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We decompose the Jacobian varieties of hyperelliptic curves up to genus 20,
defined over an algebraically closed field of characteristic zero, with reduced
automorphism group A4, S4, or A5. Among these curves is a genus-4 curve
with Jacobian variety isogenous to E2

1 �E
2
2 and a genus-5 curve with Jacobian

variety isogenous to E5, for E and Ei elliptic curves. These types of results
have some interesting consequences for questions of ranks of elliptic curves and
ranks of their twists.

1. Introduction

Curves with Jacobian varieties that have many elliptic curve factors in their de-
compositions up to isogeny have been studied in many different contexts. Ekedahl
and Serre found examples of curves whose Jacobians split completely into elliptic
curves (not necessarily isogenous to one another) [13] (see also [27], [14, §5]).
In genus 2, Cardona showed connections between curves whose Jacobians have
two isogenous elliptic curve factors and Q-curves of degree 2 and 3 [5]. There
are applications of such curves to ranks of twists of elliptic curves [24], results on
torsion [19], and cryptography [12].

Let JX denote the Jacobian variety of a curve X and let � represent an isogeny
between abelian varieties. Consider the following question.

Question 1. For a fixed genus g, what is the largest positive integer t such that
JX �E

t �A for some genus-g curve X over the algebraic closure of Q, where E
is an elliptic curve and A an abelian variety?
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In [22] the author developed a method for decomposing the Jacobian variety
of a curve X with automorphism group G, based on idempotent relations in the
group ring QŒG�. This technique yielded thitherto unknown examples of curves
of genus 4 through 6 where t is as large as is possible — that is, t is equal to
the genus g. For genus 7 through 10, examples of curves whose Jacobians have
many isogenous elliptic curves in their decompositions were also found. All these
examples are nonhyperelliptic curves.

In this paper we apply the methods of [22] to hyperelliptic curves with certain
automorphism groups. Let X be a hyperelliptic curve defined over a field of char-
acteristic 0, with hyperelliptic involution !. The automorphism group of the curve
X modulo the subgroup h!i is called the reduced automorphism group and must
be one of the groups Cn, Dn, A4, S4, or A5; here Cn represents the cyclic group
of order n and Dn is the dihedral group of order 2n. This follows from a result of
Dickson on transformations of binary forms [7].

We study hyperelliptic curves with reduced automorphism group one of A4, S4,
or A5. These reduced automorphism groups were chosen for two reasons. First,
results from genus 2 and 3 suggest that these families may yield curves with many
isogenous elliptic curve factors in higher genus. Second, for any genus, the list of
full automorphism groups with reduced automorphism group one of A4, S4, or A5

is manageable.
Section 3 reviews the method from [22], and Section 4 gives proofs of results for

genus up to 20. This bound of genus 20 is somewhat arbitrary. The technique will
work for any genus, but the computations become more complicated as the genus in-
creases. Section 5 discusses some computational obstructions to producing results
in higher genus. In that section we also work with families of curves with three par-
ticular automorphism groups. These groups have special properties that allow us to
prove results about the decomposition of the curves’ Jacobians for arbitrary genus.

A brief word on fields of definition: Unless specifically stated otherwise, curves
in this paper are defined over an algebraically closed field of characteristic zero.
The method of decomposition works generally for curves over any field; however,
a particular field must be specified in order to determine the automorphism group
of the curve. In each individual case, the decomposition results will hold for the
Jacobian of the curve defined over any field over which every geometric automor-
phism of the curve is defined. Partial answers to Question 1 are known for curves
over fields of characteristic p; see, for example, [28; 17; 9].

2. Overview of results

The decompositions of Jacobian varieties of hyperelliptic curves with reduced au-
tomorphism group A4, S4, or A5 up to genus 20 are summarized in Theorem 5.
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Jacobian varieties with several isogenous elliptic curve factors are also found, and
many are improvements on the best known results for t [22]. Two results of par-
ticular interest are:

Theorem 1. The hyperelliptic curve of genus 4 with affine model

X W y2
D x.x4

� 1/.x4
C 2
p
�3 x2

C 1/

has a Jacobian variety that decomposes as E2
1 �E

2
2 for two elliptic curves Ei .

Theorem 2. The genus-5 hyperelliptic curve with affine model

X W y2
D x.x10

C 11x5
� 1/

has JX �E
5 for the elliptic curve E with equation y2 D x.x2C 11x� 1/.

The first theorem is an improvement from best decompositions of genus-4 hy-
perelliptic curves from [23]. The second theorem is, to the author’s knowledge,
the first example in the literature of a hyperelliptic curve with a Jacobian variety
that decomposes into five isogenous elliptic curves over a number field. Proofs of
these results may be found in Section 4.

3. Review of technique

Fix an algebraically closed field k of characteristic 0. Throughout the paper the
word curve will mean a smooth projective variety of dimension 1. For simplicity,
models are affine, when given. Any parameters in the affine model (labeled as “ai ”)
are elements of k. Also, �n will denote a primitive n-th root of unity.

