperelliptic equation over Q is

y2 D 199950247575x12� 296949924611352x11� 66659816245812750x10

� 15421975495507360656x9C 2005635519424553708745x8

C 130792088864772419461200x7C 44148454149188354317253820x6

� 9718847083908693649803959136x5

C 93749472927036312839424054441x4

C 86331359417888600607650948443656x3

� 7423912080663182513045938205161326x2

C 249511197641168404939510946041515184x

� 3006656143858472317763973580984260681:
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