Given a curve X of genus g over k, the automorphism group of X is the auto-
morphism group of the field extension k.X/ over k, where k.X/ is the function
field of X . This group will always be finite for g � 2. Throughout, G will denote
the automorphism group of a curve X . In the case of hyperelliptic curves over
algebraically closed fields of characteristic zero, all possible automorphism groups
are known for a given genus [2; 4; 25].

Kani and Rosen [20] proved a result connecting certain idempotent relations in
the endomorphism algebra End0JX D .EndJX /˝Z Q to isogenies among images
of JX under endomorphisms. If ˛1 and ˛2 are elements of End0JX , we write
˛1 � ˛2 if �.˛1/D �.˛2/ for all Q-characters � of End0JX .

Theorem 3 [20, Theorem A]. Let "1; : : : ; "n; "
0
1; : : : ; "

0
m 2End0JX be idempotents.

Then the idempotent relation

"1C � � �C "n � "
0
1C � � �C "

0
m

holds in End0JX if and only if there is the isogeny relation

"1.JX /� � � � � "n.JX /� "
0
1.JX /� � � � � "

0
m.JX /:
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There is a natural Q-algebra homomorphism from QŒG� to End0JX , which we
will denote by e. It is a well-known result of Wedderburn [11, §18.2] that any
group ring of the form QŒG� has a decomposition into a direct sum of matrix rings
over division rings �i :

QŒG�Š
M

i

Mni
.�i /: (1)

Define �i;j to be the idempotent in QŒG� which is the zero matrix for all com-
ponents except the i-th component where it is the matrix with a 1 in the .j; j /
position and zeros elsewhere. The following equation is an idempotent relation in
QŒG�:

1QŒG� D

X
i;j

�i;j :

Applying the map e to this relation and using Theorem 3, we find

JX �

M
i;j

e.�i;j /JX : (2)

Recall that our primary goal is to study isogenous elliptic curves that appear
in the decomposition above. In order to identify which summands in (2) have
dimension 1, we use results from [15, §5.2] to compute the dimensions of these
factors. This requires a certain representation of G.

Definition. The Hurwitz representation V of a group G is defined by the action
of G on H1.X;Z/˝Q.

The character of this representation is computed as follows. Let � WX!Y DX=G

be the natural map from X to its quotient by G. Suppose � is branched at s points,
with monodromy g1; : : : ; gs 2G (unique up to conjugation). Let �triv be the trivial
character of G, and for each i let �hgi i

denote the character of G induced from the
trivial character of the subgroup hgi i of G; observe that �h1Gi

is the character of
the regular representation. If we let gY denote the genus of Y , then the character
of the Hurwitz representation V is defined as

�V D 2�trivC 2.gY � 1/�h1Gi
C

X
i

�
�h1Gi

��hgi i

�
: (3)

Note that for a hyperelliptic curve X , we have X=G Š P1 (since G contains the
hyperelliptic involution) and so gY D 0. Also, �hgi i

D �hgj i
if hgi i and hgj i are

conjugate subgroups.
Via the regular representation, each element gi can be written as an element of

the symmetric group Sn, where n D #G. The monodromy type of a cover will
be written as an ordered tuple .t .a1/

1 ; : : : ; t
.as/
s / where t .ai /

i corresponds to gi and
denotes a permutation consisting of ai ti -tuples. If �i is the irreducible Q-character
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associated to the i-th component from (1), then the dimensions of the summands
in (2) are

dim e.�i;j /JX D
1
2

dimQ �i;jV D
1
2
h�i ; �V i: (4)

See [15, §5.2] for more information on the dimension computations.
Hence, given the automorphism group G of a curve X and monodromy for the

cover X over Y , to compute these dimensions we first determine the degrees of the
irreducible Q-characters of G, which will be the ni values in (1). Next we identify
elements of the automorphism group that satisfy the monodromy conditions. We
compute the Hurwitz character for this group and covering using (3), and finally
compute the inner product of the irreducible Q-characters with the Hurwitz char-
acter.

Again, our particular interest is in factors that are isogenous to one another. The
following proposition gives a condition for the factors to be isogenous.

Proposition 4 [23]. With notation as above, e.�i;j1
/JX � e.�i;j2

/JX .

Suppose a curve of genus g has automorphism group with group ring decom-
position as in (1) with at least one matrix ring of degree close to g; that is, one
ni value close to g— call it nj . If the computations of dimensions of abelian variety
factors outlined above lead to a dimension-1 variety in the place corresponding to
that matrix ring (the j -th place), Proposition 4 implies that the Jacobian variety
decomposition consists of nj isogenous elliptic curves. Our goal then is to apply
the steps above to hyperelliptic curves of genus up to 20 and with reduced auto-
morphism group isomorphic to A4, S4, or A5.

4. Results

For hyperelliptic curves over an algebraically closed field of characteristic zero, the
existence of curves of a fixed genus with reduced automorphism group isomorphic
to one of A4, S4, or A5 is completely determined by whether the genus is in certain
residue classes modulo 6, 12, and 30, respectively [25].

For each reduced automorphism group there are several possible full automor-
phism groups. Table 1 lists all groups and the modular conditions for their existence
in a certain genus, as well as monodromy type, listed using the notation described
in the previous section. The data from this table is taken from [25, Table 1, p. 250].
Explanations of how this data was produced may be found in [25], along with affine
models for all of the corresponding families. The groups

W2 D hu; v j u
4; v3; vu2v�1u2; .uv/4i;

W3 D hu; v j u
4; v3; u2.uv/4; .uv/8i

mentioned in the table are both of order 48.



492 JENNIFER PAULHUS

Automorphism group

Reduced Full Genus restrictions Monodromy

A4 A4 �C2 5 mod 6 .3.8/; 3.8/; 2.12/; : : : ; 2.12//

A4 �C2 1 mod 6 .3.8/; 6.4/; 2.12/; : : : ; 2.12//

A4 �C2 3 mod 6, g > 3 .6.4/; 6.4/; 2.12/; : : : ; 2.12//

SL2.3/ 2 mod 6, g > 2 .4.6/; 3.8/; 3.8/; 2.12/; : : : ; 2.12//

SL2.3/ 4 mod 6 .4.6/; 3.8/; 6.4/; 2.12/; : : : ; 2.12//

SL2.3/ 0 mod 6, g > 6 .4.6/; 6.4/; 6.4/; 2.12/; : : : ; 2.12//

S4 S4 �C2 11 mod 12 .3.16/; 4.12/; 2.24/; : : : ; 2.24//

S4 �C2 3 mod 12 .6.8/; 4.12/; 2.24/; : : : ; 2.24//

GL2.3/ 2 mod 12 .3.16/; 8.6/; 2.24/; : : : ; 2.24//

GL2.3/ 6 mod 12 .6.8/; 8.6/; 2.24/; : : : ; 2.24//

W2 5 mod 12 .4.12/; 4.12/; 3.16/; 2.24/; : : : ; 2.24//

W2 9 mod 12 .4.12/; 4.12/; 6.8/; 2.24/; : : : ; 2.24//

W3 8 mod 12 .4.12/; 3.16/; 8.6/; 2.24/; : : : ; 2.24//

W3 0 mod 12 .4.12/; 6.8/; 8.6/; 2.24/; : : : ; 2.24//

A5 A5 �C2 29 mod 30 .3.40/; 5.24/; 2.60/; : : : ; 2.60//

A5 �C2 5 mod 30 .3.40/; 10.12/; 2.60/; : : : ; 2.60//

A5 �C2 15 mod 30 .6.20/; 10.12/; 2.60/; : : : ; 2.60//

A5 �C2 9 mod 30 .6.20/; 5.24/; 2.60/; : : : ; 2.60//

SL2.5/ 14 mod 30 .4.30/; 3.40/; 5.24/; 2.60/; : : : ; 2.60//

SL2.5/ 20 mod 30 .4.30/; 3.40/; 10.12/; 2.60/; : : : ; 2.60//

SL2.5/ 24 mod 30 .4.30/; 6.20/; 5.24/; 2.60/; : : : ; 2.60//

SL2.5/ 0 mod 30 .4.30/; 6.20/; 10.12/; 2.60/; : : : ; 2.60//

Table 1. Full automorphism groups of hyperelliptic curves with certain reduced
automorphism groups. For each group QG in the first column, we list the pos-
sible automorphism groups G occurring for hyperelliptic curves with reduced
automorphism group QG. The third column lists restrictions on the genus g of
hyperelliptic curves with the given automorphism group, and the fourth column
lists the monodromy of such curves.

Applying the technique in Section 3 to hyperelliptic curves of genus 3 through
20 produces results that are summarized in the following theorem.

Theorem 5. For hyperelliptic curves up to genus 20 defined over an algebraically
closed field of characteristic zero with reduced automorphism group A4, S4, or A5,
Table 2 gives a decomposition of the Jacobian of these curves up to isogeny. In the
table Ei represents an elliptic curve and Ai;j is an abelian variety of dimension
i > 1, indexed if necessary by j . The dimension of the family with each automor-
phism group in the moduli space is also included.
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Automorphism Jacobian
Genus Group Dimension decomposition

3 S4 �C2 0 E3

4 SL2.3/ 0 E2
1 �E

2
2

5 A4 �C2 1 E3 �A2

W2 0 E2
1 �E

3
2

A5 �C2 0 E5

6 GL2.3/ 0 E2
1 �E

4
2

7 A4 �C2 1 E1 �E
3
2 �E

3
3

8 SL2.3/ 1 A2
2;1 �A

2
2;2

W3 0 E4 �A2
2

9 A4 �C2 1 E3 �A3
2

W2 0 E1 �E
2
2 �A

3
2

A5 �C2 0 E4
1 �E

5
2

10 SL2.3/ 1 A2
2 �A

2
3

11 A4 �C2 2 A2 �A
3
3

S4 �C2 1 E3 �A2;1 �A
3
2;2

12 SL2.3/ 1 A2
2 �A

2
4

W3 0 A2
2;1 �A

4
2;2

13 A4 �C2 2 E �A3;1 �A
3
3;2

14 SL2.3/ 2 A2
3 �A

2
4

GL2.3/ 1 A4
2 �A

2
3

SL2.5/ 0 E4
1 �E

6
2 �A

2
2

15 A4 �C2 2 A3
2 �A

3
3

S4 �C2 1 E1 �E
2
2 �A

3
2;1 �A

3
2;2

A5 �C2 0 E4
1 �E

5
2 �A

3
2

16 SL2.3/ 2 A2
3 �A

2
5

17 A4 �C2 3 E �A4;1 �A
3
4;2

W2 1 E �A2
2 �A

3
4

18 SL2.3/ 2 A2
3 �A

2
6

GL2.3/ 1 A2
3;1 �A

4
3;2

19 A4 �C2 3 E �A3
2 �A

3
4

20 SL2.3/ 3 A2
4 �A

2
6

W3 1 A4
3 �A

2
4

SL2.5/ 0 E4 �A2
2;1 �A

6
2;2

Table 2. Jacobian variety decompositions. For each genus g and automorphism
group G, we list the dimension of the moduli space of genus-g hyperelliptic
curves with automorphism group G, along with a decomposition of the Jacobian
of these curves. The notation is explained in Theorem 5.

The technique described in the previous section does not necessarily guarantee
the finest decomposition of the Jacobian varieties. We have not ruled out the pos-
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sibility that some of the abelian varieties e.�i;j /JX from (2) decompose further.
In fact, in many cases there will be subfamilies where the decomposition is finer.
However, for those curves in Table 2 which have affine models defined over Q, we
found a finite field where the factorization of the zeta function of that curve is no
better than what our Jacobian decompositions predict. Hence, in those cases, the
decomposition cannot be any finer, at least over Q. Using ideas similar to those em-
ployed by Stoll [26, §2] one could show that, in fact, many of these decompositions
cannot be refined even over the algebraic closure of Q.

4.1. Finding monodromy and Q-characters. The list of possible automorphism
groups for hyperelliptic curves is well known, and most of these groups have easily
identifiable character tables; thus, for hyperelliptic curves the most computationally
difficult part of the technique summarized in Section 3 is finding the branching
data. Breuer [3] developed an algorithm to generate a database of automorphism
groups of Riemann surfaces, and he implemented this algorithm, up to genus 48,
in the computer algebra package GAP [16]. Breuer’s algorithm relies on the clas-
sifications of small groups in GAP. While the algorithm itself computes branching
data, specific information about the monodromy was not recorded when Breuer
originally ran the program.

We have now implemented in Magma [1] a version of Breuer’s algorithm which
does output the monodromy data. In cases below where the monodromy may not
be obvious (for instance, if there is more than one conjugacy class of elements
of a certain order for a particular automorphism group), our program provides the
monodromy data.

We use Magma to compute the Hurwitz character �V and the inner product
of �V with the irreducible Q-characters. The Q-character tables for the groups
considered in this paper are well known in the literature so, alternatively, the com-
putations could be done by hand.

4.2. Reduced automorphism group A4. If a hyperelliptic curve has reduced au-
tomorphism group isomorphic to A4, its full automorphism group is isomorphic to
SL2.3/ or A4 �C2. For 3� g � 20 the former group occurs in genus 4 and in all
even genera greater than or equal to 8, while the latter group occurs in odd genera
at least 5.

The group SL2.3/ has seven conjugacy classes. The identity, the unique element
of order 2, and all the order-4 elements form three distinct conjugacy classes. The
order-3 and order-6 elements each split into two conjugacy classes. The group ring
QŒG� has Wedderburn decomposition

QŒSL2.3/�ŠQ˚Q.�3/˚M2.Q/˚M2.Q.�3//˚M3.Q/:
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Conjugacy class order

Character 1 2 3 3 4 6 6

�1 1 1 1 1 1 1 1

�2 2 2 �1 �1 2 �1 �1

�3 2 �2 �1 �1 0 1 1

�4 4 �4 1 1 0 �1 �1

�5 3 3 0 0 �1 0 0

Table 3. Q-character table for SL2.3/.

So SL2.3/ has two Q-characters of degree 1 (which we denote by �1 and �2), two
of degree 2 (which we denote by �3 and �4), and one of degree 3 (which we denote
by �5). The values of these characters on the conjugacy classes of SL2.3/ are well
known [10, §38] and given in Table 3.

Recall from Section 2:

Theorem 1. The hyperelliptic curve of genus 4 with affine model

X W y2
D x.x4

� 1/.x4
C 2
p
�3 x2

C 1/

has a Jacobian variety that decomposes as E2
1 �E

2
2 for two elliptic curves Ei .

Everett Howe used an order-3 automorphism of X to compute that one of the
factors of JX (up to isogeny), say E1, is given by E1 with equation y2 D x3 �

21x2C 12xC 8.

Proof. Shaska [25, Tables 1 and 2, pp. 250, 252] shows that the curve X has
automorphism group SL2.3/ and monodromy type .4.6/; 3.8/; 6.4//. Thus the mon-
odromy consists of elements g1, g2, and g3 2 SL2.3/ of order 4, 3, and 6, respec-
tively. As noted above, the six elements of order 4 are all in the same conjugacy
class. Thus �hgi (the induced character of the trivial character of the subgroup
generated by g 2 G) will be the same for all g of order 4, and likewise for the
elements of order 3 and the elements of order 6, since all order-3 elements generate
conjugate subgroups, as do the order-6 elements. Computing the Hurwitz character
yields

�V D 2�triv� 2�h1Gi
C .�h1Gi

��hg1i
/C .�h1Gi

��hg2i
/C .�h1Gi

��hg3i
/

D 2�trivC�h1Gi
��hg1i

��hg2i
��hg3i

:

The value of �V on conjugacy classes (listed in the same order as in Table 3) is
the 7-tuple .8;�8;�1;�1; 0; 1; 1/. Computing the inner product of the irreducible
Q-characters with �V yields a value of 2 for each of the degree-2 characters and 0
for all the other characters. Applying (4) and Proposition 4 gives JX �E

2
1 �E

2
2 . �
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Similar results may be found for g � 8. See Section 5 for the generalization to
arbitrary even genus.

The group A4 �C2 has four irreducible Q-characters of degree 1 and two of
degree 3. For genus 5, the family of curves with affine model

X W y2
D x12

� ax10
� 33x8

C 2ax6
� 33x4

� ax2
C 1

has automorphism group A4 �C2 and monodromy type .3.8/; 3.8/; 2.12/; 2.12//;
see Shaska [25, Tables 1 and 2, pp. 250, 252]. We compute the Hurwitz character
using the monodromy found through Breuer’s algorithm, and then compute the
inner products of the irreducible Q-characters and the Hurwitz character. The inner
product is 4 for one of the degree-1 characters and 2 for one of the degree-3 char-
acters. By (4), the Jacobian variety of X decomposes into a 2-dimensional variety
and three 1-dimensional varieties. Proposition 4 asserts that the three elliptic curves
in this decomposition are isogenous to one another, so JX � A2 �E

3 for some
abelian surface A2 and elliptic curve E.

Computations similar to those in the genus-5 case give the decompositions for
higher odd genus described in Table 2.

4.3. Reduced automorphism group S4. When a hyperelliptic curve has reduced
automorphism group S4, there are four options for its full automorphism group:
S4 � C2, GL2.3/, and the groups W2 and W3 defined at the beginning of this
section. (The notation for the latter two groups of order 48 is as in [25].)

In genus 3, 11, and 15 there are curves with full automorphism group S4 �C2.
In [23], the Jacobian variety of the genus-3 curve was decomposed into the product
of three isogenous elliptic curves. This result also appears in the literature using
other techniques [21].

The decompositions of the families of genus-11 and genus-15 curves may be
found using monodromy computed with Breuer’s algorithm. The group S4 �C2

has three irreducible Q-characters of degree 1, two of degree 2, and three of de-
gree 3. Combining this information with the technique in Section 3 yields the
decompositions listed in Table 2.

As determined in [25], there is one genus-6 curve, up to isomorphism, with
automorphism group GL2.3/:

X W y2
D x.x4

� 1/.x8
C 14x4

C 1/:

Additionally, there are 1-dimensional families of curves of genus 14 and 18 with
this automorphism group.

The group GL2.3/ has two irreducible Q-characters each of degrees 1, 2, and 3,
as well as one of degree 4. In genus 6, the inner products of the irreducible
Q-characters with the Hurwitz character give values of 2 for one of the degree-2
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characters and for the degree-4 character; from this we may conclude that JX �

E2
1 �E

4
2 . Similar computations yield JX � A

2
3 �A

2
4 for the genus-14 curves and

JX � A
2
3;1 �A

4
3;2 for the genus-18 curves.

For genus 5 and 9 there is one curve with automorphism group W2, and in
genus 17 there is a 1-dimensional family of curves with this automorphism group.
In genus 5 the curve has an affine model

X W y2
D x12

� 33x8
� 33x4

C 1;

in genus 9 a model is

X W y2
D .x8

C 14x4
C 1/.x12

� 33x8
� 33x4

C 1/;

and in genus 17 a model is

X W y2
D .x12

�33x8
�33x4

C1/
�
x24
Cax20

C.759�4a/x16

C2.3aC1288/x12
C.759�4a/x8

Cax4
C1

�
:

This group has eight irreducible Q-characters: three of degree 1, two of degree 2,
and three of degree 3. Computations with the genus-5 curve yield JX �E

2
1 �E

3
2 ,

while for genus 9 we have JX �E1�E
2
2 �A

3
2 and for genus 17, JX �E�A

2
2�A

3
4.

In genus 8 the curve with model

X W y2
D x.x4

� 1/.x12
� 33x8

� 33x4
C 1/

has automorphism group W3 and monodromy type .4.12/; 3.16/; 8.6//. The irre-
ducible Q-characters consist of two each of degrees 1, 2, and 3, as well as one of
degree 4. Computations show the Jacobian of this curve decomposes as A2

2 �E
4.

For higher-genus curves with this automorphism group, see the general results in
Section 5.3.

In [22], in the course of considering different families of curves up to genus
10 we found a genus-8 curve with Jacobian decomposition A4 �E

2
1 �E

2
2 , so the

result above is an improvement on our previous results on the bound on t from
Question 1 in the introduction.

4.4. Reduced automorphism group A5. As we see from Table 1, if a hyperelliptic
curve has reduced automorphism group isomorphic to A5, its full automorphism
group is isomorphic to A5�C2 or SL2.5/. In genus 14 and 20 there is a hyperellip-
tic curve with automorphism group isomorphic to SL2.5/. This group has special
properties that allow us to prove results about the decomposition of Jacobians gen-
erally for any genus. In Section 5.2 we discuss the general results.

Up to isomorphism, there is one curve of genus 5 with automorphism group
A5 �C2, one of genus 9, and one of genus 15. Here we prove the following result,
which was mentioned in Section 2.
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Conjugacy class order

Character 1 2 2 2 3 5 5 6 10 10

�1 1 1 1 1 1 1 1 1 1 1

�2 1 �1 1 �1 1 1 1 �1 �1 �1

�3 6 �6 �2 2 0 1 1 0 �1 �1

�4 6 6 �2 �2 0 1 1 0 1 1

�5 4 4 0 0 1 �1 �1 1 �1 1

�6 4 �4 0 0 1 �1 �1 �1 1 1

�7 5 5 1 1 �1 0 0 �1 0 0

�8 5 �5 1 �1 �1 0 0 1 0 0

Table 4. Q-character table for A5 �C2.

Theorem 2. The genus-5 hyperelliptic curve with affine model

X W y2
D x.x10

C 11x5
� 1/

has JX �E
5 for the elliptic curve E with equation y2 D x.x2C 11x� 1/.

Proof. We see from [25, §4.5] that the curve X has automorphism group A5 �C2

and monodromy type .3.40/; 10.12/; 2.60//— although note that the coefficient 11
in the model given for X was misprinted in [25]. The irreducible Q-characters of
this group consist of two characters each of degrees 1, 3, 4, and 5. The monodromy
consists of elements g1, g2, and g3 2 G of order 3, 10, and 2 respectively; this
may be computed using Breuer’s algorithm [3]. Table 4 gives the values of the
irreducible Q-characters on the conjugacy classes of A5 �C2.

The Hurwitz character is

�V D 2�triv� 2�h1Gi
C .�h1Gi

��hg1i
/C .�h1Gi

��hg2i
/C .�h1Gi

��hg3i
/

D 2�trivC�h1Gi
��hg1i

��hg2i
��hg3i

and its value on conjugacy classes (in the same order as Table 4) is given by the 10-
tuple .10;�10; 2;�2;�2; 0; 0; 2; 0; 0/. The inner product of each of the irreducible
Q-characters with �V results in a value of 0 for all except one of the degree-5
characters, where the inner product is 2. By (4) and Proposition 4 this gives the
desired decomposition. �

Applying this same idea to the genus-9 curve with affine model

X W y2
D x20

� 228x15
C 494x10

� 228x5
C 1

yields inner products with a value of 0 for all irreducible Q-characters except for
one degree-4 and one degree-5 character, where the inner product is 2. Again,
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by (4) and Proposition 4, we find that JX is isogenous to E4
1 �E

5
2 , for elliptic

curves Ei .
Similar computations in genus 15 for a curve with model

X W y2
D x.x10

C 11x� 1/.x20
� 228x15

C 494x10
� 228x5

C 1/

yield the decomposition JX �E
4
1 �E

5
2 �A

3
2.

5. General results

One obstacle to extending these results to higher genus is the computation of the
monodromy for the cover X!X=G. Beyond genus 48, Breuer’s algorithm cannot
currently compute the monodromy in many cases.

The groups SL2.3/, SL2.5/, and W3 all share the following property: If X is
a curve with automorphism group isomorphic to one of these groups, and if m
is the order of any element of the monodromy of the cover X over X=G, then
�hgi i

D �hgj i
whenever jgi j D jgj j Dm. We will denote this common character

by �.m/. Note that this property allows us to compute the Hurwitz character for X
just by knowing the monodromy type. We then apply the technique from Section 3
to produce general decompositions for arbitrary genus.

Keep in mind that our technique does not necessarily guarantee the finest de-
composition of the Jacobian variety. It is possible that for specific genera below
the Jacobian decomposes further.

5.1. The group SL2.3/. Every even genus g > 2, except genus 6, has a hyperellip-
tic curve over k with automorphism group SL2.3/. For a given g, let dDb.g�1/=6c,
and let

G.x/D

dY
iD1

.x12
� aix

10
� 33x8

C 2aix
6
� 33x4

� aix
2
C 1/;

where the ai are distinct elements of k. Table 5 gives affine models and monodromy
for curves of each even genus. These results may be found in [25]. Also recall the
Wedderburn decomposition of QŒSL2.3/� and the irreducible characters of SL2.3/

from Section 4.2.
Computing the Hurwitz character given by (3) requires computing �hgi i

, the
trivial character of hgi i induced to SL2.3/, for each branched point gi . The mon-
odromy types listed in Table 5 give us the order of each branch point. As mentioned
above, for this particular group, the order of the element is sufficient to compute
the induced character. Table 6 lists the values of these induced characters on each
conjugacy class.

Suppose X is a curve of genus g with automorphism group SL2.3/. Let d D
b.g� 1/=6c be as above. The computation of �V depends on the value of g mod 6.
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g mod 6 Affine model Monodromy

0 y2 D x.x4� 1/.x8C 14x4C 1/G.x/ .4.6/; 6.4/; 6.4/; 2.12/; : : : ; 2.12/„ ƒ‚ …
d

/

2 y2 D x.x4� 1/G.x/ .4.6/; 3.8/; 3.8/; 2.12/; : : : ; 2.12/„ ƒ‚ …
d

/

4 y2 D x.x4� 1/.x4C 2sx2C 1/G.x/ .4.6/; 3.8/; 6.4/; 2.12/; : : : ; 2.12/„ ƒ‚ …
d

/

Table 5. Hyperelliptic curves with automorphism group SL2.3/. For each
even genus g > 2, we give a model for the generic hyperelliptic curve of
genus g with automorphism group SL2.3/, together with its monodromy. Here
d Db.g�1/=6c, s2D�3, and G.x/ is as defined at the beginning of Section 5.1.

� Suppose g� 2 mod 6. Applying the monodromy information given in Table 5
to (3) yields

�V D 2�trivC .d C 1/�.1/��.4/� 2�.3/� d�.2/:

Computing the inner product of each irreducible Q-character (see Table 3)
with �V gives JX � A

2
dC1
�A2

2d
.

� Suppose g � 4 mod 6. Applying the monodromy information from Table 5,
we find that

�V D 2�trivC .d C 1/�.1/��.4/��.6/��.3/� d�.2/:

This gives JX � A
2
dC1
�A2

2dC1
.

� Finally, suppose g � 0 mod 6. Using Table 5, we compute that

�V D 2�trivC .d C 1/�.1/��.4/� 2�.6/� d�.2/:

This gives JX � A
2
dC1
�A2

2.dC1/
.

5.2. The group SL2.5/. If g is congruent to 0, 14, 20, or 24 modulo 30 there
is a hyperelliptic curve of genus g with automorphism group SL2.5/. Letting

Conjugacy class order

Character 1 2 3 3 4 6 6

�.2/ 12 12 0 0 0 0 0

�.3/ 8 0 2 2 0 0 0

�.4/ 6 6 0 0 2 0 0

�.6/ 4 4 1 1 0 1 1

Table 6. Induced characters for SL2.3/.
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d D b.g�1/=30c, the moduli space of such hyperelliptic curves has dimension d ,
and can be described as follows (see [25, §4.5]): Given d elements a1; : : : ; ad of k,
set

Gi .x/D .ai � 1/x
60
� 36.19ai C 29/x

55
C 6.26239ai � 42079/x

50

� 540.23199ai � 19343/x
45
C 105.737719ai � 953143/x

40

� 72.1815127ai � 145087/x
35
� 4.8302981ai C 49913771/x

30

C 72.1815127ai � 145087/x
25
C 105.737719ai � 953143/x

20

C 540.23199ai � 19343/x
15
C 6.26239ai � 42079/x

10

C 36.19ai C 29/x
5
C .ai � 1/

and

G.x/D

dY
iD1

Gi .x/

F.x/D x30
C 522x25

� 10005x20
� 10005x10

� 522x5
C 1

H.x/D x20
� 228x15

C 494x10
C 228x5

C 1

K.x/D x.x10
C 11x5

� 1/:

Then Table 7 lists models and monodromy for the genus-g hyperelliptic curves
with automorphism group SL2.5/, depending on the congruence class of the genus
modulo 30.

Again, the induced characters depend only upon the order of the element gen-
erating the subgroup. The values for these induced characters on the conjugacy

g mod 30 Affine model Monodromy

0 y2 DK.x/H.x/F.x/G.x/ .4.30/; 6.20/; 10.12/; 2.60/; : : : ; 2.60/„ ƒ‚ …
d

/

14 y2 D F.x/G.x/ .4.30/; 3.40/; 5.24/; 2.60/; : : : ; 2.60/„ ƒ‚ …
d

/

20 y2 DK.x/F.x/G.x/ .4.30/; 3.40/; 10.12/; 2.60/; : : : ; 2.60/„ ƒ‚ …
d

/

24 y2 DH.x/F.x/G.x/ .4.30/; 6.20/; 5.24/; 2.60/; : : : ; 2.60/„ ƒ‚ …
d

/

Table 7. Hyperelliptic curves with automorphism group SL2.5/. For each
genus g congruent to 0, 14, 20, or 24 modulo 30, we give a model for the generic
hyperelliptic curve of genus g with automorphism group SL2.5/, together with
its monodromy. Here d D b.g�1/=30c, and the polynomials F.x/, G.x/, H.x/,
and K.x/ are as defined at the beginning of Section 5.2.
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Conjugacy class order

Character 1 2 3 4 5 5 6 10 10

�.2/ 60 60 0 0 0 0 0 0 0

�.3/ 40 0 4 0 0 0 0 0 0

�.4/ 30 30 0 2 0 0 0 0 0

�.5/ 24 0 0 0 4 4 0 0 0

�.6/ 20 20 2 0 0 0 2 0 0

�.10/ 12 12 0 0 2 2 0 2 2

Table 8. Induced characters for SL2.5/.

classes are listed in Table 8. The group ring for this group is

QŒSL2.5/�Š

Q˚M2.Q.
p
5//˚M3.Q.

p
5//˚M4.Q/˚M4.Q/˚M5.Q/˚M6.Q/:

Computing the inner products of the irreducible Q-characters (which are well
known [10, §38]) with �V (listed below for the four congruence classes of g)
produces decompositions of the form A2

2.dC1/
�A4

j �A
6
k

, where d , j , and k are
determined by the congruence class of g modulo 30, and where d D b.g� 1/=30c
is the dimension of the family of curves with this automorphism group.

� Suppose g � 14 mod 30. Then the Hurwitz character is

�V D 2�trivC .d C 1/�.1/��.4/��.3/��.5/� d�.2/;

and we have j D 2d C 1 and k D 3d C 1.

� Suppose g � 20 mod 30. Then the Hurwitz character is

�V D 2�trivC .d C 1/�.1/��.4/��.3/��.10/� d�.2/;

and we have j D 2d C 1 and k D 3d C 2.

� Suppose g � 24 mod 30. Then the Hurwitz character is

�V D 2�trivC .d C 1/�.1/��.4/��.6/��.5/� d�.2/;

and we have j D 2.d C 1/ and k D 3d C 2.

� Finally, suppose g � 0 mod 30. Then the Hurwitz character is

�V D 2�trivC .d C 1/�.1/��.4/��.6/��.10/� d�.2/;

so j D 2.d C 1/ and k D 3.d C 1/.
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g mod 12 Affine model Monodromy

0 y2 D .x8C 14x4C 1/H.x/G.x/ .4.12/; 6.8/; 8.6/; 2.24/; : : : ; 2.24/„ ƒ‚ …
d

/

8 y2 DH.x/G.x/ .4.12/; 3.16/; 8.6/; 2.24/; : : : ; 2.24/„ ƒ‚ …
d

/

Table 9. Hyperelliptic curves with automorphism group W3. For each genus g
congruent to 0 or 8 modulo 12, we give a model for the generic hyperelliptic
curve of genus g with automorphism group W3, together with its monodromy.
Here d D b.g � 1/=12c, and the polynomials G.x/ and H.x/ are as defined at
the beginning of Section 5.3.

5.3. The group W3. When g is congruent to 0 or 8 modulo 12, there is a curve
of genus g with automorphism group W3. Models for these curves and their mon-
odromy are listed in Table 9, where we use the notation d D b.g� 1/=12c,

G.x/D

dY
iD1

�
x24
C aix

20
C .759� 4ai /x

16
C 2.3ai C 1288/x

12

C.759� 4ai /x
8
C aix

4
C 1

�
;

and H.x/ D x.x4 � 1/.x12 � 33x8 � 33x4 C 1/. Again, explanations of these
models and monodromy can be found in [25].

The group W3 has seven irreducible Q-characters: two each of degrees 1, 2,
and 3, and one of degree 4. The group ring decomposes as follows:

QŒW3�ŠQ˚Q˚M2.Q/˚M2.Q.
p
2//˚M3.Q/˚M3.Q/˚M4.Q/:

As in the previous two cases, there is only one possible value for the induced
character, except for the characters induced from subgroups generated by order-4
elements. However, only certain order-4 elements show up in the monodromy and
they all have the same induced character. The values for these induced characters
on the conjugacy classes are listed in Table 10.

Conjugacy class order

Character 1 2 3 4 4 6 8 8

�.2/ 24 24 0 0 0 0 0 0

�.3/ 16 0 4 0 0 0 0 0

�.4/ 12 12 0 2 0 0 0 0

�.6/ 8 8 2 0 0 2 0 0

�.8/ 6 6 0 2 0 0 2 2

Table 10. Induced characters for W3.
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We compute the decomposition of the Jacobian in the two cases as follows:

� When g � 8 mod 12, the Hurwitz character is

�V D 2�trivC .d C 1/�.1/��.4/��.3/��.8/� d�.2/

and JX � A
2
2.dC1/

�A4
2dC1

.

� When g � 0 mod 12, the Hurwitz character is

�V D 2�trivC .d C 1/�.1/��.4/��.6/��.8/� d�.2/

and Jx D A
2
2.dC1/;1

�A4
2.dC1/;2

.
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